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Summary 

 
 
This paper deals with the delamination of non-homogeneous composite structures. A bonded joint loaded in shear is 
considered. The adherends are described by the theory of an elastic bar. An exponential material model is used for 
analysing delamination failure in the adhesive layer. This model is also able to take decohesion into account. The 
stresses in the adhesive layer between two adherends are characterized by a traction displacement relation. The stiffness 
of these interface is defined by the energy release rate and a strength parameter �max. For simplification a linear 
approach of the decohesion model is made. The resulting system of first order linear differential equations is solved and 
leads to the transfer matrix method. Non-homogeneous transverse crack tension specimens are designed. Force 
displacement curves of the specimens are recorded and compared with numerical results.  
 
 
 
1 Introduction 
 
Composite structures are prone to delamination. In tapered 
laminates the stiffness of each layer has a great influence 
on the delamination strength. The most simple form of a 
tapered laminate is the lap joint (Figure 1). 
 

 
 

Figure 1: Tapered laminate (left) and lap joint (right) 
 
Adhesive joints can be used as an efficient analogous 
model to compute delamination. In [5] the stresses in a 
bonded joint are described by using the theory of plane 
strain. It is assumed that the elastic behaviour of a thin 
adhesive layer has a marginal influence on the stresses in 
the adherends. 
An orthotropic material can also be used to describe the 
stresses in the adhesive layer [2], [3]. This approach leads 
to differential equations, which have to be solved. For this 
stress analysis, specific data like thickness, strength and 
stiffness of the adhesive layer are needed. It is very 
difficult to determine these unknown properties for 
laminates. 
Instead it is possible to use methods of linear elastic 
fracture mechanics (LEFM). The unknown specific 
properties can be replaced by the energy release rate 
(ERR) in order to compute delamination [11]. So the 
advantage of LEFM is that only one instead of three 
parameters is needed. Additionally it is very easy to 

determine the energy release rate with fracture tests. 
Consequently, for strength analysis of bonded joints with 
LEFM the adhesive layer has to be described by material 
models which are able to take fracture mechanics into 
account [1], [7]. These decohesion models are based on 
LEFM in that way that the separation work for interfacial 
decohesion is equal to the ERR. In order to describe the 
restoring traction in the interface an additional strength 
parameter �max is used. The use of �max as a second 
parameter is different from pure LEFM. As a consequence 
the decohesion model seems to be impractical. In opposite 
to pure fracture mechanics or stress analysis, decohesion 
models are able to differentiate between damage and 
fracture. A damage or decohesion is distinguished by a 
softening of the stiffness of the interface. The fracture or 
crack is characterized by stiffness zero. The two 
adherends are no more bonded to each other. 
Decohesion models are already used in finite element 
analysis (e.g. [1], [4]). These analysis are often two- or 
threedimensional. For this reason, the number of degrees 
of freedom (DOF) and the computing time are very high. 
The use of a one-dimensional approach reduces the DOF.  
So the theory of an elastic bar is useful to describe the 
deformation of the adherends. 
 
 
2 Analytical solution 
 
In order to get an analytical solution material law and 
equilibrium equation have to be used. 
 
 
2.1 Equilibrium equation 
 
A bonded joint of two adherends is considered. The 
adherends have the Young's modulus E1 and E2, the 
thickness t1 and t2 (Figure 2). The width runs in y-
direction. The joint is loaded by axial membrane forces Nx 

(force per width). It is assumed that the adhesive layer has 
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to transfer shear stresses � only. The thickness of the 
adhesive layer is neglected, because it is small compared 
to the thickness of the adherends. The analysis of the 
equilibrium leads to 
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Figure 2: Bonded joint under normal load 
 
The elastic behaviour of the adherends is given by 
 

 (2) uEAN x ′=  
 
where u denotes the deformation in x-direction, E is the 
Young's modulus and A the cross section area [6]. The 
prime describes the differentiation d()/dx. 
 
 
2.2 Decohesion model 
 
If specific values like thickness or stiffness of an adhesive 
layer are not known, it is useful to describe the 
deformation of the adhesive layer by a displacement jump 
� over the interface (Figure 3).  
The points P1 and P2 in an unloaded bonded joint can be 
assumed as coincident, if the thickness of the adhesive 
layer is small compared to the thickness of the adherends. 
If the joint is loaded by axial forces, these points are 
moving from 1P  and 2P  to 1P  and 2P . 

