
BRIDGING THE GAP BETWEEN USERS AND DEVELOPERS WITH
MODEL-BASED USAGE ANALYSIS

B. Langer,
Diehl Aerospace GmbH, An der Sandelmühle 13 – 60439 Frankfurt, Germany

Abstract
Increasing complexity is one of the major challenges for modern avionic systems. The number of subsystems

is growing and at the same time, more stakeholders are involved in the development process. To enable
efficient co-operation in this changing environment, experts with very different domain knowledge have to
jointly create a common and unambiguous specification of a large and distributed system. Model-based

Usage Analysis takes a step in this direction, allowing users and developers to record and synchronize their
requirements and constraints in form of an abstract model of the system. In this paper we present the key

features of Model-based Usage Analysis with examples taken from real projects. Subsequently, we will
discuss the benefits focussing on the big goal to minimize cost and risk.

1. INTRODUCTION

In the aerospace industry, the process of developing
safety critical systems has changed significantly in the last
few years. Since back when developing an aircraft
function simply meant for the supplier to refine textual
customer requirements into an implementation, times
have changed.

Whereas traditional embedded devices used to work
mainly isolated from each other, the system of the future
will embrace numerous subsystems, all of them massively
relying on information exchange. New architectural
concepts such as shared communication resources and
safety partitioning, force everyone who has a part in the
development process to collaborate not only very closely
but also at a very high level of detail. This trend shows for
example in the Integrated-Modular-Anvionics concept
(IMA) that was introduced in the context of the Airbus
A380 development. Typical roles involved in a IMA
development process are 'platform suppliers', 'application
suppliers' and 'system integrators' �[15]. Each stakeholder
has his own understanding of the complete system and
has to explain his position to the other stakeholders.

Due to an even higher degree of specialisation in the
different the development disciplines, such as system-
engineering, software-engineering and hardware-
engineering, the number of involved stakeholders and
perspectives has grown even more �[1]. This has also
brought a large variety of domain specific vocabulary into
the game. Since most of the specification work is still
based on textual requirements, there is often a wide
scope of interpretation for the stakeholders �[2].

What makes things even worse is, that the perimeters and
interfaces of subsystems are evolving throughout the
whole development process. This means that the idea of
a strict waterfall-oriented development process where the
next development phase only starts after the previous one
has been finished, is not realistic anymore.

Beyond the fact that all of the above has increased the
complexity of the entire development process, it has also
led to a larger gap between users and developers of a
system. In other words: What the developer implements is
not necessarily what the user really needs.

A structured approach and the implementation of model
based methodologies might be the solution how to meet
this challenge �[1]. In this paper, we present an approach
that outlines models to define requirements at an early
stage. The approach is designed to facilitate a common
understanding of the system's properties for all
stakeholders involved in the development process.

This paper is structured as follows:

First, we will explain briefly how systems are generally
developed in the aerospace domain (chapter �2).

In chapter �3, we will give a short introduction to model-
based development and use this knowledge as a basis to
explain the Model-based Usage Analysis in chapter �4.

Looking at two current technology projects, we will
demonstrate the benefits of the presented methodology in
chapter �5.

Finally we will discuss the results and give an outlook
towards future fields of research (chapter �6).

2. DEVELOPING SAFETY CRITICAL SYSTEMS

The development of avionic systems is tied to strict
processes and guidelines. Official authorities control
whether the suppliers follow these guidelines, and
demand evidence in form of documentation. If
inconsistencies in the documentation are found,
authorities can force the supplier to re-do parts of the
development.

Deutscher Luft- und Raumfahrtkongress 2010
DocumentID: 161170

15

This is why it is important to understand the special
demands of the avionics domain when introducing a new
methodology.

2.1. Requirements Based Engineering

The whole system development process is described in
the document SAE ARP-4754 �[13].

