

Department Fahrzeugtechnik und Flugzeugbau

Verbesserung des aerodynamischen Modells zur Berechnung von Böenlasten auf Passagierflugzeuge

Alexander Broer

1. Prüfer: Professor Dr.-Ing. D. Scholz

2. Prüfer: Dr.-Ing. P. Teufel

Durchgeführt in Kooperation mit Airbus Operations GmbH

Department Fahrzeugtechnik und Flugzeugbau

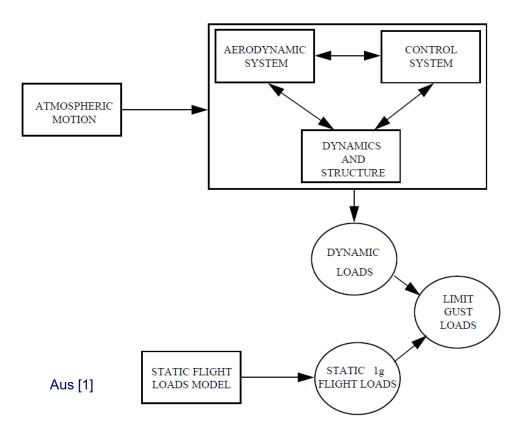
Inhaltsübersicht

- Einführung in die Böenrechnung
- Problemstellung
- Aufgabe der Arbeit
- Umsetzung
- Ergebnisanalyse

Department Fahrzeugtechnik und Flugzeugbau

Inhaltsübersicht

- Einführung in die Böenrechnung
- Problemstellung
- Aufgabe der Arbeit
- Umsetzung
- Ergebnisanalyse



Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

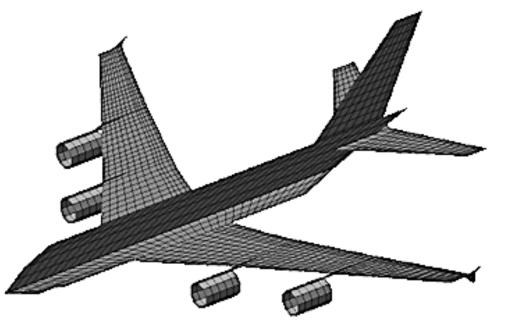
Department Fahrzeugtechnik und Flugzeugbau

Prinzip der Berechnung von Böenlasten

Flugzeug modelliert durch:

- Strukturmodell
- EFCS-Modell
- Aerodynamisches Modell

Hochschule für Angewandte Wissenschaften Hamburg


Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Aerodynamisches Modell

Doublet Lattice Method (DLM)

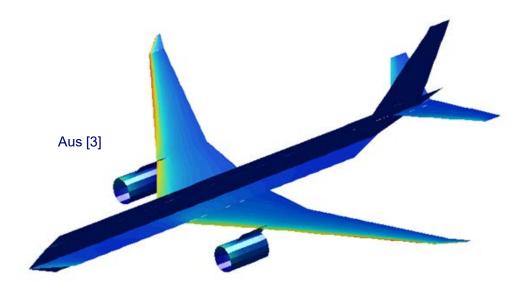
- Instationäres Lösungsverfahren für Potentialströmungen
- Modellierung des Flugzeugs anhand von 2D-Panels

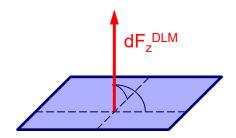
Resultat:

- Aerodynamic Influence Coefficient Matrix (AIC)
- Druckverteilung c_p

Department Fahrzeugtechnik und Flugzeugbau

Inhaltsübersicht


- Einführung in die Böenrechnung
- Problemstellung
- Aufgabe der Arbeit
- Umsetzung
- Ergebnisanalyse


Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

1. Problem

Integration der Druckverteilung führt zu Luftkraft senkrecht zum Panel:

Schlussfolgerung: Keine Kräfte in Längsrichtung Einfluss auf Roll-Gier-Verhalten

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

2. Problem

Jig Shape: Konstruktionsmodell Flight Shape: Form im Flugzustand

V-Stellung des DLM-Modells im Jig Shape, nicht im Flight Shape **Schlussfolgerung**: Kräfte in Querrichtung nicht exakt darstellbar!

