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Abstract
The architecture of the integrated modular avionics (IMA) of an aircraft is selected based on the
requirements of aircraft systems and the aircraft structure. Aircraft systems using IMA require resources in
terms of I/O, memory and calculation power. In addition, systems have secondary requirements like
minimum reliability or maintainability. The aim of the IMA design process is to find an architecture, which is
compliant to the requirements and is optimal owing to quality measures like cost and weight. Since a huge
amount of functions are hosted on IMA in current and future aircrafts, the manual process of defining the
architecture is complex, error-prone, and time-consuming. To support this process in speed and maturity, a
formal model for IMA architectures is developed, which includes all driving requirements and the resulting
architecture. In addition, it enables automated validation, and evaluation of architectures. Moreover, an
implementation of modeling, validation and evaluation within the Eclipse development environment is

presented.

1. INTRODUCTION

Integrated modular avionics (IMA) is the standardization of
avionics hardware and software. The introduction of IMA
brought benefits to aircraft development process. System
functions can be certified incrementally [1], volume and
mass could be saved [2]. Defining the IMA architecture for
a new aircraft, however, is a complex, non-automated
process. The goal of this process is to design the IMA
architecture optimally for all systems and the underlying
aircraft. The optimal architecture depends on the
distribution of sensors and actuators, the aircraft system’s
requirements and the aircraft’s structure, as well as on the
available information technology. All peripherals and the
system functions have to be mapped to IMA modules, as
well as safety requirements have to be met by the
architecture. In addition, the design process starts with
uncertain information on the systems becoming more
precise later during aircraft development.

Therefore, selecting the IMA architecture is a complex
iterative process, carried out by experts. The ever
increasing amount of function aboard of an aircraft [3] and
the increasingly distributed character of future IMA
platforms is going to make these issues even more
complex in future. Engineering decisions taken often rely
on subjective impression, since the complex architectures
can hardly be interpenetrated manually. Thus it is hard to
evaluate whether defined architectures are valid and
optimal, e.g. in terms of cost or maintainability during this
phase. Early validation and evaluation of the IMA
architecture is, however, desired due to shorter
development time. A formal way of modeling the IMA
architecture and the underlying requirements could
supports the design process in speed and maturity. Errors
are prevented by a model structure and automated
validation rules. In addition, the capability of computer-
aided evaluation and fast re-design of architectures would
be given.

The aim is to develop a computer-aided IMA architecture

design methodology. Model-based IMA architecture
design shall provide the capability to develop, analyze,
optimize and validate IMA architectures during the design
phase. In addition, it shall provide the capability to collect
architectural  requirements  from  aircraft  system
departments, and aircraft structure, which can then be
used to validate the IMA architecture. The result should be
a formal model which includes every attribute of an IMA
architecture as required in the scope of the IMA
architecture design process. In addition, it shall enable
automated calculation of architecture quality measures [4],
and support the architecture definition process by enabling
fast re-design of the architecture in case of new and more
precise input data or changing system requirements.
Therefore, IMA and its development process have to be
understood to derive model objects, their attributes, and
the relationship.

Model-based development is not new in the IMA domain.
The Architecture Analysis and Design Language (AADL)
[5] is a SAE standard for modeling electronic systems
down to the level of processors, as well as software layers
and mapping. The Topcased Project [6] provides an
implementation of AADL. Gamatie et. all developed a
model for IMA software simulations [7] based on the signal
language. However, there is currently no approach of rigid
modeling the static resource distribution and all additional
constraints of IMA architectures on aircraft level.
Therefore, a model and methodology for designing,
validating and evaluation IMA architectures has been
developed.

This article is organized as follows. Chapter two is an
introduction into IMA. In addition, it defines IMA
architecture in the scope of this article and provides more
details on important components and their relation.
Chapter three is about the IMA development process. In
chapter four a mathematical model for IMA architectures is
presented. This is used in chapter five to derive a
consistent formal software class model for [IMA
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architectures. Chapter six is about the technical
implementation of the model, its validation and evaluation.
Chapter seven summarizes the results and gives an
outlook on upcoming research activities.