In the first phase, the aircraft manufacturer develops
requirements on aircraft level, identifies functions and
allocates them to corresponding systems. For each
system, a PTS (Purchaser Technical Specification) is
distributed to potential suppliers. The PTS mainly consists
of textual requirements on system-level.

Subsequently, system developers refine the System-
Requirements and define a system-architecture. Each
element of the architecture is differentiated by hardware
and software parts, and the High-Level Requirements are
developed for each of them.

As a next step, hardware and software developers refine
the High-Level Requirements until they are detailed
enough to transform them directly into source-code or a
hardware design. Such requirements are called "Low-
Level Requirements".

At the end, it needs to be ensured that every element is
traceable to a requirement on aircraft-level �[10].
Traceability allows to validate the entire design on
completion, and guarantees that customer’s high level
requirements are in line with the implementation details.

Sometimes, design decision make it necessary to
introduce new requirements. These requirements are not
linked to an upward requirement, therefore, they are
called "Derived Requirements". Derived Requirements
need to be analysed separately to evaluate their impact
on the safety of the final system.

The different levels of requirements are illustrated in
Figure 1.

HW

User
Requirements

System Requirements

High Level
Requirements

SW

Derived
Requirements

Low Level
Requirements

Problem
Domain

Solution
Domain

Figure 1 - requirements hierarchy

There are different kinds of requirements. In [6] we
present a taxonomy for requirements. Non-functional

requirements are mainly concerned with quality, safety
and environmental topics.

Functional requirements specify precisely what the
system shall do.

2.2. Validation and Verification

Validation of requirements is the process of ensuring that
the specified requirements are sufficiently correct and
complete so that the product will meet applicable
airworthiness requirements.

Thus, in Figure 2, the arrows labelled “validation” are
drawn backwards to preceding phases. In each phase, all
requirements must be validated against the requirements
of the previous phases before a project can proceed.

Verification

D
e
sig

n

A
n
a
lysis

Requirements
Verification

V
a
lid

a
tio

n

V
a
lid

a
tio

n

Programming
Language

Object Code

Model

A
b

s
tr

a
c
ti

o
n

In
te

g
ra

tio
n

V
e
ri
fic

a
tio

n

Im
p
le

m
e
n
ta

tio
n

Figure 2 – schematic representation of the
development process

Whereas validation considers only requirements,
verification connects requirements and implementation. It
is the process of assessing the correctness of the
implementation according to given requirements that have
been defined during the analysis phase.

Normally, the system is verified through a set of tests that
has to be derived solely from the requirements without
taking the implementation into account.

2.3. The gap between problem and solution

It is obvious that the mandatory development process for
an avionics system is completely based on requirements
and their verification.

Verifying requirements is the most expensive and time-
consuming task in system-development. This is why
aircraft manufacturers nowadays tend to handover the full
responsibility for the costly requirements engineering to
the supplier.

Slowly this leads to an increasing gap between the
problem-domain and the solution-domain. Therefore users
often find it difficult to articulate their requirements �[3].
This is one of the reasons why only about 10% of the
requirements in a current PTS are functional requirements
�[5]. Whilst non-functional requirements are strongly
standardized by official guidelines defined by authorities

Deutscher Luft- und Raumfahrtkongress 2010

16

and do not leave much room for interpretation, functional
requirements are much less formalized.

Users often specify requirements in natural language �[1]
or use their domain specific vocabulary. This often leads
to misinterpretations when performing a validation from a
lower-level requirement. If this happens it cannot be
guaranteed that low level tests correctly verify the user
requirements. As a consequence, the whole verification
process must be called into question.

To avoid this, it is important that the functions of a system
are specified up to an unambiguous level jointly with the
users and the developers. Model-based development is
one of the approaches to address this challenge.

3. MODEL BASED DEVELOPMENT

In �[3] Nuseibeh and Easterbrook give an overview of
requirements engineering and state that a significant
proportion is about developing domain descriptions. This
is often done with documents that contain simple
diagrams and a textual description. In �[1] they state
“Because of the lack of proper syntax and semantics,
other project members often misinterpreted the diagrams”.