 

 
 

Figure 3: Displacement jump in a bonded joint 
 
The difference of the two displacements u1 and u2 of the 
adherends is equal to �t: 
 

 (3) 12 uut −=δ . 
 

Because of pure shear load in the bonded joint, the normal 
displacement jump �n is assumed to be zero. 
An exponential model for the elastic material behaviour, 
which is presented in [7], can be used to describe stresses 
in an interface by using a potential � 
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as a function of the displacement jumps �n and �t. 
The shear stresses � are computed by differentiating � 
with respect to �t: 
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In (4) and (5) �max denotes a strength parameter with the 
dimension N/mm2 and e the Euler’s number. The term 

t� describes the location of the maximum of �. The 

parameter t�  can be computed by  
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which leads to 
 

 (7) tt δδ
2

2
= . 

 
The maximum shear stress � is given by 
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Figure 4 shows the normalized shear stress �/�max versus 
the displacement jump �t . 
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Figure 4: Exponential material model 
 
The separation work, which is assumed to be equal to the 
energy release rate Gc, is computed as  
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So it is observable that tδ  follows from the energy release 
rate Gc. 
Normalizing the shear stress � with respect to �max 
(Equation (8) and (9)) has the advantage that the 
parameter �n for a normal separation is cancelled when 

doing a pure shear stress analysis. Though tδ  has the 
dimension of length it does not necessarily have to be a 
proportion of the analysed bonded joint. 
For simplification it is useful to make a bi-linear approach 
�(�t) = m�t + c of (5). The slope m and a constant value c 
can be computed by two assumptions: 
 
• The bi-linear approach and the exponential model (5) 

should have the points �(�t = 0) = 0 and 
�(�t = �2/2 �t) = �max in common. 

 
• The area under the function �(�t) is equal to the 

energy release rate. 
 
These two assumptions lead to the bi-linear equation 
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and 
 

 (11) maxtmaxCG δτ=
2

1
. 

 
A comparison of the bi-linear and the exponential model  
is shown in Figure 5. 
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Figure 5: Exponential and bi-linear material model 
 

The line from tδδ <<0  describes an intact interface 
between the two adherends. maxδδδ <<t the line denotes 
decohesion or damage and for δδ <max  fracture or crack. 
Bi-linear models are already presented in [4] to analyse 
the delamination of composites in finite element analysis. 
A linear system of differential equations can be developed 
by using (2), (3) and (10): 
 
 (12) 
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The values of Kt and lt for the different regions of the bi-
linear model are given in Tab 1. Abbreviated, the linear 
differential equation system (12) can be written as 
 

 (13) ( ) ( ) ( )xxx lKzz +=′
. 
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Tab 1: Values of Kt and lt 

 
 
2.3 Transfer Matrix Method 
 
The main principal of the transfer matrix method is shown 
in Figure 6. 
 

 
 

Figure 6: Bar with state variables 
 
If the state vector z(0) at the position 0, the transfer matrix 
T(x) and the load vector f(x) is known, the state at position 
l can be computed by 
 

 (14) ( ) ( )x)(x(l) fzTz += 0 . 
 
In order to apply the transfer matrix method to solve the 
delamination problem (12) the transfer matrix T(x) and the 
load vector f(x) have to be determined. For a linear 
differential equation system as it is given in (12), a 
solution is 
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The comparison of (14) and (15) shows 
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The transfer matrix T(x) can be calculated by the series 
expansion of ex with 
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or by the theorem of Caley-Hamilton [8]. It has to be 
noted that (15) is an analytical solution to (12), even if the 
transfer matrix is calculated numerically. 
For the numerical analysis of the delamination process 
several transfer sections have to be used (Figure 7).  
 

 
 

Figure 7: Transfer-Model for a bonded joint 
 
This is founded in the fact that over the whole analysed 
structure are areas with decohesion and fracture. The 
analytical solution (12) is only able to describe one of 
these conditions depending on the values Kt and lt from 
Tab 1. 
In order to avoid numerical problems (14) is converted to  
 
 (21) nnnn fIzzT −=− +1 . 
 
