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ABSTRACT

Designing and developing new aircraft systems is time-consuming and expensive. An essential
support in development of aircraft system models is the visualization of aircraft system properties.
The model-based design supports this visualization. However, the modeling tools available
so far do not support the modeling process in detail. They are rather limited in integration
of different system models and in representation of complexity. This paper analyzes possible
causes and resumes present results and approaches from different aspects in aircraft design and
related topics.

1 GRAPHICAL MODELING OF AIRCRAFT
SYSTEMS

System development based on graphical approaches
has become standard practice in the last years’ design
for some aspects of aircraft system models. These
graphical approaches enable users of graphical mod-
eling tools to easily explore aircraft system models,
analyze and calculate the aircraft system parameters.
In today’s development process there exist differ-
ent graphical and non-graphical modeling tools for
modeling different aspects of aircraft systems, e. g.,
model development tools for structural and func-
tional aspects, aerodynamics, compartments, electric
systems, control, etc. General modeling approaches
use currently used textual programming languages
such as e. g., Java or Simula, which provide internal
program logic only [1] or also concepts like inher-
itance to the modeler [2]. For specific disciplines
often specialized tools for modeling and simulation
are used, as e. g., GSP [2] for gas turbines, AVL [3]
and Tornado [4] for aerodynamics, and e. g., specific
tools for aircraft configuration optimization [5] and
for interdisciplinary optimization [6]. These tools

generally provide a very restricted graphical inter-
face. It often represents static modeled data as
CAD model or simple representations of simulation
results with no or marginal possibilities of interaction.
Other tools focus more on the structure, together
with the according parametric and component model,
as e. g., Catia V5 [7] and the Pacelab Suite [8]. Such
tools are intended to develop graphical views. There-
fore they make extensively use of the what-you-see-
is-what-you-get (WYSIWYG) paradigm. However,
since the today’s development of aircraft models is
an distributed process there is no generic framework
that integrates all development aspects of aircraft
models.

Using development paradigms established so far of-
ten results in complex models that are distributed in
different modeling tools with different modeling lan-
guages and modeling objectives. As a consequence
the overall system model is difficult to comprehend
and maintain. Moreover, potential errors can be very
subtle and hard to locate in such complex systems
for the human beholder. This severely comprises the
practical use of graphical system models. We also
argue that today’s paradigms for editing, visualiz-
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ing and simulation aircraft system models have not
progressed significantly since the first perception of
system models. The usefulness of graphical models
depends to a large extent on their readability, which
is the capability of the drawing to convey its meaning
quickly and clearly.

In the following we analyze methods to support
the easy development and understanding of complex
aircraft system models. We focus on methodolo-
gies, which seeks to support the system developer
in modeling, simulating and comprehending complex
aircraft system models. Central to our analysis of
modeling methods and techniques is a human cen-
tric modeling approach, which identifies weaknesses
and deficiencies of today’s aircraft systems modeling
approaches.

The use of an integrated system architecture can
be seen as an enabling method that allows the inte-
gration of different modeling objectives (structure,
function, aerodynamics, etc.) into one integrated
structure. Important advantages of an integrated
structure are the overall analysis of the modeled
system and ensuring the overall system consistency.
The benefit of an integrated system model is that
different additional resulting property views on the
system can be automatically derived (e. g., flight
behavior, timing, etc.) This enables the system mod-
eler to easily explore and inspect the overall system
wrt. different technical aspects.

In this paper we will also examine the what-you-
see-is-what-you-get (WYSIWYG) paradigm in con-
trast to the textual model development paradigm.
Graphical system models can be seen as a very pow-
erful concept for the development of aircraft system
models because graphical models may be more con-
venient to browse. However, compared to textual
entry, they are rather cumbersome to construct and
maintain, as designers spend a significant fraction
of their time with tedious drawing and layout chores.
We will analyze the textual entry wrt. its modeling
efficiency and give a perspective on how to benefit
from both - the advantages of the textual and the
graphical modeling paradigm.