2. IMA - INTEGRATED MODULAR AVIONICS

Sensor A

Sensor B Aktuator B

(a) Federated Avionics

IMA Module

;Aktuator A

I

Sensor A

Sensor B Aktuator B

(b) Integrated Modular Avionics

FIGURE 1. Federated avionics vs. IMA. Key element is the
centralized provision of resources by
standardized modules (F=Firmeware/OS,
A=Acquisition, P=Processing, C=Command).

IMA is the provision of generalized hardware platforms for
calculation or 1/O task of aircraft systems. These
generalized hardware modules are shared between
independent applications. Applications originate from
different aircraft systems and can be developed
independently. Standardized modules ease maintenance,
and resource sharing saves hardware and, therefore,
weight [8, 9].

Today’s IMA first generation modules provide both
computation power and I/O interfaces combined in one
module. For application development the standardized
ARINC 653 API [10] is provided, which is mandatory for all
applications hosted on IMA. This APl makes /O
operations and data communication between modules
transparent for the application developer. This
generalization and standardization makes aircraft
functions independent of specific hardware. [11]

The currently developed second generation of IMA is
going to be more distributed by separating I/O from
calculation resources and by allowing a more distributed
installation within the aircraft. In addition, reconfiguration in
cases failure is addressed. [12]

The development of an IMA avionics system takes place
in two areas. One area is the hardware platform defined
by the IMA department, consisting of IMA modules and
their interconnection. The second area is the systems
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layer, which includes the functions, which have to be
realized in the aircraft by specifying signal flows, signal
processing, sources and sinks. Combining both layers is
carried out in the integration phase. [11]

In the following basic terms and concepts from the field of
IMA as well as are explained.

Platform: The IMA platform is the IMA hardware used in
the aircraft. The platform defines the types and amount of
IMA modules used as well as their interconnection
topology.

Modules: Modules are stand-alone hardware boxes in
IMA. A module is the smallest unit in of an IMA hardware
platform, e.g. an A380 Core Processing Input/Output
Module (CPIOM). In general a module provides resources,
which are shared by hosted applications. A resource is a
quantity provided for sharing. Resources in current IMA
modules are:

Memory
Calculation power
I/0

The resource types might change for future module types.
Differences in the provided type or amount of resources
define different module types. One module type could
provide different interfaces or more calculation power than
another. For a generic IMA module it is not specified,
which types and amounts of resources have to be
provided. No current aircraft is equipped with only one
type of module. [8, 2]

ADCN - Aircraft Data Communication Network: The
interconnection between IMA modules is standardized and
called Aircraft Data Communication Network (ADCN). In
current IMA architectures the ADCN is realized as AFDX
network. AFDX is a real-time bus based on Ethernet [13,
14]. The ADCN is used for inter-module communication.

System: An aircraft system groups certain functionality,
e.g. fire protection. Systems are developed usually in
independent departments. Those define the functions to
be carried out and the required peripherals. Each system
defines locations where peripheral are installed. An
overview on aircraft systems and their functions can be
found in [9].

Function: Every system includes one or more functions. A
function is an encapsulated part of a system. In general it
is described by a sensor input, a calculation, and an
actuator output. The calculation part is separated in one or
more applications.

Application: Applications are software programs
executed on IMA modules. In often one function can be
realized with one application. However, some functions
consist of separated applications owing to reliability or
safety requirements, which prohibit running the whole
function on one IMA module. In case a function would
need more resources then a single module provides
splitting a function in several applications is a solution.
Applications connect to other applications or its
peripherals on abstract software ports. Therefore, an
application can be hosted on every module in the
architecture providing enough resources. The routing of
data to other modules or peripheral interfaces is managed
by the A653 OS and is transparent for the application.
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Sensors and Actuators — Peripherals: Sensors and
actuators are not part of IMA itself. They connect each
system to the real world. From an IMA point of view they
are peripherals without information on their detailed
function. Peripherals, however, play an important role
when developing an IMA architecture since /O interfaces
and installation location of peripherals define 1/0 types and
amount needed on IMA modules, as well as cable routes
and length. Most peripherals belong solely to a specific
aircraft system. There are, however, peripherals shared by
systems.

Architecture: An IMA architecture is the combination of
the IMA hardware platform, the system applications,
signals and peripherals, and the aircraft. It includes all
shared resources and their allocation by software and
sensors. In addition, it defines the installation of IMA
modules and cables within the aircraft.