Models introduce syntax and semantics for an
unambiguous description of a system, and therefore help
avoid misinterpretations. A model is a structured and
formal description of a certain aspect of a system and
usually highlights properties of interest from a given
viewpoint. In Model Driven Engineering (MDE), the model
of the system to be developed controls the entire
development process.

This approach is finding more and more acceptance, even
among the responsible authorities like the EASA or the
FAA. The next version of DO-178B �[10] will contain a
model-based supplement that regulates the usage of
models during the development of a safety critical
software system.

Models are usually expressed in a modelling language
and use diagrams to visualize certain aspects. No matter
what modelling technique is used, they have certain
aspects in common:

� They describe the properties and structure of model
entities.

� They detail the relationships between model entities.
� They allow a precise, formal description of the

system's behaviour.
� They guarantee consistency at all levels.

Most often, models are used in the later phases of the
system development process to formulate the detailed
design. Domain specific modelling languages on the other
hand could be used to formally describe the environment
of the system. Therefore they are useful in earlier
development phases.

3.1. Domain Specific Models

Requirements engineering is concerned with interpreting
stakeholder terminology, concepts, viewpoints and goals.
Each stakeholder must be able to express his thoughts

and ideas in a language that is close to the one that he
uses on a daily basis. This is why numerous domain
specific techniques and tools have evolved in the past.

In �[8] Rumbaugh, Jacobson and Booch present the
Unified Modeling Language (UML). In �[1] they found out,
that “UML was the most commonly used notation for
architectural modelling”. The 'System Modeling Language'
(SysML) and the 'Architecture Analysis and Design
Language' (AADL) have also become popular during the
last years.

In addition to the well-known modelling languages
mentioned above, there are numerous languages
originating from academic groups (e.g.: Intermediate
Language for Model Verification (FIACRE)) or adoptions
of pre-existing processes (e.g.: Structured Analysis
Method (SAM)). These languages can sometimes satisfy
the needs of a specific problem better than the main-
stream languages.

Since not all stakeholders are willing to use the same
modelling language, it is important to find ways to
translate a model from one language to an equivalent
model in another language.

3.2. Model Transformation

The fact that a modelling language delivers formal syntax
and semantics allows us to automatically transform
models between different representations. Parts of a
AADL model that has been used to perform architectural
analysis could be translated into a UML model that serves
as a basis for the software design.

Translation rules have to be specified to detail how a
construct in one language is transformed into a construct
in another language. Model transformation engines use
these rules to translate a model piece by piece into
another representation. The nature of the translation rules
determines if the transformation is partial or complete. A
complete translation yields an equivalent representation
while a partial translation only considers certain aspects of
the original model.

One of the most common model transformations used in
current projects is the generation of documents from a
model. This approach has the advantage that changes in
the model are automatically reflected in all referring
documents.

Model transformation enables all stakeholders to work
with their own modelling languages and tools. Given a set
of appropriate transformation rules, the modelling process
is completely independent from the selected languages
and tools.

3.3. Model Analysis

Formal methods can be used to verify parts of a model. If
the requirements are formalized to a sufficient degree, this
process could be achieved automatically. In �[5] we give an
overview of what kind of requirements can be formalized,
and how this can be accomplished. We will give some

Deutscher Luft- und Raumfahrtkongress 2010

17

examples of effectively occurring requirements, and will
outline formal methods to verify the respective properties.

The Object Constraint Language (OCL) is a possibility to
formally define a restriction or a rule that must be followed
by the system that is currently modelled. In �[9] they
demonstrate how to use formal methods in UML/OCL
models. With this approach it would be possible to
formally verify whether a system fulfils certain
requirements.

Since it takes much effort to create such formal
description, sometimes the preferred method of model
verification is a simulation. A simulation can help detect
errors in the specification and find solutions together with
the customer.