This allows to calculate all unknown state parameters zn in 
a single system of linear equations by setting the boundery 
conditions (BC): 
 
 (22) 
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The system of equations is solved for each displacement 
increment beginning with u = 0 mm until umax by using 
Gaussian elimination. For each transfer section Ti the 
displacement-jump �t is analysed and Kt and lt is set 
according to Tab 1. A new displacement increment is 
added and the resulting  system of equations is solved. 
The result of an analysis with GC = 1.5 N/m, 
E1t1 = E2t2 = 24000 Nmm, �max = 80 N/mm2, l = 50 mm, 
width 25 mm, 500 increments and the number of transfer 
units n = 90 is shown in Figure 8.  
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Figure 8: Solution of transfer matrix method 
 
A linear slope from u = 0 mm to u = 0.4 mm and a plateau 
at a level of Nx = 9500 N is observable. At a displacement 
of u = 0.75 mm a second linear slope can be seen. The 
meanings of the several areas are explained in the 
comparison with experimental results in 3.2. A small non-
linearity is observable at u = 0.4 mm, which is caused by 
numerical problems. 
 
 
3 Experimental Results 
 
The analytical solution (12) has to be verified by 
experimental results. For pure shear load in laminates 
Transverse crack tension (TCT) specimens are suitable 
(Figure 9).  
 

 
 

Figure 9: Transverse crack tension specimen 
 
 
3.1 Design of specimen 
 
The specimen is designed for delamination failure. The 
continuous layers made of glass fibre reinforced plastic 
(GFRP) and the cut layers are made of carbon fibre 
reinforced plastic (CFRP). Loaded in tension this leads to 
shear stresses between the cut and the continuous layers. 
If the shear stress is too high, delamination will occur. 
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According to [11] or [13], for a bonded lap joint with an 
adhesive layer (Figure 10), the energy release rate can be 
computed from 
 

 (23) 
2211

22112
tEtE

tEtE
GcI

+
=ε . 

 

 
 

Figure 10: Bonded lap joint 
 
With (2) and the correlation between the strain at the 
location I and II 

 (24) 
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the displacement uc at II at the beginning of the 
delamination can be calculated to 
 

 (25) ( )221111

222
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Gllu cIIc +
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With the equilibrium � = Nx/A the force is computed as 
 

 (26) 
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In order to avoid fibre-failure of the continuous layers, the 
minimum strain of (23) is searched. This exists for  
 

 (27)  2211 tEtE = .  
 
The parameter k denotes the number of plies and tp 
denotes the thickness of each ply. If the number of the 
continuous layers k2 is set, k1 is given as 
 

 (28) 
11

222
1

p

p

tE

ktE
k = . 

 
For the computation of the number of plies laminate 
theory [12] and the material properties in Tab 2 are used. 
 

 

Fabric 
Fibre 

weight 
per area  

Fibre 
density  

Fibres 
Young's 
modulus 

Glass Fibre 22800
m

kg.  362
cm

g.  
273000

mm
N  

Carbon Fibre 22040
m

kg.  3781
cm

g.  
2230000

mm
N  

 

Tab 2: Fibre material properties [10], [9] 
 
The fibre volume content �f is accepted to be 0.45. Setting 
the layer number k1 = 3, equation (28) provides k2 = 9. 
Using a 0°/90° ply set-up, laminate theory gives 
E1 = 21200 N/mm2, tp1 = 0.255 mm, E2 = 56000 N/mm2, 

tp2 = 0.240 mm.With these parameters and Gc = 1.5 N/m, 
�II is 247.30 N/mm2. This is less than an accepted fibre-
failure at 800 N/mm2 in the glass fibre layer [14]. 
The specimens were made by using the vacuum bag 
technology [10]. At a first step, a 250 mm x 200 mm plate 
for the cut layers is laminated by hand. After curing, these 
layers are cut in two pieces and put between the 
continuous layers. As a next step about 25 mm wide 
specimens are made, whose cut edges are flattened to 
reduce stress peeks. After fabrication, a thickness 
t1 = 0.75mm, t2 = 1.95 mm and a width of 23.4 mm and a 
length of l = 65 mm is measured. This leads to the fibre 
volume-content �f1 = 0.497, �f2 = 0.458 and a Young's 
modulus E1 = 23410 N/mm2 and E2 = 57056 N/mm2 
respectively. 
 