3. IMA ARCHITECTURE DEVELOPMENT
PROCESS
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FIGURE 2. IMA development process, participating
parties, and exchanged information (cf. [15])

The IMA architecture development process (see figure 2)
is a highly concurrent process accompanying the whole
aircraft development process. The result of this process is
the aircrafts IMA architecture. The IMA department starts
with collecting the requirements of systems and the
aircraft itself. Meanwhile system functions are developed
concurrently by several function suppliers. Based on the
information gathered from the function suppliers a first IMA
architecture is derived, which provides sufficient resources
for all aircraft functions and holds secondary constraints.
Since system’s functions development starts at the same
time, the first requirements are often incomplete and

change later in the development process. IMA modules as
specified by the architecture are developed by module
suppliers. They report the IMA department on technical
feasibility. With the results from the architecture design
and the module suppliers, a new iteration with the function
suppliers begins, where system requirements are refined
and the IMA department may communicate design
recommendations. Owing to the concurrency the process
steps of collecting requirements, creating the IMA
architecture, and defining the IMA modules are carried out
several times, and the final IMA architecture is the final
product of this cyclic iterations.

4. MODELING IMA ARCHITECTURES

An IMA architecture is a distributed system with statically
shared resources. Main task during the design phase is to
find an architecture, which provides the resources required
by the systems and does not exceed the “resources”
provided by the aircrafts installation.

This section derives a mathematical model to describe the
IMA architecture and its driving requirements from system
and installation level.

41.

From the IMA point of view each system is composed of
software blocks exchanging signals and controlling
peripherals. Software blocks are i.e. controller, or data
acquisition applications. Those blocks are black boxes
and, therefore, atomic for the IMA architect. Those atomic
software parts are called tasks in the following. The set of
all tasks T has to be assigned to the IMA hardware. Each
task T; requires a set of certain resources r'i in a certain

amount r].Ti € R,.

System Constraints

(1) #his (B, ., 1)

A resource is an abstract unit of what has to be provided
to the task and is consumable, e.g. computational power
or pins of a certain type of I/O. IMA modules, called
devices, have to provide resources. An assignment of
tasks to a device D; is valid as long as the device

resources i are not exceeded.

@ ), P

T;CT

This must hold for all devices of the architecture D.
Alternative resource requirements are, however, possible,
i.e. a task can be executed on the same device using
different resource sets. E.g. this is true for 1/O resources
with lightning protection levels (LSP). A sensor requires a
minimal LSP, but can also be connected to an 1/O with a
higher LSP. Therefore, capabilities C are introduced. A
capability €, defines a triple of the resource usage r of a
task 7; on a device D;. This provides, in addition, a more
detailed modeling of which device is possible to execute
which task.

3) G = (B Tr)
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Signals exchanged between the tasks of the systems can
be expressed analogous to tasks. A signal S; equals a
task requiring bandwidth as resource instead of 1/Os or
computational power. All signals S, however, needs to be
mapped to a set of devices D and links L between the
devices. Capabilities for signal routing €S are defined
equally to (3).

i r2 (r3

Pressure o] o} 1

Valve Left [¢] 1 0

Valve Right 0 1 [¢]

Resources 20 | 5 2
[l r2 r3 Ll r2 | r3
Controller 10 0 0 Controller 10 |0 0
Monitor 10 |0 |0 Monitor 10 (0 |0
Resources 90 0 0 Resources 8 |0 0

FIGURE 3. Example of resource sharing model. Three
devices provide the capabilities to run five
tasks under certain resource consumptions
(thin rows) and provide certain resources (bold
rows). Resource types are e.g. r1=computing
power, r2=analogue /O, r3=discrete I/O.

In addition, to resources there is a need to constrain task
distribution by secondary requirements, originating from
safety consideration, law regulations or system design
traditions. Major secondary constraints are

—  peripheral constraints,

— segregation constraints,

— atomic constraints,

— latency constraints,

— device constraints,

— installation location constraints, and
—  power constraints.

A peripheral P;is non-configurable, non-IMA equipment
belonging to a certain system. Peripheral constraints
express that a task requires the specified peripheral in
order to be operational. Important for the evaluation of the
architecture is the weight of the required cable. Therefore,
a peripheral constraint P includes a tuple of the required
peripheral P; and the cable weight per length w; € R

4 P=(T,P,w), PEP

A segregation constraint S is a tuple of two task T; and
T; that are not allowed to be executed on the same device,
e.g. a controller and a monitor application.