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Aufgabe der Arbeit

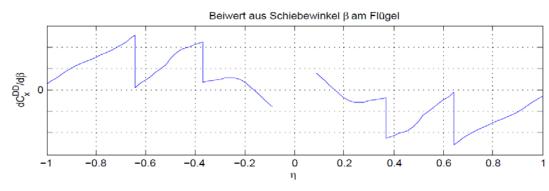
Entwicklung eines MATLAB-Programms zur Integration der fehlenden Kräfte zur Verbesserung des aerodynamischen DLM-Modells

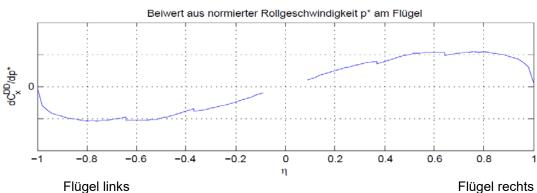
Department Fahrzeugtechnik und Flugzeugbau

Inhaltsübersicht

- Einführung in die Böenrechnung
- Problemstellung
- Aufgabe der Arbeit
- Umsetzung
- Ergebnisanalyse

Hochschule für Angewandte Wissenschaften Hamburg


Hamburg University of Applied Sciences


Department Fahrzeugtechnik und Flugzeugbau

Stationäre Beiwertverteilungen

Données-Aérodynamiques-Datenbank:

Stationäre Gradientenverteilungen aerodynamischer Beiwerte aus Windkanaltests und CFD

Einbringung der Beiwertverteilungen in die mittels DLM erzeugte Aerodynamik-Matrix

Berücksichtigte Effekte:

- Anstellwinkel α
- Schiebewinkel β
- Rollgeschwindigkeit p*

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Halbgeneralisierte Bewegungsgleichung

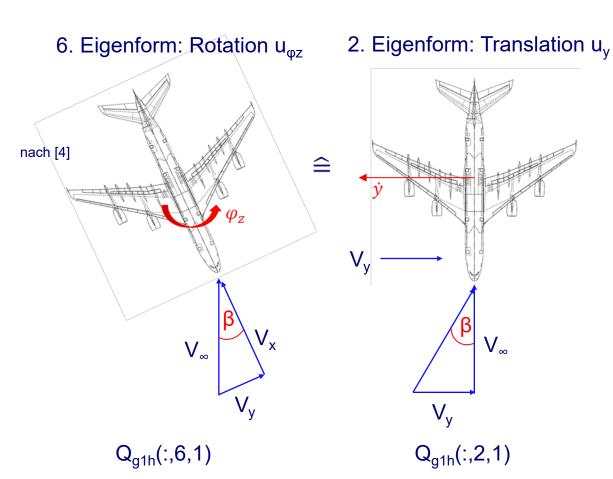
$$\left[-\omega^2 M_{g1h} + i\omega B_{g1h} + K_{g1h} - qQ_{g1h}\right] \cdot U_h = P_{g1}^{GU}$$

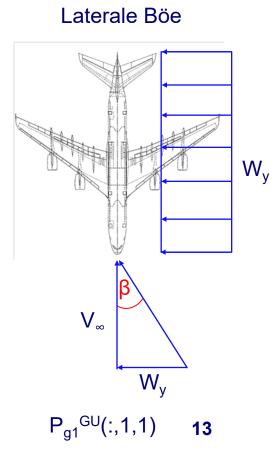
- g1: Freiheitsgrade der Strukturknoten des FEM-Modells
- h: Modale Freiheitsgrade in Abhängigkeit der Eigenformen des Flugzeugs
- Kräfte an FEM-Knoten infolge der Bewegung des Flugzeugs durch die Eigenformen:
 - 1. Translation in x
 - 2. Translation in y
 - 3. Translation in z
 - 4. Rotation um x
 - 5. Rotation um y
 - 6. Rotation um z