3.4. Modelling Tools

There are numerous tools available that can be used to
create and analyse models. One of the most common
commercial tools in the aerospace world is Rhapsody by
IBM. Modelling tools usually provide means to create and
manipulate models. The Eclipse Modelling Framework
(EMF) is the first attempt to provide an abstract
infrastructure that enables model transformation and
model analysis on an open-source basis.

In the context of this work, we have selected the open-
source tool TOPCASED that is based on EMF for the
creation of our model parts.

TOPCASED is the acronym for "Toolkit in OPen source
for Critical Applications & SystEms Development". The
Toolkit is developed and maintained by a consortium that
originated from the AeroSpace Valley, one out of the six
“world-class” competitiveness clusters selected by the
French Government in July 2005 �[11]. The consortium, is
led by Airbus France.

The tool contains generic services for model serialization
and manipulation, and it comes with the integrated Atlas
Transformation Language (ATL).

An integrated Configuration Management Interface, a
sophisticated subcontracting-mode and the possibility to
share models across different teams allows a seamless
collaboration with many stakeholders.

4. MODEL-BASED USAGE ANALYSIS

As described above, the model-based approach is the
basis for an efficient and unambiguous exchange of
information between different stakeholders. We propose
to use this technique as early as possible in the
development process to avoid misinterpretations in later
phases. For this purpose, we would like to introduce a
possible model structure and the corresponding
semantics to formally express the knowledge and needs
of all stakeholders in a single model.

We have chosen a use-case driven methodology and
open-source tools to perform the model-based usage
analysis. The analysis is performed following the steps
below.

� First the domain-model is specified.
� Then the usage-scenarios are defined.
� At the same time, the architecture is refined.
� When the model is detailed enough, analysis tools

can be used to assess the specification with respect
to correctness or other attributes.

The different models that are created during the usage-
domain analysis are structured hierarchically. Each step
includes the results of the previous step, and adds new
information to it.

This model structure allows us to distinguish clearly
between user-domain and solution domain. In Figure 3
there is an overview of the three main models that are
used to describe the results of the analysis. The domain-
model contains pre-existing entities coming from the
domain knowledge of the stakeholders.

The architecture-model describes parts of the developed
system, and is therefore more relevant for the developers
than for the users.

The usage-model bridges the gap between the domain-
model and the architecture-model. Since it contains
knowledge of both, users and developers, it can be
considered as the missing link between both worlds.

Figure 3 - different models of the usage analysis

The different models are explained in more detail in the
next three chapters.

4.1. The domain model

In �[3] a roadmap is given on how to improve the
specification of systems in the future. One of the major
suggestions was to formally model and analyse properties
of a system's environment.

As suggested in �[2] our domain model represents a
description of the environment in which the envisioned
system will operate. It is comparable to a glossary where
the basic building blocks and their relationships are
defined. It is important that every stakeholder can find
representations of his main objects in the domain model.

Deutscher Luft- und Raumfahrtkongress 2010

18

We use UML class diagrams and simple associations
between classes for the domain model. All stakeholders
are given the task to add a textual description to their own
building blocks in order to help the others with the
interpretation of each model element.

In Figure 4 we have created a simple domain model to
explain the main concepts.

Figure 4 - a simple domain model

The example system (System A) consists of several
hardware components, as shows the filled diamond at the
bottom of the association arrow connecting System A and
HW Component. Such a relationship between two entities
is called a composition in UML.

Furthermore there is a Centralized Maintenance System
(CMS) that is connected to the system. The CMS is not
part of System A, but it is associated with it. A hollow
diamond indicates that the connected entities are only
loosely coupled. Such an association is called an
'aggregation' in UML. In natural language this can be
translated with "A knows B".

One simple diagram (three boxes and two arrows) is
already sufficient to demonstrate some very important
aspects of the system in an intuitive way.

4.2. Usage Scenarios

In the next step we define how the system will be used
and how the entities of our domain model interact with
each other.