(5) s = (T, Ty),

Moreover, three other types of segregation constraints
exist, which define that the two task needs to be executed

T,T,€T

on dissimilar hardware §?, in dissimilar installation

locations S’ or both SPI.

An atomic constraint A defines a set of task T4 that has
to be executed on the same device.

(6) A=Ty Tu<T

Latency constraints £ define a maximal execution time
tmax € R, and a path of tasks 7, and signals S;.

(7) L= (TLI SL! tmaX)l TL = Tr SL cs

The execution of the specified path (T;,S.) in the final
architecture must last below t,,.. In order to validate
latency constraints capabilities are extended by the worst

case execution time (WCET) ty: € R, a task has on the
specified device.

®8) 2 weet(Ty) + Z weet(S;) < tmax

T;ET, S{ESy

Where wecet(x)denotes the WCET time of the task or
signal mapped to a device.

Two types of device constraints D and D exist. Either a
task T; is only allowed to be executed by a set of devices
Dy or a set of devices D3 is strictly excluded from the
possible mapping locations.

© D=(T;Dp), DpED

(10) D=(T,D5), DpCD

Installation location constraint types 7 and 7 are similar
to device constraints. Either a task T; is required to be
hosted on a device in a set of certain installation locations

I; or it is prohibited in a set of locations I7.

(11

(12)

gi= (T, Ig), Ij & T

7= (T,I;), I;clI
From safety considerations it can be necessary to specify
the power source of a system task. Therefore, two types of
power constraints W and W have been derived. From
the set of all power supplies W, e.g. DC essential, a task
T; can be constraint to either require certain power
supplies Wy, or to be prohibited on devices with certain
power supplies Wy;. The power source is added as a
property of devices.

(14) W= (T,Wg), WgpcW
4.2. Installation Constraints

The IMA architecture to be developed has to be installed
in the aircraft. Aircraft installation is on the first hand
constrained by the available installation locations I and the
available cable routes R between the installation locations.
On the second hand installation locations have only limited
capacities in space, cooling and power supply. Cable
routes are restricted by their diameter. These issues can
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be depicted as abstract installation location resources. A
device D; requires a set of installation location resources

pPi each of a certain amount pfi ER,.

(15) pP = (o ... p2")

Installation location resources are provided by each
installation location I;. A valid assignment of devices to an
installation location exist if the sum of the resources
required by the assigned devices is smaller or equal to the
resources provided by the installation location p%.

Z pDi < ij

D;ED

(16)

The installation location resource concept is also applied
to links and cable routes. The resource is e.g. the
diameter of the route. Links however are assigned to a set
of cable routes, where resource overrun is prohibited in
each route individually.

4.3. Mapping

A complete IMA architecture is defined by the elements
from the systems, IMA hardware, and aircraft installation
layer, as well as the mapping between the layers (s. fig.
4).

are mapping

IMA Hardware

} Systems
Softw:

Hardware mapping

} Installation

FIGURE 4. Dual mapping of IMA architectures. System
software is mapped to IMA devices and
devices are mapped to installation locations
within the aircraft.

Installation
Location

Installation
Location

Between the systems layer and the hardware layer the
task and signals have to be mapped to devices and links,
in respect to all constraints. More precise tasks are
mapped to capabilities of the devices. The mapping of all
tasks can be expressed in a binary vector xX € B™ where
n is the number of all possible assignments of each task
within the current hardware setup. A “1” denotes that the
task is assigned at the specified location.

(A7) =08, xfe{o1}

Within a valid architecture each task must be assigned
exactly once.

n

ngf= IK|

1

(18)

Like for tasks an assignment vector x5 is defined for signal
assignment. Since signals can have multiple segments
(18) is not valid for x5. However, all assignments of
signals must be a valid path in hardware topology.

The mapping between the hardware and installation layer
are device assignments and link assignments. Device
assignments xP are expressed like task assignments; also
the single assignment constraint (18) is true for devices
assignments. Link assignments x*, however, are
expressed like signal assignments. Link assignments must
be a valid path within the installation topology.