Implementierung der stationären Beiwertverteilungen aus Données Data in die halbgeneralisierte Aerodynamik-Matrix \mathbf{Q}_{g1h}

Aufgrund quasi-stationärer Zusammenhänge:

 Zusätzlich Anpassung des Böenvektors P_{g1}^{GU} erforderlich



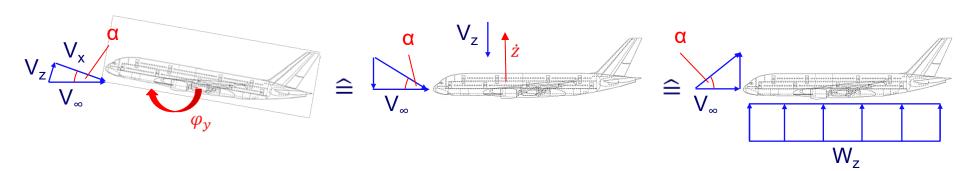

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Quasi-stationäre Zusammenhänge - lateral

Hochschule für Angewandte Wissenschaften Hamburg


Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Quasi-stationäre Zusammenhänge - vertikal

- 5. Eigenform: Rotation $u_{\phi y}$
- 3. Eigenform: Translation u_z

Vertikale Böe

$$Q_{g1h}(:,5,1)$$

$$Q_{g1h}(:,3,1)$$

$$P_{g1}^{GU}(:,2,1)$$

Department Fahrzeugtechnik und Flugzeugbau

Inhaltsübersicht

- Einführung in die Böenrechnung
- Problemstellung
- Aufgabe der Arbeit
- Umsetzung
- Ergebnisanalyse

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Berechnungsparameter nach GUSTO

Flugzeugmuster A380-800

Mach-Zahl 0,510

Anstellwinkel 0°

Höhen 0 m

Aerodynamische Konfiguration clean (keine Klappen)

Airbrake-Setting Airbrakes in

EFCS linear

1g-Überlagerung nicht berücksichtigt

Böenlasten auf Passagierflugzeuge

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Parameter des entwickelten Programms

Effekte aus Anstellwinkel α , Schiebewinkel β ,

Rollgeschwindigkeit p* Données

Modifizierte f_x , f_v , f_z , m_x , m_v , m_z

Freiheitsgrade

Rumpf, Flügel, HTP, VTP, Triebwerke, Komponenten

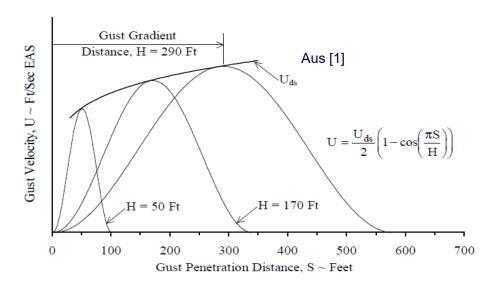
Winglets

Department Fahrzeugtechnik und Flugzeugbau

Derivative von Kräften und Momenten

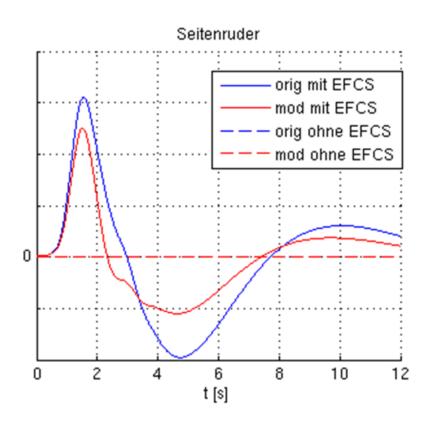
Normbezeichnungen nach ISO 1151

- C_{Yβ}: Seitenkraftbeiwert aus Schiebewinkel β (2. Problem)
- C_{Np*}: Giermomentenbeiwert aus Rollgeschwindigkeit p* (1. Problem)
- Zielwerte kommen aus Input f
 ür Erstellung des EFCS
- Derivative sind auf Zielwerte normiert