The Use Case Approach from Ivar Jacobson �[12] has not
been widely adopted in the avionics domain. Nevertheless
in �[1] they found out that "another qualitative technique
employed was scenario-based analysis”.

Instead of starting with the system's architecture, we
begin with the question of how the system will be used in
operations. In a first step, we declare all the stakeholders
of the system as actors in a use-case diagram as shown
in Figure 5.

In our example there are two different user classes. The
maintenance engineer, for instance, will use the system
differently in comparison to the normal user. Normal users
can be either a pilot or a crew member.

Figure 5 - Use Case Diagram for our example

To this end, a requirements engineer can elicit information
about the tasks that users currently perform, and also on
those that they might want to perform [4].

The use-cases associated with the system can be
detailed together with the corresponding stakeholders in
one or several workshops (depending on the complexity of
the use-case and the skills of the stakeholders). We use
UML interaction-diagrams to give practitioners the
possibility to precisely document the use-cases.

Lifelines in interaction diagrams represent objects from
the domain-model that play a role in the corresponding
use-case. The Lifelines are illustrated as vertical, dotted
lines; the rectangle on top shows the name of the domain
object.

Messages between lifelines indicate how the entities
interact. A message can be either data or a command.
With this simple diagram we have captured the control-
flow and the data-flow of each use-case as requested by
�[10].

An example for a detailed scenario specification is given
in Figure 6.

Figure 6 - example usage scenario

The interaction-diagram is a very efficient tool to help
stakeholders think in a structured pattern, and the

Deutscher Luft- und Raumfahrtkongress 2010

19

resulting specification is unambiguous. Furthermore the
rule stating that a lifeline has to be linked to an object of
the domain-model effects consistency throughout the
different parts of the model.

As an additional benefit, we know that authorities already
accept this kind of representation as a valid part of a
specification.

4.3. Architecture Model

Whilst the domain model exclusively contains elements
from the problem domain, the architecture model already
describes parts of the solution. The architecture must be
able to realise all usage scenarios defined in the previous
step.

Again we use UML Class diagrams to define the
architecture-model. The architecture-model should always
contain the elements of the domain-model and put them
in relation to new architectural elements. These new
elements represent the parts of our system that have to
be developed.

Architecture-models can be hierarchically decomposed.
For each level in the hierarchy new usage scenarios have
to be defined until the architecture is detailed enough to
function as a basis for the detailed design.

Figure 7 shows the architecture of our example after the
definition of the first usage scenario.

Figure 7 - example architecture

We have added a Network Switch, since we now know
that the CMS has to exchange data with System A to
realize the usage scenario from Figure 6. Furthermore, we
have added a display to the CMS, because the
maintenance engineer should be able to read the failure
messages somehow. Additional memory ('Storage') must
be available inside the CMS to store messages generated
by System A.

In this manner the system architecture is bound to evolve
step by step. The architecture model can be used as a
pre-stage for the later design; it is the basis for detailed

analyses as explained in the next chapter.

4.4. Model Exploitation

The usage analysis model generated thus far has some
properties which enable a structured and automated
analysis. It contains knowledge on dependencies between
model elements. The interaction-diagrams implicitly define
how the different elements of the system interact with
each other.

A very basic possibility is to use the model as a database,
and extract information with predefined queries. We used
the Object Constraint Language (OCL) to develop queries
on a model that has enabled us to calculate complexity
metrics and also to extract interfaces for each model
entity automatically.

In our case studies we used the model to generate large
parts of the documentation automatically. The built-in
document-generator of TOPCASED is able to process
document templates and extract diagrams along with text
from the model.

As a next step, we experimented with analysis tools to
detect subtle errors in the architecture. Using the model
transformation engine of TOPCASED we translated parts
of the model into AADL and conducted latency and
performance analyses. We even used a similar approach
as described in �[7] to perform an automated safety
analysis.