5. MULTI-LAYER ARCHITECTURE META-
MODEL

Based on the mathematical model of IMA architectures an
object-based data model (meta-model [16]) for storing IMA
architectures has been derived. Besides creating a
feasible class structure modularity and reusability have
been important requirements for the data model.

Definitions

Z

Installation

Hardware 1 System
1o
Mapping % 1| Scenario

FIGURE 5. Top-level structure of the IMA architecture
model. Definitions include basic type
definitions for elements of the systems layer,
hardware layer, and installation layer. The
latter three in addition with scenario are
combined to a complete architecture within the
mapping layer.

Within this section a data model for IMA architectures is
presented, which captures all date relevant for planning,
specifying, validating, and evaluating IMA architectures. It
provides a resource centered view on IMA architectures.

On the top level the model is divided into six layers (s. fig.
4). The system layer, the hardware layer, the installation
layer, as well as the mapping layer are directly derived
from the mathematical model. Since some parameters are
necessary for the evaluation of the architecture on aircraft
level, which cannot be assigned to one of the previous
layers, the scenario layer is introduced. Multiple
architectures using the same layers as building blocks are
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possible within the same model. Moreover, types for the
main model elements, e.g. tasks and devices, are
specified in definitions layer, which increase reusability.

5.1.

A definition contains a set of basic building blocks for the
system, the hardware, and the installation layer. Defined
are the types of devices, tasks, etc. In addition, types
define properties all instances of a specific type have in
common, e.g. weight of a device type. With device types,
resource types, and task types the resource based
distribution is realized. Each device type can have an
amount of resources of a specific type. The capabilities of
the device type define the amount of resources consumed
by a task type, when hosted by a device of this type. For
the early planning phase, where device types are
unknown, a task type can specify the resources required,
which later on has to be transferred into device type
capabilities.

Definitions Layer

Resources are quantities that are provided by devices and
are consumed by task and signals. Each device resource
type is identified by a name. In addition, if applicable, a
type shall provide a unit by which the amount of resources
of this type is counted. E.g. processing power resource
could be counted in MIPS.

same type. The level of detail when modeling tasks is up
to the user. E.g. a task can represent a single logical
function or a complete controller with sensor and actuator
drivers. However, the level of detail defines the
distribution possibilities of a system. One task cannot be
distributed on two devices. The replacement of this task
with two tasks and one signal in between, however, can
be distributed. Task groups and task sets enable
structured modeling and multi-task constraints.

Definitions
DeviceType ResourceType
weight: double unit : String
W B . typpe 1
eSOurCes *
Capability resources * Resource
amount: Integer
las, re uiredReLources i
/rrype q

7
TaskType

System

TaskGroup TaskSet

| Task
|| type: TaskType

Signal
Type: SignalType

task2 1

LatencyConstraint
t_max: Integer

SegregationConstraint
dissimilarDeviceType: Boolean

dissimilarlnstallationLocation: Boolean

FIGURE 6. Selected elements of the definitions model.
Depicted are resource, task, and device types.
Task types require resources. Device types
provide capabilities under a certain resource
consumption.

5.2. Systems (Software) Layer

System models define the logical structure and
requirements of system functions to be executed on the
IMA architecture. Most important elements are tasks,
signals, peripherals, and constraints.

Tasks are arbitrary atomic pieces of software, which are
executable on IMA hardware. E. g. a controller application
for a Core Processing Module (CPM) is a task as well as
the reading and routing of an digital input signal to an
AFDX message on an Remote Date Concentrator (RDC)
is a task. Each task references to a certain task type of the
definition model. The task type defines on which devices
the task is executable and which resources are consumed.
Two task of the same type in the same software model are
valid, e.g. for the reading data from two sensors of the

FIGURE 7. Selected elements of the systems model.
Depicted elements are tasks, signals,
peripherals, segregation and latency
constraints.

Signals define the data exchange between two tasks. A
signal references a signal type that defines its basic
properties and possible mapping targets. A signal is a data
exchange from one task defined as source to the task
defined as target. More than one signal between the same
tasks is allowed. Like tasks the level of detail when
modeling signals is chosen by the user. E.g. a signal can
represent the full data exchange between two tasks or
each exchanged primitive data type can by represented by
one signal. The higher the amount of signals the higher is
the amount of distribution possibilities in the mapping.

