Table of Contents

1 Introduction

- 1.1 Air Transport System
- 1.2 Air Vehicle Classification

2 Aircraft Development

- 2.1 Aircraft Development Cycle
- 2.2 Market Requirements
- 2.3 Design Problematic in Engineering
- 2.4 Design Methodology

3 Certification

4 Configurations

- 4.1 Actual Configurations
- 4.2 Unconventional Configurations

5 Preliminary Sizing

- 5.1 Landing Distance
- 5.2 Take-off Distance
- 5.3 Climb Rate during 2nd Segment
- 5.4 Lift-to-Drag Ratio with Extended Landing Gear and Extended Flaps
- 5.5 Climb Rate during Missed Approach
- 5.6 Cruise
- 5.6.1 Thrust-to-Weight Ratio
- 5.6.2 Wing Loading
- 5.7 Lift-to-Drag Ratio during Cruise
- 5.8 Matching Chart
- 5.9 Maximum Take-Off Mass
- 5.9.1 Relative Operating Empty Mass
- 5.9.2 Relative Fuel Mass
- 5.10 Take-off Thrust and Wing Area

6 Fuselage Design

design methodology cabin layout airworthiness design loads structural technology cutouts passenger doors inboard profile

7 Wing Design

- 7.1 Wing Parameters
- 7.2 Basic Principle and Design Equations
- 7.3 Flight and Operational Characteristics
- 7.4 Ailerons and Spoilers
- 7.5 Example: The Wing of the Airbus A310

8 Landing Gear Design

gear arrangement airworthiness design loads energy dissipation retract kinematics brakes, wheels gear configurations

9 Empennage General Design

- 9.1 Functions of Empennages
 Trim
 Stability
 Control
- 9.2 Shapes of the Empennage
- 9.3 Design Rules
- 9.4 Design According to Tail Volume
- 9.5 Elevator and Rudder

10 Engine Integration

standard turbofan engines engine attachment points engine pylon load transfer ground clearance turboprop engines innovative concepts

11 Aircraft Configuration Design

11.1 Configuration Design Process
design methodology
structural components integration
CG travel
zero-lift drag
airworthiness
design loads
structural concept

- 11.2 Configuration Design Problems
- 11.2.1 160 200 Seat Medium Transport
- 11.2.2 30 Seat Regional Transport

- 11.3 Special Configurations
- 11.4 Conclusion

12 From Aircraft Performance to Aircraft Assessment

- 12.1 Objectives of the Lecture
- 12.2 Preface for a Simple Approach to DOC
- 12.3 Operational Cost Structure
- 12.4 A Simplified DOC Model
- 12.4.1 DOC Notations
- 12.4.2 Fuel Demand
- 12.4.3 Average Aircraft Weight
- 12.4.4 Payload Range Diagram
- 12.4.5 Unit Cost
- 12.4.6 JAVA DOC Applet
- 12.5 Aircraft Family Economics
- 12.6 Presentation of DOC Calculation Results
- 12.7 Total Quality Assessment

13 Military Aircraft Development

- 13.1 Development Scenario/Environment
- 13.2 Requirements
- 13.3 Development Process and Tools
- 13.4 Technologies
- 13.4.1 Composites
- 13.4.2 Ejection Systems and Pilot "g" Protection
- 13.4.3 Unstable Configurations and Digital Flight Controls
- 13.4.4 Thrust Vectoring
- 13.4.4.1 X-31 Enhanced Fighter Manoeuvrability (EFM) Program
- 13.4.4.2 The VECTOR Program
- 13.4.5 Aircraft Signature
- 13.5 Unmanned Systems
- 13.6 Future Aspects

References (from Chapters 5, 7, 9)

Appendix