When it comes down to verification, nothing is more
convincing than a mathematical proof. In �[4] they
demonstrate that a sequence diagram can be formalized
using template semantics. This high degree of
formalisation will allow the usage of deductive methods for
the verification of certain properties of the model.

5. CASE STUDIES

Currently, there is no quantitative study of the
effectiveness available. Early stage case studies as a
prove of concept has been done.

In this chapter we present the models generated during
the usage analysis of two current technology projects.
First we will explain the context of each project and give
some examples for each model part of the usage
analysis.

At the end we will explain how the models have been
exploited in each project.

5.1. The integrated Airport – IPORT

In the framework of the project IPORT �[14] we are
currently developing an optimised taxiing process in
collaboration with both an airport operating company and
the responsible air traffic control authority. The goal is to
achieve a higher level of automation compared to current
procedures. Additional displays in the cockpit, an
enhanced lighting system on the surface and a new front-
end for the controller on the ground are designed to
provide both more safety and efficiency for surface

Deutscher Luft- und Raumfahrtkongress 2010

20

operations on airports.

The system considered in IPORT includes a large amount
of subsystems and involves ground and airborne
equipment. Due to the large scale of the system, many
stakeholders from different domains are involved.

When the project was launched there were no textual
requirements available. Even the understanding of the
development process was inhomogeneous among the
stakeholders. Different guidelines from different
authorities had to be consolidated.

The usage-domain analysis has been used in IPORT to
support the discussions of different operational concepts
and different levels of automation.

5.1.1. Domain Model

The domain model of IPORT describes all entities that are
involved in the surface operations of an airport. In Figure
8 parts of the domain-model of IPORT are depicted.

Figure 8 – the IPORT domain-model (extract)

In IPORT the stakeholders originate from very different
domains. This is why it is important to describe the entities
of the domain very precisely. For basic terms such as
'airport' and 'runway' we used the definitions from ICAO.
The technical infrastructure was described by the
corresponding domain experts.

5.1.2. Usage Scenarios and Architecture

In IPORT we managed to involve real users in the usage-
analysis. In 12 use-cases we described surface
operations that shall be performed with the support of new
technical equipment.

In Figure 9 the detailed specification of the usage-
scenario "runway incursion" is shown. A runway incursion
occurs when an aircraft enters the runway without the
clearance of a controller. In the worst case this can lead to
a collision with another aircraft that is using the same
runway for take-off or landing.

Figure 9 - IPORT usage-scenario – runway incursion

Tower-controllers, apron-controllers and pilots have
actively participated in the specification process of the
scenarios.

We used UML-stereotypes to distinguish between
different kinds of interactions, like voice communication
and visual indications. This is crucial for possible safety
analysis. With this additional information, we were able to
assess the impact of the new procedures on the usage of
the voice communication channel.

5.1.3. Model Exploitation

In addition to an early feasibility analysis through
simulation, the model is used for the verification of the
system in the later phases of the development.

The interaction-diagrams were used to automatically
generate test-cases for the verification of the final system.
With OCL queries we extracted the necessary interfaces
of all subsystems from the model.

Furthermore major parts of the operational concept
documentation was automatically generated from the
model.

5.2. The intelligent Cockpit – INTECO

The project INTECO is about developing a synthetic vision
display for rescue helicopters. Bad weather conditions in
conjunction with challenging mission profiles often lead to
a very high workload for the helicopter crew.

A three-dimensional terrain representation shall increase
the situational awareness of the pilot in low-visibility
conditions and support the crew during difficult
manoeuvres.

To facilitate the management of the high-resolution terrain
data, a highly reliably and efficient database management
system has to be developed. Furthermore a powerful
graphics generation device has to be integrated into the
system that is able to generate complex three-

Deutscher Luft- und Raumfahrtkongress 2010

21

dimensional graphics for cockpit-displays.

Stakeholders in this project are the helicopter
manufacturer, the function supplier responsible for the
display applications and the platform supplier who delivers
the hardware components and basic software services.