Peripherals represent instance of hardware not belonging
to the set of IMA hardware. These are sensor or actuators
in general. The reason why peripherals are modeled in the
software domain is that unless binding a certain task that
requires the peripheral to a device there exists no
connection between an IMA device and a peripheral. The
logical connection of peripherals and task, however, is
mandatory and settled. Moreover, function supplier will
know the kind of sensor and its location in the installation
better then IMA hardware designers.

Since topology and resources are not sufficient to describe
all requirements, additional constraints can be defined.
Constraints are assigned to task, task groups, and task
sets.

A Segregation Constraint references to tasks or signals
that are not allowed to be executed or routed on the same
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device or link. Moreover, two additional attributes allow
more strict segregation.

— Dissimilar Device Type: If this attribute is set to true, it
means that the task or signal is not only restricted to
different devices or links, but also to devices or links
of a different type.

— Dissimilar Installation Location: If this attribute is set
to true, it means that the task or signal is not only
restricted to different devices or links, but also to
devices or links installed in different installation
locations.

Latency Constraints define a worst case execution time
(WCET) for the signal flow and task execution between
both endpoints of the constraint. A latency constraint is
hold if the sum of the WCET for each part of the signal
processing chain is below or equal to the time specified
with the constraints. WCET of a task execution or signal
transportation is defined within the capabilities of device
types and signal types.

Device Constraints define a set of devices the task, task
group or set must or must not be mapped to.

Installation Location Constraints define a set of installation
locations the device of the task must or must not be
mapped to.

Power constraints define a set of power supply types the
device of the task must or must not be connected to.

Reliability Constraints define the minimum mean-time-
between-failure (MTBF) for the tasks after the mapping.

Task of the task group or set assigned with an Atomic
Constraint must always be mapped to the same device.

5.3.

The hardware layer contains the topology of the IMA
hardware for the IMA architecture. It includes devices and
there interconnection by links. Although the type of links
can be arbitrary in most cases the set of links can be seen
as the ADCN network.

Hardware layer

Devices are instances of a device type from the definition
model. The device type of a device is defined by a
reference to the device type object. A device is identified
by its name. Devices are instances where task and signals
from the software model can be mapped.

Hardware

5.4.

The installation model includes possible installation
locations and cable routes within the physical dimensions
of the aircraft. Objects of the installation model are
mandatory to define the mapping of the hardware topology
to the aircraft and to calculate cable lengths between
mapped module and peripherals.

Installation Layer

Installation

InstallationLocation CableRouteJoint

resources: Resource[] |

Vi

|CableRouteJoint

1 connection2

connection1 1

CableRoute
length: double

| 1 connection1 ]

Device Link
type: DeviceType type: LinkType

| 1 connection2 ; I

FIGURE 8. Selected elements of the hardware model.
Depicted are the devices and their link-based
communication structure.

Links are defined by the link types from the definition
model. Signals from the software model can be mapped
to links. Links are identified by their name. In addition,
each link has two references (connection1 and
connection2) to devices. This enables direct data
exchange between the referenced devices.

FIGURE 9. Selected elements of the installation model.
Depicted elements are installation locations
and provided resources, as well as cable
routing paths.

Installation Locations are places, where modules from the
hardware model or peripherals from the system model can
be installed. Therefore, each installation location contains
installation location resources it provides, e.g. space,
power or cooling capacity. For each installation location
resource the type and the provided amount is defined.
Each installation location itself has an absolute location in
a physical global aircraft coordination system.

Cable Routes are connections between installation
location and/or cable root joints. A cable route is assigned
with a fixed length independent of the position of the
connected objects. Cable routes can be assigned with
links from the hardware model or peripheral connections
from the software model.

Cable Route Joints provide the possibility to split or merge
two cable routes. This way not every point-to-point
connection has to be an individual cable route object.

5.5.

A scenario includes properties that are important for
quality measure calculations but may change with the
usage scenario of the aircraft. Often the attributes of the
scenario are values defined by the customer of the aircraft
manufacturer. Important business constants are e.g.
number of seats, seat usage, delay cost per hour per seat,
cancellation cost per seat, and annual usage.

5.6.

The mapping model includes mapping objects that assign
system software to hardware and hardware to aircraft
installation locations.

5.6.1.

