

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Dipl	lomar	beit
	Ollidi	NO IL

Fachbereich Fahrzeugtechnik und Flugzeugbau

Untersuchung der Flugleistungen einer Junkers Ju 52/3m in Abhängigkeit der Klappenstellung

In Zusammenarbeit mit Deutsche Lufthansa Berlin-Stiftung

Verfasser: Axel Taschner

1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME

2. Prüfer: Dipl.-Ing. Claus Cordes, Flugkapitän DLH AG

Hochschule für Angewandte Wissenschaften Hamburg Fachbereich Fahrzeugtechnik + Flugzeugbau Berliner Tor 9 20099 Hamburg

in Zusammenarbeit mit:

Deutsche Lufthansa Berlin-Stiftung HAM ZU / S Lufthansa Werft Hamburg 22335 Hamburg

Verfasser: Axel Taschner Abgabedatum: 30.07.2003

1. Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME

2. Prüfer: Dipl.-Ing. Claus Cordes, Flugkapitän DLH AG

Kurzreferat

Die vorliegende Arbeit befasst sich mit ausgewählten Flugeigenschaften der Ju52/3m. Untersucht wird das Steigverhalten bei den Klappenstellungen 0° und 10°. Diese Untersuchungen werden sowohl praktisch mit Hilfe eines Flugversuches, dessen Planung, Vorbereitung, Durchführung, sowie dessen Auswertung Bestandteil dieser Arbeit ist, wie auch theoretisch mit Hilfe der gängigen Berechnungsmethoden der Flugmechanik durchgeführt.

Hintergrund für die Betrachtung der Steigleistungen liefert das Flughandbuch der letzten in Deutschland fliegenden Ju52 der Deutschen Lufthansa Berlin-Stiftung, welche auch für den Flugversuch genutzt wurde. In diesem heißt es, dass im Falle eines Motorausfalls eine Geschwindigkeit von 140 km/h und eine Klappenstellung von 10° gewählt werden soll, um die beste Steigleistung erzielen, bzw. bestmöglich die Höhe halten zu können. Im Vergleich dazu, sollte man dieses Ergebnis nach heutiger fliegerischer Lehrmeinung bei 150 km/h und 0° Klappenstellung erreichen.

Mit Hilfe recherchierter flugmechanischer Parameter und den Erkenntnissen aus dem Flugversuch können die Empfehlungen aus dem Flughandbuch für den Steigflug mit 3 Motoren bestätigt werden.

Im Falle eines Motorausfalls wird dieses allerdings widerlegt:

Aufgrund der durch den Motorausfall veränderten Anströmung des Junkers-Doppelflügels, dessen Konstruktion eine Besonderheit im Flugzeugbau darstellt, wird mit 0° Klappenstellung die bessere Steigleistung erzielt.

Die in dieser Arbeit erlangten Ergebnisse können als erste Anhaltspunkte verstanden werden, welche noch weiter verifiziert und mit anderen Methoden untersucht werden können.

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

FACHBEREICH FAHRZEUGTECHNIK UND FLUGZEUGBAU

Untersuchung der Flugleistungen einer Junkers Ju 52/3m in Abhängigkeit der Klappenstellung

Aufgabenstellung zur Diplomarbeit nach §21 der Prüfungsordnung

Hintergrund

Die Deutsche Lufthansa Berlin-Stiftung betreibt die Junkers Ju 52/3m mit dem Kennzeichen D-CDLH, Baujahr 1936. Das Flugzeug ist an der Flügelhinterkante mit Junkers-Doppelflügeln als Hochauftriebshilfe und Querruder ausgestattet. Historische Unterlagen empfehlen für den Anfangssteigflug und den Horizontalflug nach Ausfall eines Motors eine Landeklappenstellung von 10°, um den besten Steigwinkel, die beste Steigrate und/oder die größte mögliche Flughöhe zu erzielen bzw. zu halten. Hier ergeben sich gewisse Widersprüche zur fliegerischen Lehrmeinung.

Aufgabe

Ziel der Arbeit ist, Empfehlung hinsichtlich einer zu wählenden Klappenstellung zu geben. Dabei sollen folgende Punkte bearbeitet werden.

- Erstellen einer Literaturrecherche zur Geometrie, Aerodynamik und Flugmechanik der Ju 52/3m sowie zu flugmechanischen Grundlagen zum Thema.
- Ermittlung weiterer relevanter Geometrien der Ju 52/3m durch Messungen am Flugzeug.
- Theoretische und praktische Vorbereitung eines Flugversuches mit der Ju 52/3m. Konstruktion und Bau geeigneter Flugversuchseinrichtungen in enger Abstimmung mit der Deutsche Lufthansa Berlin-Stiftung.
- Test der Flugversuchseinrichtungen (soweit möglich) im Windkanal der HAW Hamburg.
- Durchführung und Auswertung der Flugversuche.
- Vergleich der Flugleistungen aus dem Flugversuch mit flugmechanischen Rechnungen basierend auf 1.) recherchierten Parametern und 2.) aus dem Flugversuch bestimmter Parameter zur Polare und zum Propellerwirkungsgrad.
- Diskussion und Interpretation der Ergebnisse. Ableitung von operationellen Empfehlungen.

Alle im Rahmen der Arbeit über die Ju 52/3m zusammengetragenen relevanten Daten sowie die Ergebnisse aus Versuch und Rechnung sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

Erklärung

Ich versichere, dass ich diese Diplomarbeit ohne fremde Hilfe selbstständig verfasst und nur die angegebenen Quellen und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderen Werken entnommene Stellen sind unter Angabe der Quellen kenntlich gemacht.

30.07.2003		
Datum	Unterschrift	

Inhalt

		Seite
Verzeic	hnis der Bilder	8
Verzeic	hnis der Tabellen	10
Liste de	r Symbole	11
Liste de	r Abkürzungen	12
Verzeic	hnis der Begriffe und Definitionen	13
1	Einleitung	16
1.1	Motivation	16
1.2	Ziel der Arbeit	16
1.3	Begriffsdefinitionen	17
1.4	Aufbau der Arbeit	18
2	Literaturübersicht	19
3	Die Ju52/3m D-AQUI (D-CDLH)	23
3.1	Hauptdaten	23
3.2	Dreiseitenansicht	24
3.3	Historie	25
3.4	Flügelgeometrie	26
4	Flugversuch	29
4.1	Versuchsvorbereitung	29
4.2	Windkanalversuch (Vorversuch)	36
4.2.1	Versuchsaufbau Windkanal	36
4.2.2	Versuchsergebnisse Windkanal	37
4.2.3	Diskussion der Windkanalergebnisse	38
4.3	Versuchsdurchführung	40
4.3.1	Basisdaten	41
4.3.2	Sinkflüge	42
4.3.3	Steigflüge	43
4.4	Versuchsergebnisse	45
4.4.1	Sinkraten und Gleitzahlen	45
4.4.2	Steigraten	48
4.5	Diskussion der Ergebnisse	51