1.1 Modeling Aircraft System Models

The complexity of aircraft system models results
mainly from the diversity and the number of sys-
tem components. Moreover the system inter-
dependencies and the concomitant functional de-
pendencies (dynamics) increase the overall system

complexity. A human modeler can capture the struc-
ture of a graphical system model by the means of
sequential traversing. First of all the modeler ob-
serves an entire graphical system model without any
details. Thereupon, the system diagram is recursively
refined by inspection of its sub-systems. However,
the comprehension of a system under optimization
(or a system under simulation) needs observation
over a period of time. An aircraft system model
generally consists of many interacting sub-systems.
This leads to complex system dynamics and makes
comprehension more difficult than conventional se-
quential composed system models that have only one
locus of interest. An established approach for design
and analysis of aircraft models is the creation of
interdisciplinary and graphical system models, which
easies the system validation, simulation, and auto-
matic coherence analysis before a concrete prototype
is developed and tested. Here different kinds of ana-
lyzes can answer some questions about the modeled
system, e. g., regarding composability of system com-
ponents, structural validity and system behavior. An
explorative system visualization and simulation is
indispensable for a general comprehension of the
system and system behavior. There are accepted
paradigms and tools for visualization. However, they
are very limited regarding the offered (static) views
and usability and barely scalable for complex systems.

1.2 System Views

In the today’s aircraft development process graphi-
cal system models are an established and accepted
technique for definition and documentation of inter-
dependencies of system sub-components as composi-
tional element of the entire aircraft system. However,
the views on sub-systems are generally represented as
static (and inflexible) views, which limits the human
analysis and understanding. Tufte [10] states that
the problem is the low information density of the so
far established visualization approaches. Hence, only
small parts of the entire system can be visualized,
even if an equivalent textual representation of cer-
tain model views needs less than one sheet of paper.
However, with textual representations it is hard for
the human modeler to establish a relation to the
graphically modeled system. Another disadvantage
of textual model representations is the loss of visual
experience of a graphical model and its dynamics.
The traceability of systems and their dynamics can
be distinguished into two questions:
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Figure 1: Classification of presentation techniques of large information sets (Leung and Apperley [9])

1. How does a modeled system behave?

2. Why does a modeled system behave the way
it actually behaves?

For answering the first question it is less important
to know details of a model. This particularly con-
cerns human modelers, which developed themselves
and being already familiar with the model. A good
overview of the entire system is much more impor-
tant. However, for answering the second question
the human modeler needs detailed knowledge about
particular sub-systems. A consolidated view indi-
cates the need for information reduction about the
system structure and to combine it with compre-
hensive information about system dynamics (e. g., a
system configuration, which can be reached during
simulation.)

In the following, we distinguish between static
views on a system model, which are not related to
a certain system configuration and dynamic views
with an underlying concrete system configuration, as
a result of a system simulation run. A sequence of
dynamic views will be treated as an animation of the
actual system behavior. Moreover, we distinguish
static system views for a given sub-system (that al-
ways represent the same information in the same
fashion) and flexible system views that adapted the
selection and representation of the underlying system
information. Furthermore, we distinguish between
local views and global views. The local views rep-

resent certain parts on its own and separated from
the given context, meanwhile global views comprise
the representation of the entire view. Conventional
visualization paradigms are limited to local static
views.

2 VISUALIZATION OF LARGE
INFORMATION SETS

The visualization of large information sets coincides
with a certain display area. This area generally lim-
its the representable model information in parts of
the modeled system or the level of modeled details.
There exist a number of dynamic representations,
which will be presented in the following. Generally
there are two classical visualization approaches:

Zoom: enlarge optical or graphical section of rele-
vant areas, and

Explode or hide: modify the visibility of hierarchi-
cal sub-systems.

Figure 1 shows a general classification overview of
representation algorithms of visual information.

2.1 CONVENTIONAL ZOOMABLE USER
INTERFACES

The mostly used techniques for diagram visualization
is the combination of zooming and panning. The
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Figure 2: Overview layer (Cox et al. [11])

usage of this technique restricts the representation
to a rectangular section. The rectangle size and
position is relatively determined to the diagram with
help of zoom tools, scroll bars and other graphical
tools. The graphical user systems, which make use
of this visualization paradigm are called zoomable
user interfaces. However, this techniques have some
technical drawbacks:

• As a consequence of limitation to a rectan-
gular section the context information drops
out. Hence, the human modeler is unable to
observe what section is presented and how it
interacts with the rest of the graphical system.