Derivativ	Original	f _x , f _y , f _z , m _x , m _y , m _z	Zielwert	Abweichung		
				Original	f _x	f _x , f _y , f _z , m _x , m _y , m _z
C _{Yβ}	0,9111	1,0405	1,0000	8,9 %	8,9 %	4,1 %
C _{Np*}	-0,9678	1,0039	1,0000	196,8 %	3,3 %	0,4 %

Department Fahrzeugtechnik und Flugzeugbau

Zeitverläufe aus lateraler, diskreter Böe

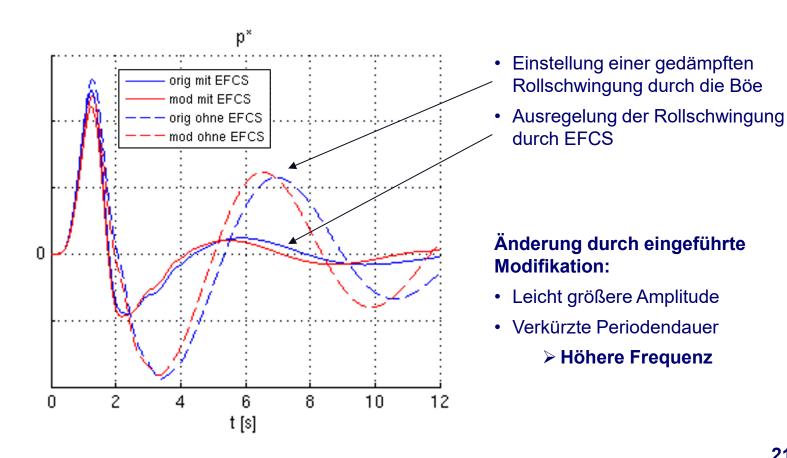


Böengradient H = 350 ft

- Verhältnismäßig lange Böe
- Anregung niedriger Frequenzen

Department Fahrzeugtechnik und Flugzeugbau

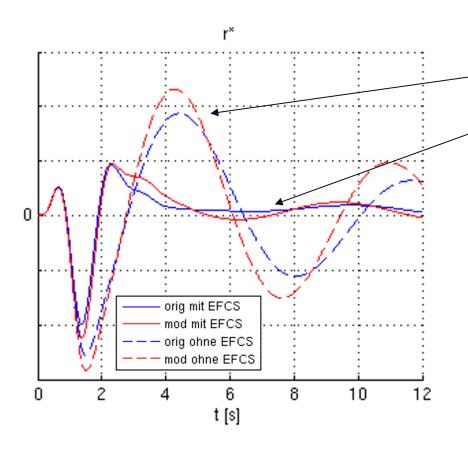
Seitenruderausschlag


 Deutlich reduzierter Ausschlag des Seitenruders aus lateraler Böe über den gesamten Zeitraum durch die Einführung der Modifikation

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Rollgeschwindigkeit p*



Hochschule für Angewandte Wissenschaften Hamburg

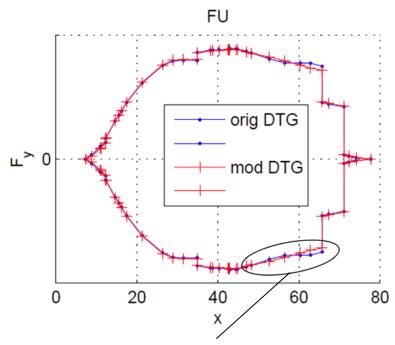
Hamburg University of Applied Sciences

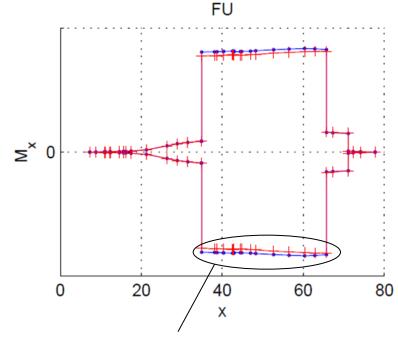
Department Fahrzeugtechnik und Flugzeugbau