5	Aufarbeitung der Flugversuchsergebnisse	52
5.1	Korrektur der Steigraten	
5.2	Kurvenverläufe der Steigraten	55
5.3	Normierung der Steigraten	59
5.4	Ermittlung des max. Wirkungsgrads und Überprüfung der Parameter $c_{D\theta}$ und	d e 63
5.5	Berechnung ausgewählter Flugleistungsdaten mit Hilfe der	
	flugmechanischen Theorie	68
5.6	Vergleich der theoretischen Ergebnisse mit den Flugversuchsergebnissen	74
5.7	Diskussion und Interpretation der Ergebnisse	75
6	Zusammenfassung und Ausblick	77
Literaturv	erzeichnis	78
Anhang A	Engineering Order (EO) inkl. Festigkeitsrechnung	80
Anhang B	Tabellen	84
B.1	Auszug aus dem Lufthansa Flughandbuch	85
B.2	Temperaturen beim Flugversuch gegenüber ISA	86
B.3	Tabellen zu den Theoriekurven von η=0,8	87
B.4	Tabellen zur Korrektur der Steigraten	89
B.5	Protokollblatt Flugversuch	92
Anhang C	Diagramme	93
Anhang D	Zeichnungen	98
D.1	Anbau-Zeichnung der Zusatzstaurohre	99
D.2	CATIA-Zeichnung Propellerstaurohr	100
D.3	CATIA-Zeichnung Propellerstaurohr Anbau	101
D.4	CATIA-Zeichnung Staurohr freie Strömung	102
D.5	CATIA-Zeichnung Staurohr freie Strömung Anbau	103
D.6	CATIA-Zeichnung Profil Ju52	104
Anhang E	Bilder	105

Verzeichnis der Bilder

Bild 2.1	Skizze Doppelflügel Druckverteilung	19
Bild 2.2	Luftströmungen am Doppelflügel	20
Bild 2.3	Bsp. Schwedische Unterlagen zur Ju	21
Bild 3.1	Dreiseitenansicht	25
Bild 3.2	Skizze Profilschnitt (CATIA)	28
Bild 4.1	Staurohröffnungen freie Strömung / Propellerströmung	31
Bild 4.2	Skizze U-Rohr	32
Bild 4.3	Staurohr freie Strömung - Anbau	33
Bild 4.4	Staurohr Propellerströmung - Anbau	34
Bild 4.5	Schlauchverlegung	35
Bild 4.6	U-Rohr im Flugversuch	35
Bild 4.7	Versuchsaufbau Windkanal	37
Bild 4.8	Sinkraten bei Klappenstellung 0°	45
Bild 4.9	Sinkraten bei Klappenstellung 10°	46
Bild 4.10	Steigraten bei Klappenstellung 0° / 2 Motoren	48
Bild 4.11	Steigraten bei Klappenstellung 10° / 2 Motoren	48
Bild 4.12	Steigraten bei Klappenstellung 0° / 3 Motoren	49
Bild 4.13	Steigraten bei Klappenstellung 10° / 3 Motoren	49
Bild 4.14	Steigraten über <i>v_{IAS}</i> unkorrigiert	50
Bild 5.1	Diagramm zur Ermittlung der "Ausreißer"	53
Bild 5.2	Steigraten der Intervalle über v_{TAS} korrigiert	54
Bild 5.3	Kurvenverläufe der Steigraten bei Klappenstellung 0° und $\eta_{max} = 0.8$	57
Bild 5.4	Kurvenverläufe der Steigraten bei Klappenstellung 10° und $\eta_{max} = 0.8$	58
Bild 5.5	Steigraten der Intervalle über v_{TAS} korrigiert und normiert	62
Bild 5.6	Steigraten und Steigkurven über v_{TAS}	63
Bild 5.7	Beispiel <i>Excel</i> -Tabelle: Ermittlung c_{D0} , e , η	66
Bild 5.8	Propellerwirkungsgrad Ju52/3m	70
Bild 5.9	Widerstandspolare für Klappenstellung 0° und 10°	71
Bild 5.10	(T/W)V und (D/L)V über V	72
Bild 5.11	Steigraten nach theoretischer Berechnung.	73
Bild 5.12	Vergleich Steigraten Flugversuch / Theorie	74
Bild C.1	"Ausreißer" –Ermittlung 0 Grad / 3M	94
Bild C.2	"Ausreißer" –Ermittlung 0 Grad / 2M	95
Bild C.3	"Ausreißer" –Ermittlung 10 Grad / 3M	96
Bild C.4	"Ausreißer" –Ermittlung 10 Grad / 2M	97

Bild D.1	Anbau-Zeichnung Staurohre 3D	99
Bild D.2	Propellerstaurohr	100
Bild D.3	Propellerstaurohr Anbau	101
Bild D.4	Staurohr freie Strömung	102
Bild D.5	Staurohr freie Strömung Anbau	103
Bild D.6	Profil Ju52	104
Bild E.1	Profilvermessung mit Sehne	106
Bild E.2	Schlauchverlegung	106
Bild E.3	Doppelflügel mit Querruder und Landeklappe	107
Bild E.4	Doppelflügel mit Staurohr freie Strömung	107
Bild E.5	Windkanalaufbau mit Skala	108
Bild E.6	U-Rohr	108

Verzeichnis der Tabellen

Tabelle 3.1	Profilkoordinaten Hauptflügel	27
Tabelle 3.2	Profilkoordinaten Hilfsflügel (Doppelflügel)	28
Tabelle 4.1	Werte des Windkanalversuchs	38
Tabelle 4.2	Sinkflüge Klappenstellung 0°	42
Tabelle 4.3	Sinkflüge Klappenstellung 10°	42
Tabelle 4.4	Steigflüge Klappenstellung 0° / 2 Motoren	43
Tabelle 4.5	Steigflüge Klappenstellung 10° / 2 Motoren	43
Tabelle 4.6	Steigflüge Klappenstellung 0° / 3 Motoren	44
Tabelle 4.7	Steigflüge Klappenstellung 10° / 3 Motoren	44
Tabelle 5.1	Korrigierte Steigraten der einzelnen Intervalle	54
Tabelle 5.2	η Theorie	56
Tabelle 5.3	$ \eta_{Theorie} $ mit gewähltem $\eta_{max} = 0.8$	56
Tabelle 5.4	Normierte Steigraten mit Normierungsfaktoren mit 2 Motoren	61
Tabelle 5.5	Normierte Steigraten mit Normierungsfaktoren mit 3 Motoren	61
Tabelle 5.6	Werte der Steigratenkurven zu Bild 5.6	64
Tabelle 5.7	Wirkungsgrade aus dem Flugversuch	67
Tabelle 5.8	max. Wirkungsgrade aus dem Flugversuch	67
Tabelle 5.9	Flugleistungsdaten nach flugmechanischer Theorie Klappenstellung 0°	69
Tabelle 5.10	Flugleistungsdaten nach flugmechanischer Theorie Klappenstellung 10°.	69
Tabelle B.1	IAS zu CAS nach Flughandbuch	85
Tabelle B.2	Temperaturen beim Flugversuch gegenüber ISA	86
Tabelle B.3	Werte zu $\eta = 0.8 / 0$ Grad	87
Tabelle B.3.1	Werte zu $\eta = 0.8 / 10$ Grad	88
Tabelle B.4	Werte zur Korrektur der Steigrate	89
Tabelle B.5	Beispiel Protokollblatt Flugversuch	92