Task assignment (s. fig. 9) objects represent the mapping
of a software task to a device from the hardware. Each
task assignment object consists of a reference to the

Scenario Layer

Mapping Layer

Software Mappings
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device the task is mapped to, a reference to a task, and a
reference to the capability of the device type the task uses
to run on the device.

Signal assignments define, in analogy to task
assignments, the mapping of signals from the system
model to links and devices from the hardware. Signals are
mapped to links for inter-device communication and to
devices for intra-device communication. Therefore, signal
assignment objects contain a link to a signal and n Signal
Segment Assignments objects, where each contains a link
to a device or link, and a reference to a capability of the
used device or link type. The latter defines the resource
usage by signals. Signal Segment Assignments shall be
set in such a way that modules and links the signal is
assigned to are connected in the hardware device, and
that the form a valid path.

5.6.2.

Device assignment objects (s. fig. 9) define the physical
location of a device from the hardware topology by
mapping it to an installation location of the aircraft. These
assignments define the usage of installation location
resources.

Hardware Mappings

Link Assignments define the mapping of links from the
hardware topology to cable routes in the aircraft. Each
assignment object contains a link to a link object and n
links to cable routes. A cable route can be either a
physical cable route or a cable route joint or an installation
location, which has to be passed. A valid link assignment
only contains links to cable routes which are connected in
the aircraft model.

Mapping

TaskAssignment
task: Task
device: Device
capabilitv: Capabilitv

DeviceAssignment
task: Task
device: Device
installationLocation: InstallationLocation

FIGURE 10. Selected elements of the mapping model.
Tasks are mapped to devices and devices
are mapped to installation locations.

6. SOFTWARE IMPLEMENTATION

The presented data model for IMA architectures has been
implemented using a model-based development process
utilizing the Eclipses Framework [17] and its domain
specific modeling extensions the Eclipse Modeling
Framework (EMF) [18] and the Eclipse Graphical
Modeling Framework (GMF) [19]. In addition, a detailed
validation and several quality measures have been
implemented. As depicted in figure 11 the implementation
is modularly separated in the model, a user interface for
editing the model, a generic validation component, and an
evaluation component.

This section describes the techniques and methodology
used to implement an IMA architecture development

and provides feedback on the utilized

environment
frameworks.

Modular software architecture of IMA
architecture development environment.
Editing, validation, and evaluation are
centered around the data model. Each of
the three model interfaces can be modularly
extended by additional validation rules,
quality measures, and editors.

6.1. Model — Data Handling

The model implementation is the storage of the IMA
architecture data as specified in in section 5. The model
has been implemented using the EMF Ecore modeling
language, which is an implementation of the Essential
Meta-Object Facility (EMOF) [20] standard. Using Ecore
the data models are composed of classes, relationships,
containments, and attributes. From the Ecore model Java
code has been generated using the EMF code generator.
The generated model code can be extended by custom
code and can be updated by later model changes. The
implementation of the model includes meta-model
information during runtime. The model can be extended
offline and online. In addition, it includes loading and
saving routines to the XML Metadata Interchange (XMI)
[21] standardized file format. Moreover, the generated
implementation serializes access to the model data and
provides change listeners on model elements.

The used development methodology eases the
implementation of complex domain specific models and
leads to a state-of-the-art implementation of the model.

6.2. Editing

An editing interface which provides access to the model is
generated with EMF. In addition, a tree-like editor for the
domain specific model has been generated with EMF. This
editor represents the plain model structure and allows
editing of all model features. The tree-view, however, in
general does not visualize what should originally be

FIGURE 11.
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represented by the model, e.g. an IMA hardware topology.
Therefore, Eclipse GMF has been used to develop more
advanced graphical 2D diagram editors. Those diagram
editors display model content as 2D shapes and
connections between them. GMF again is based on
model-based code generation. The design, layout, and
behavior each model element is described in GMF
modeling languages. From those models GMF generates
code for a diagram editor, which can be extended by
custom modifications.

GMF has been used to generate a diagram view for each
top level layer of the IMA architectures model, e.g. system
(s. fig. 12) and hardware (s. fig. 13). Owing to the EMF
editing interface all editors can be used concurrently on
the same data. The five resulting diagram views are
nested, i.e. one diagram view can be opened from another
by clicking on the objects related to a diagram. Diagram
view information is stored separated from the model, such
that multiple views on the same architecture model are
possible.