Giergeschwindigkeit r*

- Einstellung einer gedämpften Gierschwingung durch die Böe
 - Gekoppelte Roll-Gier-Schwingung (Dutch Roll)
- Ausregelung der Schwingung durch EFCS

Änderung durch eingeführte Modifikation:


- Deutlich größere Amplitude
- Verkürzte Periodendauer
 - > Höhere Frequenz
- Schwingung wird sichtbar langsamer ausgeregelt (Seitenruderausschlag)

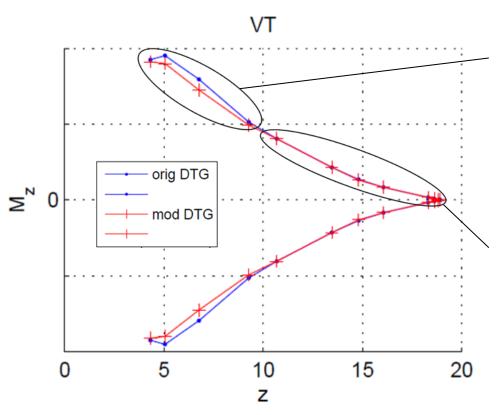


Department Fahrzeugtechnik und Flugzeugbau

Lasten - F_y und M_x am Rumpf

Teils Erhöhung, teils Verminderung der Querkraft

Deutliche Torsionsminderung im mittleren Rumpfbereich



Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Lasten - M_z am Seitenleitwerk

Dimensionierende diskrete Böe: H = 434 ft

- Verhältnismäßig lange Böe, daher eher Anregung kleinerer Frequenzen
- Kleinere Frequenzen durch Modifikation vornehmlich beeinflusst (quasi-stationär)
- Lastminderung durch verminderten Seitenruderausschlag

Dimensionierende diskrete Böen: H = 30 und 50 ft

- Verhältnismäßig kurze Böen, daher eher Anregung höherer Frequenzen
- Höhere Frequenzen durch Modifikation nicht beeinflusst

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Schlussfolgerung

- Erfolgreiche Reduzierung der Abweichung flugmechanischer Derivative:
 - Abweichung von C_{Yβ} halbiert
 - ➤ Abweichung von C_{Np*} nahezu beseitigt
- Erhöhung der Frequenz der Dutch Roll
- Keine kritischen Lastüberschreitungen durch eingeführte Modifikation, sondern eher Neigung zur Lastminderung (Torsion an Seitenleitwerk und Rumpf)

Department Fahrzeugtechnik und Flugzeugbau

Ausblick

Weitere Rechnungen notwendig

 Andere Mach-Zahlen, Anstellwinkel, Massenfälle, Flugzeugmuster

Einfluss der Modifikation auf das EFCS

- Vermehrte Verwendung des EFCS f
 ür Lastminderung
- Minderung der VTP-Torsion als Indiz für bessere Interaktion zwischen EFCS und Aerodynamik

Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences

Department Fahrzeugtechnik und Flugzeugbau

Literaturverzeichnis

- [1] EUROPEAN AVIATION SAFETY AGENCY: Certification Specifications and Acceptable Means of Compliance for Large Aeroplanes CS-25. Köln: EASA, 2015 (Amendment 17)
- [2] AIRBUS SAS: GUST Awareness. Toulouse: Airbus SAS, 2010
- [3] AIRBUS SAS: Gust and Turbulence Simulation for Design and Certification of Large Aeroplanes. Toulouse: Airbus SAS, 2010
- [4] AIRBUS SAS: A380 Data Basis for Design. Toulouse: Airbus SAS, 2005