Liste der Symbole

A	Flügelstreckung
C	Beiwert
c	Profiltiefe (chord)
d	Durchmesser
D	Widerstand (drag)
e	Oswaldfaktor
E	Gleitzahl
g	Erdbeschleunigung
h	Höhenkorrekturfaktor
Н	Höhe
L	Auftrieb (lift)
m	Masse
M	Mach Zahl
MTOW	Maximale Startmasse (maximum take-off weight)
n	Drehzahl
P	Leistung (power)
q	Staudruck
Q_c	Drehmoment
r	Radius
R/C	Steigrate (rate of climb)
R/D	Sinkrate (rate of descent)
S	Flügelfläche
SFC	durchschnittlicher Kraftstoffverbrauch (specific fuel consumption)
t	Profildicke (thickness)
t	Zeit
T	Schub (thrust)
T	Temperatur
T/O	Start (take-off)

Geschwindigkeit (velocity)

Gewichtskraft (weight)

v W

Griechische Symbole

 Δ Differenz

γ Steig-/ Sinkwinkel

 ρ Dichte

 η Wirkungsgrad

σ relative Luftdichte

λ Propellerfortschrittsgrad

Ω Winkelgeschwindigkeit

Indizes

D Widerstand (drag)

D0 Nullwiderstand (zero-drag)

EAS Äquivalent-Geschwindigkeit (equivalent airspeed)

fS freie Strömung

IAS angezeigte Geschwindigkeit (indicated airspeed)

ISA gemäß Internationaler StandardAtmosphäre

korr korrigierte Werte

L Auftrieb (lift)

max maximal Wert

mess gemessene Werte

norm normierte Werte

p Druck- (pressure)

P Propeller(-strömung)

S Wellen- (shaft)

SL/0 sea level – für Bedingungen auf Meereshöhe (gem. ISA)

TAS wahre Geschwindigkeit (true airspeed)
Theorie mit Hilfe der Theorie errechnete Werte

Liste der Abkürzungen

DLBS Deutsche Lufthansa Berlin-Stiftung

DLH AG Deutsche Lufthansa AG

OEI One Engine Inoperative – Ausfall eines Motors

2M Flug mit 2 Motoren (OEI)

3M Flug mit 3 Motoren

Verzeichnis der Begriffe und Definitionen

Anströmwinkel

Derjenige Winkel, der sich zwischen der Richtung der vorherrschenden Luftströmung und der Längsachse des Staurohres einstellt.

Bezugsdruckfläche

Die Bezugsdruckfläche dient dem Höhenmesser als Referenz, um entsprechend dem gemessenen Druck die dazugehörige Druckhöhe (Höhe über der Bezugsdruckfläche) anzuzeigen. Sie kann vom Piloten frei gewählt werden und wird in der Regel gemäß Standardatmosphäre auf 1013 hPa (=Standardhöhe) eingestellt.

Geschwindigkeit

• Angezeigte Geschwindigkeit

"(oder Fahrtanzeige) Sie wird anhand des Fahrtmessers oder am Ende einer Messkette aus dem fehlerbehafteten Staudruck ermittelt." (**Thomas 1996,** S.24)

• Kalibrierte Geschwindigkeit (auch Eich-, oder berichtigte Geschwindigkeit)

"Man erhält sie nach der Korrektur des statischen und des Gesamtdruckfehlers, der Druckverzögerung und des Instrumentenfehlers." (**Thomas 1996,** S.24)

• Äquivalent Geschwindigkeit

"Die äquivalente Geschwindigkeit erhält man aus der Eichgeschwindigkeit nach der Korrektur des Kompressibilitätsfehlers." (**Thomas 1996,** S.24)

• Wahre Geschwindigkeit

"Sie ist das Resultat aus der äquivalenten Geschwindigkeit nach der Korrektur des höhenabhängigen Dichtunterschiedes." (**Thomas 1996,** S.24)

Gleitflug

Beim Gleitflug handelt es sich um den Flug, der sich rein aus den Auftriebskräften der Tragflächen und der Gewichtskraft des Flugzeugs ergibt, ohne dass das Flugzeug dabei angetrieben wird (ohne Schub).

Grenzschicht

"Die Grenzschicht ist die Region der strömenden Luft, nahe der Oberfläche des Flugzeugs, in der eine Veränderung der relativen Geschwindigkeit von Null direkt auf der Oberfläche bis hin zur vollen Strömungsgeschwindigkeit in einiger Entfernung zur Oberfläche stattfindet." (**Stinton 1996,** S.85) [aus dem Englischen]

kritischer Motor

Der kritische Motor ist der Motor, dessen Ausfall die negativsten Auswirkungen auf das Flugverhalten zur Folge hat. D.h. im Falle der Ju52, bei der alle Propeller eine gleichgerichtete Drehbewegung ausführen, jener Motor (Motor 1), bei dessen Ausfall die verbliebenen Motoren das größte und somit ungünstigste Moment auf das Flugzeug übertragen, welches wiederum vom Piloten ausgeglichen werden muss.

maximum climb

Bei der maximum climb power handelt es sich um die Motorleistung, die dem Motor abverlangt wird, um die maximale Steigleistung zu erlangen und somit die größtmögliche Steigrate erzielen zu können.

maximum continous

Bei der maximum continous power handelt es sich um die (in der Regel nicht benötigte) maximale Motorleistung, die einem Motor über einen längeren Zeitraum abverlangt werden kann, wenn dies, z.B. bei einem Motorausfall, nötig sein sollte.

Propellerdrall

"Naturgemäß ist der Luftstrom hinter dem Propeller mit Drall behaftet. … Der Propeller bewegt sich axial mit der Geschwindigkeit v und führt außerdem noch eine Drehung mit der Umfangsgeschwindigkeit u aus. Der durch den Propellerkreis hindurchtretende Luftstrom wird also nicht nur nach hinten beschleunigt, sondern gleichzeitig noch gedreht."

(**Dubs 1966**, S. 214f)

Sinkrate

Die Höhendifferenz pro Zeiteinheit, welche ein Flugzeug im Sinkflug zurücklegt. Das Gegenteil zur Steigrate. Abkürzung: R/D (ROD) = rate of descent.

stall speed

"Stall ist der grobe Verlust des Auftriebs, hervorgerufen durch einen Umschlag der Grenzschicht und eine Ablösung der Strömung über einem Flügel oder einem ähnlichen Tragflächenprofil, angesichts eines ungünstigen Druckgradienten stromabwärts."

(**Stinton 1996**, S.100) [aus dem Englischen]

Stall speed ist die Geschwindigkeit, bei der diese Ablösung auftritt.

Standardatmosphäre

"Eine Standardatmosphäre wurde definiert, um Flugversuchen, Windkanalergebnissen, sowie dem allgemeinen Flugzeugentwurf und Flugleistungen eine vergleichbare Grundlage zu verschaffen. Die Standardatmosphäre liefert Mittelwerte des Drucks, der Temperatur, der Dichte und anderer Größen als Funktion der Höhe." (**Anderson 1989,** S.69) [aus dem Englischen]

Staudruck

"Die kinetische Energie je Kubikmeter strömenden Gases wird Staudruck q genannt.." (**Dubs 1966,** S.33)

Steigrate

Die Höhendifferenz pro Zeiteinheit, welche ein Flugzeug im Steigflug zurücklegt. Das Gegenteil zur Sinkgrate. Abkürzung: R/C (ROC) = rate of climb.