• The larger the shown section the larger the
level of information detail is represented. The
extension of the visual area reduces the size
of graphical elements and the clarity. Hence,
it is harder to recognize graphical elements.

• After only few navigation steps the human
beholder is lost in the represented information
space. This increases the difficulty to find the
information of interest.

2.2 MULTIPLE VIEWS OF DIFFERENT
ABSTRACTION LEVELS

Another possibility to increase the clarity of a graph-
ical representation is to provide the human beholder
with views of different magnification levels. A special
case of this principle is the representation of a less
detailed overview in a separated screen area or as
alternative to the working view. The overview can
be represented as permanent overview layer (see Cox
et al. [11] and Figure 2) or temporary context layer
(see Pook et al. [12] and Figure 3) and as visual
combination the working layer.

The actually selected visual section is generally
marked by a rectangular border and can be modi-
fied by moving the rectangle. To adapt the visual
section the human beholder can select a rectan-
gular area in the overview layer or in the working
layer. As an alternative to miniaturization of the
overview layer it is also possible to re-organize the
represented information. E. g., a tree-structure for
hierarchically structured information is an adequate
visual representation with high information density.
However, a disadvantage of the combination of work
and overview layer is the need for more space on the
screen and for mental integration of both layers.
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Figure 3: Context-, history and overview-Layer (Pook et al. [12])
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2.3 ANIMATION OF NAVIGATION STEPS

Pook et al. [12] present one more navigation help
for graphical systems that contributes to the un-
derstanding of the actual context. They propose
to quickly repeat performed navigation steps (e. g.,
zooming, minimization, moving of screen areas) on
user demand. Additionally to the working layer a
history layer represents the repeated tasks. By fol-
lowing this paradigm should ease the understanding
for the modeler how the screen area selection was
performed. This method can be simplified with an
direct transition from the entire system view to the
actually represented screen view. This variant is
generally less confusing while working with graphical
systems.

2.4 FOCUS-AND-CONTEXT
REPRESENTATION

The focus-and-context representation allows to
present currently interesting information in detail
and to keep the relation to the context. The focus is
generally presented with a high magnification factor
to highlight all information details. For the visual-
ization of the context a smaller magnification or a
miniaturization is used to present as much context
information as possible. The best-known realization
of a focus-and-context representation is the fish eye
view. Using a non-linear optical distortion mostly a
circular area is magnified. The result is comparable
with pictures resulting from a convex lens distortion
or photography with an extreme wide-angle lens. Fig-
ure 4(a) shows a diagram representation with fish eye
distortion. However, relevant literature emphasizes
also disadvantages of fish eye views:

• Non-linear distortion representations aggravate
the readability and comprehensibility of linear
representations (e. g., diagrams.)

• The computation effort of fish eye representa-
tions can delay the visualization and aggravate
the traceability.

Sarkar and Brown [13] introduce an alternative focus-
and-context method that overcomes the disadvan-
tages of optical distortions. Their method rather
preserves the character of the magnified focused ob-
jects using a graphical non-distortion magnification
(see Figure 4(b)). The focus’ position, size and level
of detail can vary dependently on the visualization
intent.

Definitions

Level of detail (LOD): a priori significance of an
object, dependent on the selection of the visi-
ble screen area

Degree of interest (DOI): numerical value con-
sisting of level of detail

Distance from Focus (DFF): object distance to
the user focus of interest

The size of a presented object depends on its original
size and the distance to the focus of interest.

2.4.1 SEMANTIC ZOOMING

Semantic zooming is a method to meaningfully repre-
sent graphical models as e. g. graphical aircraft mod-
els. With this technique the level of detail (LOD)
is adapted to the magnification factor. When the
visible area contains too many graphical elements
the number abstraction level will be increased to hide
actually unimportant information. This technique
leads to nearly constant visual complexity across mul-
tiple magnification levels. The semantic zooming
makes use of the hierarchical structure of the rep-
resented information representation; more hierarchy
levels will be presented with decreasing magnifica-
tion level. However, the need for meaningful and
aesthetic model representations requires often re-
arrangement and re-size of presented objects under
consideration of the objects’ context.