Latency Constraint
F1s

Task 1 Task 2
Slgnal

Segregation Constraint

% Peripheral

FIGURE 12. Systems model example diagram

|| Module 1 Link [ IModule 2

FIGURE 13. Hardware model example diagram

GMF provides a fast way creating diagram editors with,
state-of-the-art features. Complex model structures, e.g.
indirect relationships, which occur e.g. in the mapping
layer, can currently not be sufficiently visualized with GMF.

6.3.

The structured modeling approach allows inherent
validation of basic modeling errors, e.g. empty attributes.
Complex validation rules, like a check for resource
exceeding, however, are not covered by Ecore. Therefore,
the Validation Framework included in EMF has been
utilized. The validation framework allows specifying
arbitrary validation rules in Java.

Validation

The validation of IMA architecture constraints has
successfully been implemented using the Validation
Framework. Validation can be done during editing and
error sources can be located by icons easily. Additional
validation rules can be added using the Eclipse plug-in
mechanism.

6.4.

During the design different quality measures shall be
calculated for the current architecture. Therefore, a quality
measure registry has been implemented, which enables
the registration of arbitrary quality measures for certain

Evaluation

model object classes. If feasible the registered measures
are calculated on-the-fly, when the user selects an object
of the type. In addition, it is recalculated if a dependent
attribute in the model changes. Measure results are shown
to the user and can be used programmatically. To avoid
frequent recalculation measure results are buffered.

This way the IMA architectures are evaluated owing to the
implemented quality measures during design. In addition,
the modular implementation enables the addition of
arbitrary quality measures as separate Eclipse plug-ins
later on.

7. CONCLUSION AND OUTLOOK

IMA is a standardization approach in the field of avionics.
Sharing resources of standardized hardware modules
between the aircraft systems Ilower weight and
maintenance cost. This article provides an introduction
into IMA and the related process. It shows that the rising
system complexity and contradictive quality measures, as
well as the high degree of freedom make it difficult to
create the optimal architecture manually. Model-based
design of IMA architectures shall support the process, by
formally collecting requirements of the aircraft systems
and the aircraft structure, and by validating and evaluating
those during the design of the IMA architecture.

A mathematical model of IMA architectures has been
derived using set and graph theory. Most important, the
concept of a task has been derived, which is an atomic
software unit to be distributed on the IMA hardware. Tasks
are constrained by their resource needs and secondary
constraints originating from safety and regulations, e.g.
segregation or power source constraints.

From the mathematical a formal software class model has
been derived. This domain specific model defines IMA
architectures in the four basic layers, system, hardware,
installation, and mapping, and two supporting layers for
type definitions and scenario global parameters. System
contains the logical system structure, its periphery and
constraints, hardware is an IMA hardware topology,
installation contains installation locations and cable routes,
and the mapping layer defines the final IMA architecture
by assigning software to hardware and hardware to the
aircraft. The design of the model enables modular and
reusable design of IMA architectures by combining layers.

The IMA architectures class model has been implemented
using the Eclipse Modeling Framework (EMF). This open
source model-based software engineering approach
enabled semi-automatic generation of state-of-the-art
model implementation and user-interface. Moreover the
experience using EMF, GMF and its companions has
been documented, e.g. difficulties of creating graphical
views of complex model structures. The created
development environment for IMA architectures is a
modular composition of editing, validation, and evaluation
centered around the data model. A novel quality measure
registry allows live evaluation of arbitrary measures on
arbitrary model objects. EMF Validation Framework has
been used to implement validation rules not validated by
the model structure itself. Editing, validation, and quality
measures are inherently extensible by Eclipse plug-ins.

A mathematical and data model of IMA architectures are
first steps necessary for computer-aided IMA architecture
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design. Having those available enables new possibilities in
two directions, which will be investigated within further
research activities.

First, the machine readable information can be used for
algorithmic architecture optimization, e.g. finding the
optimal software distribution on an IMA hardware.

Second, the formal data model and the Eclipse
Framework enable automatic data transitions from or to
other phases or departments of the aircraft development
process which could make the process faster and less
error-prone. For example formal model transformation
technics could be utilized the transfer information from
IMA architecture data to IMA configuration data.
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