Verstellpropeller

"Beim Verstellpropeller kann der Blattwinkel in einem großen Bereich verstellt werden. Der Verstellpropeller stellt deshalb eine Propellerfamilie dar, das heißt eine Serie von Propellern gleicher Geometrie, jedoch unterschiedlicher Steigung und verschiedener Blattwinkel. Dies erlaubt die vom Pilot eingestellte Motorleistung praktisch bei allen Fluggeschwindigkeiten voll auszunützen." (**Dubs 1966,** S. 227)

1 Einleitung

1.1 Motivation

Bei der Ju52/3m der Deutschen Lufthansa Berlin-Stiftung handelt es sich um das letzte sich im fliegerischen Einsatz befindliche Flugzeug dieses Musters in Deutschland. Neben dieser Seltenheit weist die Ju52 zusätzlich noch eine Besonderheit in der Flügelkonstruktion auf: sie besitzt die von der Firma Junkers entwickelten Junkers-Doppelflügel.

Dieses historische Flugzeugmuster ist mit samt ihren konstruktiven Eigenheiten erhaltensund auch untersuchenswert. Zumal dann, wenn sich Untersuchungen der Flugeigenschaften aufdrängen, da die Flugeigenschaften bzw. die sich daraus ergebenden Vorschriften für den Flugbetrieb von den heute üblichen abweichen.

Neben der, auf Grund des hohen Alters des Flugzeuges, nahezu einzigartigen Möglichkeit einen Flugversuch durchzuführen und dadurch neue Informationen zu erlangen, lassen sich Vergleiche mit den nur noch spärlich vorhandenen Unterlagen erstellen.

Entsprechend kann der vorhandene Wissensstand über die Ju52 bestätigt und erweitert werden.

1.2 Ziel der Arbeit

Mit Hilfe dieser Diplomarbeit sollen Erkenntnisse über ausgewählte Flugeigenschaften der Ju52 überprüft bzw. gewonnen werden.

In erster Linie geht es dabei um die Untersuchung des Flugverhaltens bei unterschiedlichen Klappenstellungen (0° und 10°) und Ausfall eines Motors (OEI).

Während es im Flughandbuch zur Ju52/3m heißt, es solle im Falle eines Motorausfalls eine Geschwindigkeit von 140 km/h und eine Klappenstellung von 10° gewählt werden, müsste nach gängiger fliegerischer Lehrmeinung¹ das beste Steigverhalten bei 150 km/h und 0° Klappenstellung erzielt werden.

Auf diese Frage soll mit Hilfe von aus der Literatur recherchierten Werten und im Flugversuch ermittelten Werten eine Antwort gefunden werden.

Zusätzlich zur reinen Feststellung des besten Steigverhaltens in Abhängigkeit zur Klappenstellung und der Geschwindigkeit, sollen Parameter zur Polare des Flugzeuges und zu seinem Propellerwirkungsgrad ermittelt werden.

In Verbindung mit den gewonnenen bzw. überprüften Parametern soll ein möglichst umfangreiches Gesamtbild bezüglich der Flugleistungen der Ju52 nach flugmechanischer Theorie entstehen und im Anschluss operationelle Empfehlungen möglich sein.

nach Lehrmeinung sollte bei Motorausfall die Konfiguration "clean" und die Geschwindigkeit 1,3 mal stall speed (bei der Ju52: 115 km/h) gewählt werden

1.3 Begriffsdefinitionen

Klappenstellung

In einer **Mitteilung der Junkers-Flugzeugwerk AG** von **1936** zum Thema "Der Junkers-Doppelflügel" heißt es:

Mit der Entwicklung der heutigen Schnellflugzeuge haben sich auf Grund der damit verbundenen unvermeidlich hohen Flächenbelastung und der guten aerodynamischen Formgebungen neben der Steigerung der Höchstgeschwindigkeit auch eine für die Landung ungünstige Erhöhung der Landegeschwindigkeit und ungünstig flache Gleitwinkel ergeben. Zu den verschiedenen aerodynamischen Hilfsmitteln, die zur Verbesserung dieser unerwünschten Landeeigenschaften dienen, gehören die Spalt- oder Vorflügel. In weitaus größerem Maße haben sich aber die Landeklappen für den genannten Zweck im Flugzeugbau eingeführt,... Der Zweck der Klappen besteht bei der Landung darin, außer einem höheren Auftrieb gegenüber dem gewöhnlichen Flügel auch noch einen höheren Widerstand zu erzielen., also eine Bremswirkung hervorzurufen,... Die Auftriebserhöhung wird teilweise durch die Anstellung der Klappen und ihr damit verbundener Einfluß auf die Strömung am Flügel andernteils dadurch hervorgerufen, dass die ausgefahrenen Klappen die Flügelfläche vergrößern, ... Je nach Wirkung können die Klappen fernerhin nicht nur für Abflug- und Landeverbesserung, sondern auch mehr oder weniger gut für eine Erhöhung der Leistung im Steigflug angewendet werden.

Doppelflügel

Zum Doppelflügel schreibt **Dubs 1966** (S.168):

Mit Doppelflügel bezeichnet man die Tandemanordnung zweier Flügel, zwischen denen nur ein kleiner Düsenspalt vorhanden ist. Die Flügeltiefe des hinteren Flügels ist dabei verhältnismäßig klein, beträgt sie doch nur etwa 20 % des Vorderflügels. Die Druckverteilung des Vorderflügels wird bei dieser Anordnung völliger. Das ist gleichbedeutend mit größerem Auftrieb. Durch entsprechende Schränkung des Hinterflügels erhält man einen Gesamtauftrieb, der größer ist als die Summe der Einzelflügel.

(s. auch Kap. 2 Literaturübersicht)

Propellerwirkungsgrad

Der Propellerwirkungsgrad errechnet sich wie folgt (**Dubs 1966**, S. 219):

 $Wirkungsgrad = \frac{abgegebene Schubleistung}{zugeführte Motorleistung}$

Und dazu heißt es bei **Dubs 1966** (S.219):

Der Propellerwirkungsgrad ist kein konstanter Zahlenwert, sondern in weiten Grenzen veränderlich. Er ist abhängig von baulichen Größen; der äußeren Propellerform; dem Propellerprofil; der Oberflächengüte; dem Fortschrittsgrad, sowie beim Verstellpropeller von seiner jeweiligen Steigung.

1.4 Aufbau der Arbeit

Anhang E

selber

Abschnitt 2 befasst sich mit der Literaturrecherche. Abschnitt 3 liefert als gesichert geltende Daten der Ju52/3m der Deutschen Lufthansa Berlin-Stiftung, sowie recherchierte Werte. behandelt den Flugversuch von der Planung, über den Vorversuch, die Abschnitt 4 Durchführung bis hin zu den unausgewerteten Ergebnissen. Abschnitt 5 trägt die Ergebnisse zusammen, normiert sie, wertet sie aus, vergleicht sie mit theoretischen und recherchierten Werten und interpretiert sie. **Abschnitt 6** fasst die Ergebnisse zusammen und liefert einen Ausblick. enthält die Erprobungsanweisung der Deutschen Lufthansa Berlin-Stiftung, Anhang A sowie die Festigkeitsrechnung zu einem Teil des Versuchsaufbaus Anhang B beinhaltet die nicht direkt in die Diplomarbeit eingefügten Tabellen liefert weitere Diagramme, die nicht in den Text eingearbeitet wurden Anhang C Anhang D umfasst Anbau- und CATIA-Zeichnungen

enthält weitere Bilder von den Versuchsvorbereitungen und dem Versuch

2 Literaturübersicht

Obgleich es in der Literatur einiges Material über die Ju52 zu finden gibt, so sind es doch häufig Artikel oder Bücher die zwar ausführlich über den Flugzeugtyp berichten, selten aber genauer auf die Flugleistungen eingehen oder noch weiter ins Detail gehen.