5.2.1. Domain-Model and Use-Cases

The main entities in the domain model of INTECO are the
database server and the graphics generator (see Figure
10). The database server manages geographical
information like terrain data and obstacle data which is
necessary for creating a detailed depiction of the current
mission area. The graphics generator is responsible for
transforming data received from the mission system and
the database server into a picture on the cockpit displays.

Figure 10 - INTECO domain model

Together with the helicopter manufacturer, high level
requirements have been developed and at the same time
the domain-model has been created. TOPCASED-
mechanisms have been used to link the textual
requirements to elements of the model.

Since the system to be developed in the frame of INTECO
has the character of a platform, operational aspects do
not play a key role in the model. Under certain
circumstances the user of the platform has to embed the
domain-model into his operational model to get a
complete specification. This will be possible through the
transformation mechanisms described in chapter �3.2.

Each element of the domain model is associated with use-
cases that describe the expected functionality on a high
level. In Figure 11 all use-cases associated with the
database server are listed. The use-cases have been
delivered from the helicopter manufacturer as part of the
user-requirements. They serve as a basis for the
verification of the system.

Furthermore, in INTECO we had access to the prototype
of the system developed earlier. Thus we were able to
validate the use-cases on a running platform. This is one
of the reasons why the descriptions of the use-cases were
already very well developed at an early project stage.

Figure 11 - INTECO DB Server Use-Cases

5.2.2. Usage Scenarios and Architecture

In several modelling workshops the use-cases have been
refined into usage-scenarios. In collaboration with
software engineers the use-cases were realized using real
function calls of pre-existing software libraries.

In Figure 12 an example scenario is illustrated. The
scenarios have been reviewed and commented on by all
partners of the project. All comments have been directly
incorporated into the model and validated through
simulation.

Figure 12 - INTECO scenario "provide database
information"

It is remarkable that the INTECO scenarios do not include
as many stakeholders as the scenarios in the IPORT
project. This is due to the different natures of both
projects.

While in IPORT we concentrated on the definition of an
operational concept for the system, in INTECO we
specified the technical protocol used to communicate with
the database server and the graphics generator.

Deutscher Luft- und Raumfahrtkongress 2010

22

5.2.3. Model Exploitation

In INTECO we used the described method in the first
place to assess the feasibility of the user-requirements.
Working with the created model, we used simulation data
and automated consistency checks with OCL-constraints
to refine and validate the specification together with our
customer.

Since the model was directly linked to the textual
requirements, it was possible to analyse the impact of
changes in the specification and identify problematic
requirements.

Additionally, we developed a methodology to derive test
cases from the behavioural description (i.e. the interaction
diagrams) of the system; and we used UML activity
diagrams for the low-level specification of the software
functions. Since both definitions were available in a single
model, we were able to partially generate the source code
from the activity diagrams and run the generated test
cases on the compiled software.

Combined with a model-based safety analysis that was
based on information derived from the usage scenarios,
the model greatly supported all necessary verification
activities.

6. RESULTS

In all the above projects, stakeholders from different
domains were involved. The model-based usage analysis
has been performed to derive the specification and
architecture for the final system.

Since there is no representative data available for the
costs of an average requirements engineering process we
were not able to calculate the real savings of the method
presented.

All stakeholders agreed that the transparency that could
be achieved by our approach and also the illustrative
diagrams were helpful to create a common understanding
of the system.

During the specification work of both projects new
dependencies have been discovered that have not been
thought of at the beginning of the project. Especially the
possibility to integrate changes directly into the model
helped to explain the consequences of each change to all
stakeholders.

The creation of these models can be a time-consuming
task. Then again, compared to a pure textual approach to
define a specification, time and effort for explanations and
clarifications could be reduced in our case-studies.

7. CONCLUSION

The high complexity of modern systems and the necessity
for a full traceability, as explained in chapter �2.1, makes it
necessary for the supplier to develop a large amount of
requirements on his own.