2.4.2 SEMANTIC FOCUS-AND-CONTEXT

Köth [14] provides a combination of focus-and-
context representation and semantic zooming called
semantic focus-and-context representation. Here, fo-
cus and context are represented at different levels of
abstraction. The lower level of context abstraction is
achieved by hiding details as realized with the seman-
tic zooming technique rather than object miniaturiza-
tion with semantic focus-and-context. An advantage
of focus-and-context methods is the preservation of
correct syntax and the distortion free representation
of hierarchical diagrams. As a dynamic extension
of semantic focus-and-context Prochnow and von
Hanxleden [15] present a technique for efficient visu-
alization of simulation behavior of embedded systems
with Statecharts based on hiding sub-states of inac-
tive hierarchical and uncollapsing of active states.
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Figure 4: Diagram representations with focus-and-context methods

3 AESTHETIC CRITERIA, COGNITIVE
EXPERIMENTS AND LAYOUT
CONVENTIONS

A central problem in visualization of graphical models
are appropriate aesthetic criteria for a human under-
standable information representation. For common
graph representation there exist lots of aesthetic
criteria for model element placement and layout.
However, assumptions on aesthetic criteria becomes
even harder for aircraft models.

3.1 NORMAL FORMS

Normal forms for graphical structures describe graph-
ical structures according to more or less accepted
rules for structure and layout. They aim reduce
the number of possible diagram element placements
to one standardized representation, which leads to
representation characteristics as, e. g.,

1. starting elements are placed on the upper left
side,

2. connectors between graphical elements should
be drawn from left to right,

3. connectors should be drawn without crossings,
or

4. connectors should be drawn in clockwise direc-
tion.

Such criteria can help e. g., to visually compare dif-
ferent graphical models. Hence, normal forms ideally
combine a number of aesthetic criteria to gain on
one side

1. a unique representation of graphical model el-
ements and graphical models and on the other

2. a good readable and understandable graphical
model representation.

Beside the advantages in cognition, normative aes-
thetic criteria can save computation time and mem-
ory since the linear representation can be calculated
faster and are visualized in a more compact way than
arbitrary two-dimensional model representations.

3.2 COGNITIVE EXPERIMENTS ON
VISUAL LANGUAGES

The phrase “one picture is worth ten thousand words”
comprises a shortened classification and evaluation
of alternatives with the same meaning. The human
mind can faster perceive and make sense of graphical
information representations than textual or spoken
representations. This is also true for specification and
communication e. g., in computer science. Here, clas-
sical visual examples of graphical languages are flow
diagrams, Petri nets, or class diagrams in UML [16].
However, often some graphical specifications need
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more specific textual descriptions using e. g., pro-
gramming languages as C and Java. Generally a
diagram represents a (part of a) visual description
based on an underlying visual language; analogously
textual descriptions base on textual languages. Often
graphical languages are often seen as advantageous
for

• complex structures for faster cognition and

• simple descriptions with only few graphical
elements, which does not need extensive ex-
planations.

Benveniste et al. [17] highlight for languages in com-
puter science: “Today, we see with some surprise
that visual notations for . . . languages have found
their way to successful industrial use with the sup-
port of commercial vendors. This probably reveals
that building a visual formalism on the top of a
mathematically sound model gives actual strength
to these formalisms and makes them attractive to
users.” However, visual languages have some disad-
vantages. As an example the non-linearity of visual
diagrams aggravates their creation and especially
their modification. To get an overview of the graphi-
cal system, the developer often takes resort to paper
and pencil. Moreover, a complex graphical model
cannot be easily printed; the print-out needs often
the space of a whole desk, the wall, or the roof.
With textual languages the print can be reduced to
few sheets of papers. With a textual description
as e. g., programming languages the described ele-
ments can be easily added, moved or deleted without
disrupting the document readability. With a visual
diagram adding and moving of describing graphical
elements is much more effort and raises the need
for re-arranging some graphical elements to improve
the readability, as programmer states “I quite often
spend an hour or two just moving boxes and wires
around, with no change in functionality, to make it
that much more comprehensible when I come back
to it (Petre [18])."