So gibt zum Beispiel **Wagner 1996** in seinem Buch "Hugo Junkers Pionier der Luftfahrt – seine Flugzeuge" einen Ausführlichen Überblick über die verschiedenen Bauvarianten, die baulichen Veränderungen im Laufe der Zeit, die fliegerischen Erfolge (z.B. Sieger im Alpenrundflug) und Informationen über den Bau des Flugzeuges selbst. Auch über die Ausrüstung z.B. mit Motoren oder der Enteisung lässt sich etwas finden, aber bei den Flugeigenschaften beschränkt es sich im wesentlichen auf folgendes:

Die dreimotorige Ju hat die guten Flugeigenschaften der einmotorigen Ju52/Im beibehalten; sie ist nur wesentlich schneller und leistungsfähiger geworden. ... Dank des Doppelflügels kann man den Gleitwinkel so gut steuern, dass sogar Ziellandungen ohne Gas möglich sind. ...; wenn z.B. der Mittelmotor ausfällt, wird durch die Schrägstellung der äußeren Motoren das Leitwerk noch...ausreichend angeblasen und die Kursstabilität bleibt voll erhalten.

Ausführlichere Informationen über die Flugeigenschaften und insbesondere über den Doppelflügel findet man in den Junkers Flugzeugwerk eigenen Mitteilungen, sowie in den gängigen Fachblättern der damaligen Zeit.

Billeb 1935 schreibt so z.B. zur grundsätzlichen Wirkungsweise in "Der Junkers-Doppelflügel – Mitteilung der Junkers Flugzeugwerk AG":

Beide Flügel [fester Haupt- und schwenkbarer Hilfsflügel, Anm. d. Autors] haben je für sich vollkommene Flügelschnittform... In Wirklichkeit treten als Folge der eigenartigen Zuordnung des Hilfsflügels zum Hauptflügel Erscheinungen auf, die einer aerodynamischen Rückkopplung vergleichbar sind. ...Das bei Anstellung des Hilfsflügels über diesem erzeugte Unterdruckteilgebiet beeinflußt die ganze Oberseite des Hauptflügels in der Weise, dass dort der Unterdruck sich ohne wesentliche Erhöhung des Höchstwertes gleichmäßiger verteilt [s. Bild 2.1],... Es ist also eine freie, lediglich durch den vornliegenden Hauptflügel stark abgelenkte, vollkommene Umströmung des Hilfflügels vorhanden

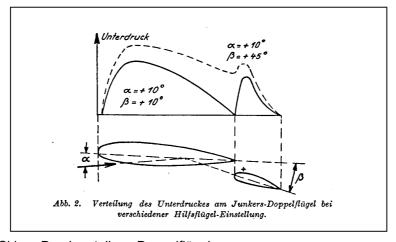


Bild 2.1 Skizze Druckverteilung Doppelflügel

Im gleichen Artikel heißt es zu den Eigenschaften des Doppelflügels:

An ausgeführten Flugzeugen wurde ein Auftriebsbeiwert von 1,9 im Gleitflug ohne Motor einwandfrei festgestellt. ... Nach Erfahrung sind die geeigneten Ausschläge des Hilfsflügel: für steilen Gleitflug und Landung 35° bis 45°, für Start 25° bis 35°, für Steigflug und schwachen Gleitflug 10° bis 15°, für Reiseflug und Schnellflug 0° bis –5°.

Sinngemäß steht dort weiterhin:

Der Auftriebsgewinn gegenüber gebräuchlichen Profilen gleicher Gesamttiefe beträgt bei Hilfsflügeln von 15 bis 20 % der Tiefe des Hauptflügels 30 %.

Ebenfalls in einer von den **Junkers** Flugzeugwerken herausgegeben Mitteilung mit dem gleichen Titel: "Der Junkers-Doppelflügel" von **1936** findet man folgende Informationen zum Doppelflügel:

Allein durch die Anstellung der Klappe oder des Hilfsflügels werden bereits hohe Auftriebswerte erreicht, ohne dass ein Abreißen der Strömung eintritt. [s. Bild 2.2] ...bei hohen Geschwindigkeiten wird der Hilfsflügel zum Hauptflügel auf geringen Widerstand eingestellt, und man erhält günstigere Widerstandsverhältnisse, als dies z.B. bei einem Schlitzflügel der Fall ist. Die Klappen können fernerhin gleichzeitig als Querruder verwendet werden;...Die Flugzeuge machen mit voll angestellten Klappen bzw. Hilfsflügeln die bekannten "Fahrstuhllandungen" [kurze Landestrecke bei geringen Geschwindigkeiten, Anm. d. Autors].

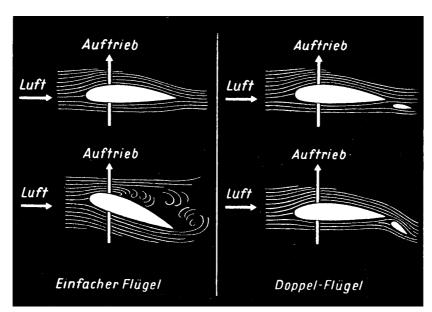


Bild 2.2 Luftströmungen am Doppelflügel

In keiner der Recherche zur Verfügung gestandenen Literatur konnten allerdings exakte Zahlenwerte zu den für diese Arbeit relevanten Flugleistungen oder eine Polare der Ju52/3m gefunden werden.

Stattdessen existieren allerdings noch einige Unterlagen zur Lufthansa Ju, welche sich im Laufe der Zeit angesammelt haben und in denen man einige flugleistungsrelevante Daten und Parameter findet.

Bei den Unterlagen handelt es sich im wesentlichen um Datenblätter und Diagramme aus der norwegischen Zeit der Lufthansa Ju (s. Kap. 3 / Historie), sowie Unterlagen zu einer schwedischen Ju, in der der gleiche Motor wie in der Lufthansa Ju verbaut war, allerdings mit einem zweiblättrigen Propeller.

Die in norwegisch bzw. schwedisch verfassten Unterlagen waren größtenteils, bedingt durch das teilweise hohe Alter der Unterlagen, in minderer Qualität (s Bild 2.3), trotzdem ließen sich einige wichtige Eckdaten entnehmen, auf denen in dieser Arbeit aufgebaut werden konnte.