We have presented a structured approach to refine and

formally develop requirements for a complex system.
Model-based methods have been used to formalize as
much of the available domain knowledge as possible. The
method helps propagate this knowledge throughout the
different disciplines and domains of all stakeholders.

Furthermore, the created models can be re-used in later
phases of the development (e.g.: as design models or
verification models) and therefore the investment is
always useful.

The tools used in the aforementioned technology projects
are mature and the method has proven to work for real-life
projects. Our method enables suppliers to offer an
unambiguous and mature description of a system in a
very early stage. Therefore it reduces the risk of
expensive changes in the later stages of development.

Our goal for the near future is to improve the assessment
options of the models by creating more analysis tools and
formal constraints. We hope to increase the usability of
existing modelling tools by customizing them for the
usage-domain analysis approach and integrating them
into the established toolset.

REFERENCES
[1] B. Graaf, M. Lormans, and H. Toetenel, "Embedded

Software Engineering: The State of the Practice",
IEEE Software, 2003, p. 61-69

[2] Bashar Nuseibeh and Steve Easterbrook,
“Requirements engineering: a roadmap,” in
Proceedings of the Conference on The Future of
Software Engineering (Limerick, Ireland: ACM, 2000),
p. 35-46

[3] P. Johnson, Human-Computer Interaction:
psychology, task analysis and software engineering,
McGraw-Hill, 1992

[4] H. Shen, A. Virani and J. Niu, “Formalize UML 2
Sequence Diagrams” in Proceedings of the 2008 11th
IEEE High Assurance Systems Engineering
Symposium, p. 437-440

[5] B. Langer and M Tautschnig, “Navigating the
Requirements Jungle”, Leveraging Applications of
Formal Methods, Verification and Validation,
Communications in Computer and Information
Science, Volume 17. Springer Berlin Heidelberg,
2009, p. 354ff

[6] N. Pontisso und D. Chemouil, “TOPCASED
Combining Formal Methods with Model-Driven
Engineering,” Automated Software Engineering,
2006. ASE'06. 21st IEEE/ACM International
Conference on, 2006, p. 359-360.

[7] J. Liu, J. Dehlinger, R. Lutz, “Safety analysis of
software product lines using state-based modeling”,
The Journal of Systems and Software 80, 2007, p.
1879-1892

[8] J. Rumbaugh,, I. Jacobson, and G. Booch, Unified

Modeling Language Reference Manual, the (2nd
Edition). Pearson Higher Education, 2004.

Deutscher Luft- und Raumfahrtkongress 2010

23

[9] A. Occello, A. Dery-Pinna, M. Riveill, “Validation and
Verification of an UML/OCL Model with USE and B:
Case Study and Lessons Learnt ”, IEEE International
Conference on Software Testing Verification and
Validation Workshop, 2008

[10] RTCA DO-178B, Software Considerations in Airborne
Systems and Equipment Certification, 1992

[11] N. Pontisso und D. Chemouil, “TOPCASED
Combining Formal Methods with Model-Driven
Engineering,” Automated Software Engineering,
2006. ASE'06. 21st IEEE/ACM International
Conference on, 2006, p. 359-360.

[12] I. Jacobson, M. Christerson, P. Jonsson, und G.
Overgaard, “Object-Oriented Software Engineering: A
Use Case Driven Approach.", Harlow, Essex,
England: Addison Wesley Longman, 1992

[13] SAE ARP4754 – Certification Considerations For
Highly-Integrated Or Complex Aircraft Systems,
Warrendale, PA, 1996

[14] iPort-Project Description : http://www.dlr.de/pt-
lf/Portaldata/50/Resources/dokumente/VUE_2009_iP
ort.pdf (seen on 03.05.2010)

[15] RTCA DO-297 Integrated Modular Avionics (IMA)
Development Guidance and Certification
Considerations, 2005

Deutscher Luft- und Raumfahrtkongress 2010

24