Cognitive experiments on graphical formalisms
highlight some weaknesses of their readability (com-
pare Petre and Green [19], Petre [18], Moher et al.
[20]). In contrast to an artist picture the intention
of a graphical modeling language is to precisely and
efficiently provide the reader of a graphical system
with a concrete meaning of the modeled system. A
central question in working with graphically mod-
eled systems is whether the system does provide

same meaning to different model readers. Related
to that is also important to make clear how much
effort is needed in order to extract this meaning of
the represented graphical model. Generally, written
text constitutes graphics with a very limited vocab-
ulary. The experienced reader intuitively performs
an abstraction and does not recognize letters as sin-
gle graphical elements with their specific individual
graphical properties. Textual languages were devel-
oped since many centuries as medium for description
of technical information. In contrast visual languages
are comparable underdeveloped. An interesting con-
clusion drawn in cognitive experiments is that the
comprehension of a graphical diagram is not only
dependent on the graphical elements, but also from
a secondary notation, i. e., from the layout and fur-
ther typographic annotations. Experienced readers
as well as programmers use typographic and other
types of annotations for efficient reading and under-
standing of textual programming languages. The
same characteristics can help to understand visual
languages. Petre and Green [19] summarize the be-
havior of beginners and experienced developers of
graphical models as follows:

• When the both equivalent representation—
graphical and textual—were provided in par-
allel then experienced users preferred to read
the text to understand the graphics.

• It often hard for beginners to understand the
essence of graphics. (In contrast to the general
opinion about graphics is that their meaning is
obvious.) Existent, but irrelevant connection
lines often confuse beginners.

• Experts can make efficient use of their fingers
to understand graphical structures.

Moher et al. [20] have analyzed the readability of
different Petri net variants. They concluded that:

• the graphical variants were generally not better
readable than the textual variants and

• the readability of diagrams was strongly de-
pendent on the layout.

However, programmers stated a preference for graph-
ical diagrams. This can be explained by the following
properties of graphical languages:

• They are more rich, i. e., more information are
represented with less unnecessary space.
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• They provide a “Gestalt” effect and efficiently
visualize structures.

• They provide a higher abstraction level; hence,
they focus more the expressed problem.

• They are more accessible, easier and faster to
understand, and easier to remember.

• They are less formal and “not-symbolic.”

• They are fun to read.

In general it seems that the illusion of a better in-
formation accessibility is more important than real
improvements in information representation. The
positive adapted character of visual languages can
raise the reading motivation.

Petre [18] states that graphical model designs
created by beginners are harder to read than those
created by modeling experts. The reason is that
beginners don’t care so much about layout. In con-
trast experts try to improve the model readability
by re-arranging the graphical elements during the
whole modeling process. Petre [18] also states that
“It is time to recognize the impact of ‘bad graphics’—
of haphazard use of perceptual cues and secondary
notations—mis-cueing, misleading, misreadig, and
misunderstanding.” This is especially true for the
design of aircraft systems, where we can find more
and more applications for graphical system models.
Furthermore it is stated “ It appears that graphical
notations can have a greater capacity to ‘go wrong’
than textual notations.”

An impressive number of style guides have been
developed for textual languages, e. g., for writing
programming languages as C or Java. Besides that,
only a small number for graphical languages in com-
puter science such as the MathWorks Automotive
Advisory Board (MAAB) [21] have been developed.
However, these are comparatively less precise and
give only few rules for model layout. Moreover, tools
for textual languages that support analyzing and
formatting, and that check and/or force the use
of certain modeling style guides are also available.
Purchase et al. [22] performed an experiment to
express the relation between the conformity to cer-
tain aesthetic criteria and the readability of UML
class diagrams. They found that in general the dia-
gram layout should follow the modeled meaning and
semantics.

4 SUMMARY

Graphical diagrams for specification of aircraft sys-
tem models can efficiently support the aircraft system
design and help to make the development process
faster and less cost-intensive. The problem is that
today’s modeling tools don’t provide efficient tech-
niques to create and maintain graphical models. This
paper provides an overview of related problems and
refers to analogue problems that are already focused
in computer science, e. g., in UML diagrams. We
reviewed the relevant literature and showed how
problems in graphical aircraft system modeling can
be tackled and how findings from domains can be
adapted and used in this field. We argued that the
aircraft system models could profit from he use of
introduced techniques that can improve their read-
ability, understandability, and maintainability that
would finally result in improvements of the entire
aircraft system modeling process.
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