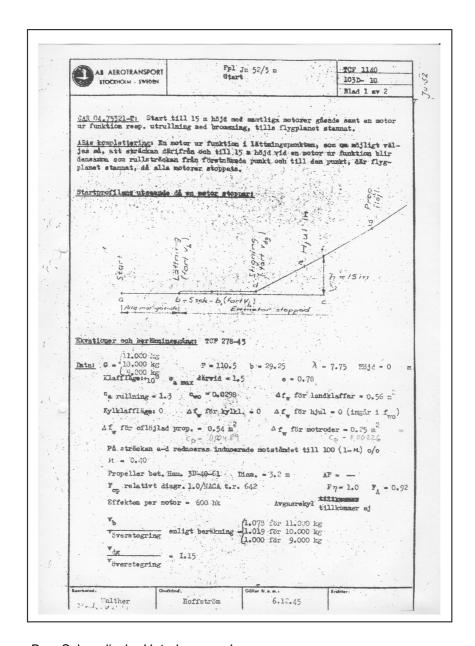


Bild 2.3 Bsp. Schwedische Unterlage zur Ju

Im wesentlichen handelt es sich bei diesen Eckdaten um die Auftriebs- und Widerstandsbeiwerte, sowie den Oswaldfaktor (s. Kap. 3 / Recherchierte Werte).

Des weiteren konnten **Stinton 1998** und **Askue 1992** mit ihren Fachbüchern zu Flugversuchen als Anregung für den Flugversuch und seine Durchführung genutzt werden. Für die verschiedenen Daten zur Standardatmosphäre diente **Thomas 1996** mit seinem umfangreichen Tabellenwerk als nützliche Quelle.

Bei den Berechnungen wurde je nach Anforderung auf **Dubs 1966** für die "Aerodynamik der reinen Unterschallströmung", sowie **Roskam 1997** bzw. **Young 2001** für die unterschiedlichen Leistungs- und flugmechanischen Berechnungen zurückgegriffen. Für die theoretische Berechnung des Propellerwirkungsgrades lieferte **Durand 1935** mit dem Werk "Aerodynamic Theory" die benötigten Berechnungsformeln.

Schließlich sei noch **Scholz 2001** erwähnt: mit Hilfe dieses Buches, welches die hilfreichen Tipps zum normgerechten verfassen dieser Diplomarbeit bereitgestellt hat, war es möglich die vorliegende Gestaltung umzusetzen.

3 Die Ju52/3m D-AQUI (D-CDLH)

3.1 Hauptdaten

An dieser Stelle soll ein Überblick über die als gesichert geltenden Eckdaten der Ju52/3m geliefert werden. Es handelt sich hierbei um die Daten von Flugzeug, Motor und Propeller, welche in dieser speziellen Zusammensetzung bei dem Modell der Lufthansa Berlin-Stiftung anzutreffen sind.

1. Flugzeug:

Spannweite	29,25 m
Länge	18,90 m
Höhe	6,10 m
Flügelfläche	110,50 m ²
Flügelstreckung	7,75
Flügelbauart	Junkers-Doppelflügel
Max. Startmasse (MTOW)	10500 kg
Betriebsleermasse (OEW)	8200 kg
Startgeschwindigkeit	ca. 120 km/h
Reisegeschwindigkeit	190 km/h
Höchstgeschwindigkeit	250 km/h
Stall speed	115 km/h
Max. continous power (bei OEI)	100%
Max. climb power	82%
Max. Reichweite	ca. 825 km
Höchstflugdauer	ca. 4 ,33 h
Tankinhalt	1830 1

2. Motor (Sternmotor, Pratt & Whitney PW1340 S1 H1G Wasp):

	Anzahl Motoren	
	Wellenleistung / Motor	600 PS (441 kW)
	Kraftstoffverbrauch, gesamt	ca. 420 l/h
3. P	ropeller:	
	DurchmesserFläche	· · · · · · · · · · · · · · · · · · ·
	Anzahl Blätter / Propeller	
	Übersetzungsverhältnis	
	Motordrehzahl: Propellerdrehzahl	3:2
	Bauart	Verstellpropeller
		(DLBS)

3.2 Recherchierte Daten

Während die als Hauptdaten bezeichneten Eckwerte der Lufthansa-Ju52 auch offiziell in den Lufthansa Broschüren, Datenblättern sowie dem Flughandbuch wiederzufinden sind, handelt es sich bei den an dieser Stelle aufgeführten Werten um Daten, die aus historischen Unterlagen² stammen. Auch diese Werte finden innerhalb dieser Diplomarbeit Verwendung. So werden mit diesen Daten theoretische Berechnungen durchgeführt und zum Teil gleichzeitig mit Hilfe des Flugversuchs überprüft.

c_{Lmax} (Klappen 0°)	1,35
c _{Lmax} (Klappen 10°)	
c_{Lmax} (Klappen aus)	
<i>c</i> _{Do} (Klappen 0°)	0,0298
<i>c</i> _{Do} (Klappen 10°)	
CD0 (Rappen 10)	

es handelt sich hierbei um Datenblätter und Aufzeichnungen, die sich auf eine schwedische Ju52 beziehen, welche mit gleichen Motoren wie die Lufthansa Ju ausgestattet war (s. Literaturübersicht)

3.3 Dreiseitenansicht

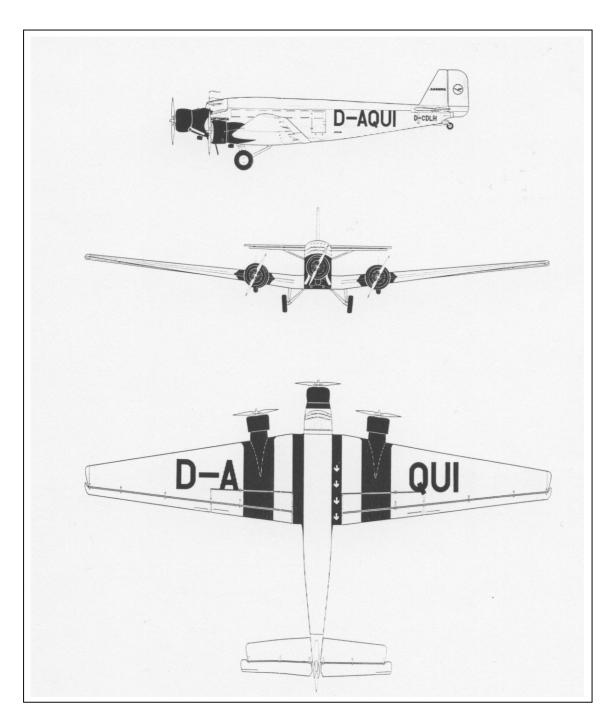


Bild 3.1 Dreiseitenansicht

3.4 Historie

Ebenso wie bei den technischen Hauptdaten handelt es sich bei den historischen Eckpunkten um die speziellen Lebensdaten der Deutschen Lufthansa Berlin-Stiftung eigenen Ju52/3m:

-Anfang 1936: Fertigstellung im Junkers-Werk Dessau (Werksnr. 5489)

-10. April 1936: Indienststellung Lufthansa unter dem Namen "Fritz Simon"

Kennzeichen: D-AQUI

-1. Juli 1936: Verkauf nach Norwegen (D.N.L.), versehen mit Schwimmern,

Name ,Falken'

Kennzeichen: LN-DAH

-April 1940 : Von der Wehrmacht erobert – Truppentransporter

-Ende 1940: Wieder-Indienststellung bei der Lufthansa, Name ,Kurt Wintgens'