 
3.2 Tests 
 
The tests are made on Z150 testing machine from “Zwick 
Roell” and run with a cross head speed of 2 mm/min. A 
test set-up is shown in Figure 11. 
 

 
 

Figure 11: Test set-up 

 
Displacements and forces are recorded. A video for visual 
analysis of the delamination process is recorded too. 
Selected results are shown in Figure 12, 13 and 14. 
A Young's modulus about 31000 N/mm2 is measured by a 
Digital Clip-On Extensometer. This value is close to the 
mixed Young's modulus 
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of both adherends. With the assumption that the 
deformation of the testing machine is proportional to the 
measured cross head displacement, the value Emix is used 
to separate the deformation of the testing machine from 
the measured displacement. 
An almost linear slope between u = 0 mm to u = 0.75 mm 
is observable. This is due to an intact interface between 
the cut and the continuous layers as shown in Figure 13. 
Both layers are loaded by axial force. 
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Figure 12: Experimental results 
 

 
 

Figure 13: Picture of specimen 2 at 11506 N 
 
A constant load plateau at about Nx = 27500 N is also 
observable. This is the result of a delamination process 
between the two adherends as shown in Figure 14. 
 

 
 

Figure 14: Picture of specimen 2 at 28578 N 
 

The brighter appearance of the glass fibre adherend in 
Figure 14 is a result of inter fibre failure. Above a 
displacement of u = 1.65 mm a second linear slope is 
observable. This is due to the fact that at the end of the 
delamination process only the continuous layers are 
loaded. Due to the design of the specimen with the same 
extensional stiffness of each adherend, the extensional 

stiffness is half the stiffness of the first linear slope. Using 
the load Nx = 27500 N and equation (26) and (27) the 
energy release rate Gc is 1.83 N/m and uc is 0.87 mm. The 
displacement uc is not explicit observable in Figure 12. 
The deformation of the testing machine is also measured. 
The stiffness change of the adherends followed by inter 
fibre failure is also a reason. 
 
 
4 Comparison of numerical Analysis and 
 Experiment 
 
The analysis is made with n = 100 transfer units and 1000 
displacement increments. The strength �max is assumed to 
be equal to the interlaminar shear strength of CFRP and 
set to 85 N/mm2 [14]. The comparison of numerical 
analysis and experiment is shown in Figure 15. 
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Figure 15: Comparison of experiment and numerical 
analysis 
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Figure 16: Decohesion length and crack length 
 
From u = 0 to u = 0.8 mm a linear increase of load with 
deformation is visible. The difference to the experimental 
results above a displacement of u = 0.5 mm is based on 
stiffness change caused by inter fibre failure of the glass 
fibre adherends. 
This process is not considered by the used model of an 
elastic bar for the adherends. A constant load level at 
27500 N and the beginning of the plateau at a 
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displacement of u = 0.85 mm is also observable, as well 
as a second linear area above u = 1.65 mm. 
Figure 16 shows a computation of the decohesion length 
and the crack length. The decohesion process starts at a 
displacement of u = 0.54 mm. The fracture process starts 
at a displacement of u = 0.90 mm, which is close to 
uc = 0.87mm. 
 
 
5 Conclusion and outlook 
 
The presented paper shows the use of decohesion models 
to get an analytical solution to the analysis of 
delamination in composite structures. A bonded joint with 
two adherends and an adhesive layer is considered. The 
adherends are described by the theory of an elastic bar 
combined with a decohesion model to describe the shear 
stresses. The resulting system of differential equations is 

solved and leads to the transfer matrix method. The 
numerical results are compared with experimental results. 
The use of an interface decohesion model combined with 
the theory of an elastic bar is a very efficient solution 
process to analyse delamination. The comparison of the 
numerical computed displacement and axial force shows a 
good agreement with the experimental results. The 
difference between numerical results and experiment can 
be explained by the neglect of inter fibre failure, which 
can be regarded in further models. A computation of the 
damage area and the fracture area is also possible, but the 
validation of this possibility has to be proven by 
experimental results. 
For the joint, which is demonstrated in Figure 1, the 
neglect of normal stresses is not valid. Peeling stresses 
lead to an earlier collapse of a structure. The model has to 
be upgraded in order take normal stresses into account 
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