Kennzeichen: D-AQUI

-Mai 1945 : Zurück an die Norweger, Name 'Askeladden'

Kennzeichen: LN-KAF

-Februar 1948 : altes Kennzeichen, aber **neuer (Militär-)Rumpf** (Werksnr. 130714)

-1956 : Stilllegung

-1957: Verkauf nach Ecuador (Aereos Orientales), Name ,Amazonas'

Kennzeichen: HC-ABS

-1963 : Stilllegung

-1969: Verkauf in die USA (Privatmann L. Weaver), Restaurierung, aber keine

Zulassung - flog als ,Experimentalflugzeug'

Kennzeichen: N130LW

-1974 : Verkauf innerhalb der USA (Privatmann M. Caidin), Name ,Iron Annie'

Kennzeichen: N52JU

-1976 : Grundüberholung und Umrüstung auf Pratt & Whitney-Motoren

-28.Dez. 1984: Inbesitznahme durch die Lufthansa und Beginn der Restaurierung in

Hamburg

-April 1985 : Indienststellung bei der Lufthansa, Name 'Berlin-Tempelhof'

Kennzeichen: D-CDLH

-1991 / 92 : Umrüstung von 2- auf 3-Blatt-Propeller

(DLBS)

3.5 Flügelgeometrie

Zur Gewinnung genauerer Erkenntnisse über die besondere Flügelgeometrie der Ju52 mit ihren Junkers-Doppelflügeln wurde im Zuge dieser Diplomarbeit das Profil an der Flügelwurzel (an der Trennstelle vom Flügel zum Rumpf) vermessen.

Das Vermessen wurde mit einfachen Mitteln vollzogen: im abgebauten Zustand des Flügels wurde von der Profilnase zur Flügelhinterkante ein Band unter hoher Spannung befestigt und anschließend der Abstand zur Profilunterseite (y_U) , sowie die Profildicke (t) in Abhängigkeit zur Profiltiefe (c) mit Hilfe eines Maßbandes ermittelt (s). Anhang (t)

Dies wurde sowohl bei dem Hauptflügel als auch bei dem Hilfsflügel (Doppelflügel) durchgeführt:

Tabelle 3.1 Profilkoordinaten Hauptflügel

Tabelle 5.	abelle 3.1 Profilkoordinaten Hauptflugel							
c in cm	y_U in cm	t in cm	c in cm	y_U in cm	t in cm	c in cm	y_U in cm	t in cm
0	0	0	100	30,8	82,0	300	24,3	71,9
1	4,5	10,0	110	30,8	84,0	310	23,3	69,0
2	6,2	14,2	120	31,0	85,3	320	22,3	66,4
3	7,4	18,0	130	31,0	86,0	330	21,2	63,3
4	8,5	20,0	140	30,8	86,5	340	20,3	59,9
5	9,7	23,2	150	30,5	86,5	350	18,9	56,1
6	10,8	25,2	160	30,3	87,0	370	17,5	51,0
7	11,5	27,5	182	29,8	87,0	380	15,4	45,4
8	12,3	29,2	190	29,0	86,3	390	13,9	41,5
9	13,0	31,0	200	29,0	85,9	400	12,5	37,0
10	13,5	32,5	210	28,5	85,2	410	11,0	32,0
20	18,7	44,3	220	28,0	84,9	420	9,4	27,5
30	21,8	53,0	230	28,0	84,0	430	7,6	22,6
40	24,0	60,5	240	27,8	83,0	440	6,3	18,0
50	26,0	66,8	250	27,5	81,6	450	4,0	12,0
60	28,0	71,7	260	27,3	80,5	460	2,5	7,0
70	29,2	76,0	280	26,5	77,5	470	1,0	2,5
90	31,0	81,0	290	25,3	74,6	473	0	0

 Tabelle 3.2
 Profilkoordinaten Hilfsflügel (Doppelflügel)

c in	y_U in	t in	c in	y_U in	t in	c in	y_U in	t in
mm	mm	mm	mm	mm	mm	mm	mm	mm
0	0	0	140,70	45,23	106,54	386,93	34,17	80,40
10,05	11,05	21,10	165,83	45,73	110,05	417,08	31,16	73,87
25,13	20,10	44,22	190,95	45,23	109,05	457,29	25,63	61,81
42,71	26,13	58,79	228,64	43,22	106,03	502,51	20,10	46,23
62,81	33,67	76,38	256,28	41,21	102,52	545,23	15,07	35,17
82,91	38,19	88,44	283,92	40,20	99,49	585,43	9,55	19,60
100,50	41,21	96,49	316,58	39,70	94,98	620,60	0	0
120,60	45,23	105,53	346,73	35,18	87,44			

Diese Werte und der Abstand zwischen Haupt- und Hilfsflügel wurde in das Programm CATIA V4 eingegeben und gestrakt.

Das Ergebnis, siehe Skizze (Bild 3.2) und Anhang D, liefert einen Profilschnitt nahe der Flügelwurzel des Ju52-Doppelflügels und kann für spätere Zwecke, z.B. Analyse mit einem CFD-Programm (computer fluid dynamics), verwendet werden.

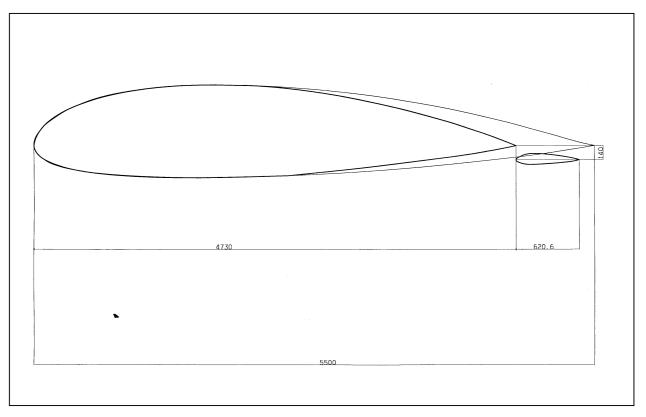


Bild 3.2 Skizze Profilschnitt (CATIA)

4 Flugversuch

Der Flugversuch, als der zentrale Bestandteil dieser Arbeit, liefert die zu untersuchenden und mit der Theorie zu vergleichenden Werte der ausgewählten Flugleistungen der Ju52/3m . Erst mit Hilfe der durch den Flugversuch gewonnenen Ergebnisse lassen sich Aussagen über die speziell für dieses Flugzeug geltenden und zu bewertenden Steigleistungen machen.

Ziel des Versuchs ist es zum einen, über Gleitflüge die Parameter Widerstandsbeiwert (c_D) und Auftriebsbeiwert (c_L) zu erlangen, mit welchen im weiteren Verlauf die recherchierten Werte überprüft und theoretische Berechnungen durchgeführt werden können. Zum anderen gilt es, mit Hilfe von Steigflügen die tatsächlich möglichen Steigleistungen (R/C) bei den beiden zu betrachtenden Klappenstellungen 0° und 10° sowohl mit Motorausfall (OEI), als auch mit allen drei zur Verfügung stehenden Motoren zu ermitteln. Um auch diese im Anschluss mit denen aus der Flugmechanik-Theorie berechneten Werten vergleichen zu können.

4.1 Versuchsvorbereitung

Während für die Ermittlung der Steigleistungen eine Uhr, eine Stoppuhr, ein Protokollblatt (s. Anhang B), die Höhenangaben vom Höhenmesser, sowie die Geschwindigkeitsangaben vom Fahrtmesser ausreichen, sind für die Gewinnung der Parameter Versuchsanbauten an das Flugzeug, sowie eine Messvorrichtung nötig. Hierzu bedurfte es intensiver Vorbereitungen, um zum einen den Aufwand gering zu halten und zum anderen bauliche Veränderungen oder größere Eingriffe am Flugzeug, bzw. den Flugzeugsysteme zu vermeiden.

Zwar sind auch bei den Gleitflügen die entscheidenden Werte zur Berechnung der Parameter (s. unten) die aktuelle Flugzeit (liefert im Zusammenhang mit dem Kraftstoffverbrauch das aktuelle Gewicht), die Eigengeschwindigkeit, die Temperatur, sowie der Höhenverlust pro Zeiteinheit, allerdings muss gewährleistet sein, dass sich das Flugzeug tatsächlich im Gleitzustand befindet.

Die einfachste, aber auch risikoreichste und damit nicht verantwortbare Möglichkeit diesen Zustand zu erreichen, wäre, im Falle der Ju52/3m, alle drei Motoren im Fluge abzuschalten. Die alternative und sehr viel sicherere Methode ist die Motorleistung so einzustellen, dass durch die Propeller weder Schub noch Widerstand erzeugt wird.

Da diese spezielle Motoreinstellung im Vorfeld nicht bekannt ist, muss sie für die jeweils gewünschte Eigengeschwindigkeit während des Flugversuchs gefunden werden.

Die Motoreinstellung ist dann korrekt, wenn sowohl in der freien Strömung (q_{fS}), wie auch in der Strömung hinter dem Propeller (q_P)der gleiche Staudruck gemessen wird.

$$q_{\rm P} = q_{\rm fS} \tag{4.1}$$

Da es nicht erforderlich ist, ein quantitatives Ergebnis der beiden Staudrücke zu erlangen, ist für die geforderten Ziele eine rein qualitative Vergleichsmessung ausreichend. Für diese Vergleichsmessung ist entsprechend folgender Versuchsaufbau nötig:

- 1.: ein Staurohr in der freien Strömung
- 2.: ein Staurohr in der Strömung hinter dem Propeller
- 3.: ein durchsichtiges (gläsernes) U-Rohr mit zwei Anschlüssen und einer gefärbten Flüssigkeit als Messanzeige
- 4: zwei Schläuche als Verbindung zwischen den Staurohren und dem U-Rohr

Bei der Fertigung der einzelnen Messeinrichtungen war folgendes zu beachten:

Zu 1.:

- die Öffnung des Staurohrs der freien Strömung muss möglichst exakt in die Richtung der Fahrtwindanströmung zeigen. Beim Anbau muss das Staurohr entsprechend so ausgerichtet sein, dass es parallel zur Anströmung liegt. D.h. es muss zunächst parallel zur Flugzeuglängsachse liegen, um anschließend den durchschnittlich zu erwartenden Anstellwinkel des Flugzeuges während des Flugversuchs hinzuaddieren zu können.
- Der zu erwartende Anstellwinkel wird wie folgt bestimmt:

Ausgehend von:

- 1. linearer Verlauf von c_L über α
- 2. $c_{Lmax} = 1.8$ bei stall speed
- 3. $\alpha = 15^{\circ}$ bei stall speed
- 4. durchs. Geschwindigkeit Flugversuch: 145 km/h (40,27 m/s)

Berechnung (Young 2001, Ch.2):

$$c_{L145} = \frac{2 * m * g}{\frac{\rho}{2} * v^2 * S} = \frac{2 * 10500 * 9,81}{\frac{1,225}{2} * 40,27^2 * 110,5} = \underline{0,94}$$
(4.2)

daraus folgt:

$$\frac{c_{L \max}}{15^{\circ}} = \frac{c_{L145}}{x} \implies \frac{1.8}{15^{\circ}} = \frac{0.94}{x}$$

$$x = \frac{0.94 * 15^{\circ}}{1.8} = 7.83^{\circ} \approx 8^{\circ}$$
(4.3)

- das Staurohr muss genügend Abstand zur Struktur des Flugzeugs haben, um außerhalb der Grenzschicht oder Abseits von möglichen Turbulenzen, bedingt durch Strömungsablösungen, zu liegen.
- die Staurohr-Öffnung der freien Strömung muss möglichst identisch mit der Öffnung des Propellerstaurohres sein, um eine Beeinflussung der Messung durch unterschiedliche Anströmverhalten zu verhindern.(s Bild 4.1)

Zu 2.:

- das Staurohr muss senkrecht auf die Propellerebene und somit in Fahrtrichtung zeigen.
- die Öffnung des Staurohrs muss sich in der Propellerströmung und außerhalb von Grenzschichten und strukturbedingten Turbulenzen befinden.
- die Staurohr-Öffnung der Propellerströmung muss möglichst identisch mit der Öffnung des Staurohrs der freien Strömung sein.(s Bild 4.1)

Bild 4.1 Staurohröffnungen freie Strömung / Propeller-Strömung

Zu 3.:

- es muss gewährleistet sein, dass das U-Rohr während des gesamten Flugversuchs waagerecht gehalten wird. Dies wird durch eine Wasserwaage realisiert, die gemeinsam mit dem U-Rohr auf einem Brett befestigt wird.
- das U-Rohr muss bis auf die beiden Eingänge komplett luftdicht verschlossen sein.
- es darf während des Flugversuchs keine Messflüssigkeit aus dem U-Rohr gedrückt werden. D.h. die senkrechten Säulen des U-Rohrs müssen hoch genug sein, um auch bei der größten zu erwartenden Druckdifferenz (bei größtem zu erwartenden Schub) die Flüssigkeit aufzunehmen, ohne das sie bis zum Schlauchanschluss gelangt.

Hierfür folgende Berechnung (Young 2001, Ch. 4/5, Dubs 1966, S.282, S.36):

1. Kalkuliert größter zu erwartenden Schub bei 130 km/h (36,11 m/s), sowie mit $P_S = 441$ kW und $\eta = 0.8$ (gewählt):

$$T = \frac{\eta * P_S}{v} = \frac{0.8 * 441000}{36,11} \approx 9770 \text{ N}$$
 (4.4)

2. Es ergibt sich für die Staudruckdifferenz, mit einem Propellerdurchmesser D = 3,2 m:

$$\Delta q = \frac{T}{\frac{\pi}{4} * D^2} = \frac{9770}{\frac{\pi}{4} * 3.2^2} = \frac{1214.79 \frac{N}{m^2}}{(4.6)}$$

3. Mit einer Messflüssigkeit Wasser ($\rho_{Wasser} = 1000 \text{ kg/m}^3$) ergibt sich für die Höhe eines Schenkels:

$$\Delta h = \frac{\Delta q}{\rho * g} = \frac{1214,79}{1000 * 9,81} = \underbrace{0,1238 \text{ m}}_{}$$
(4.7)

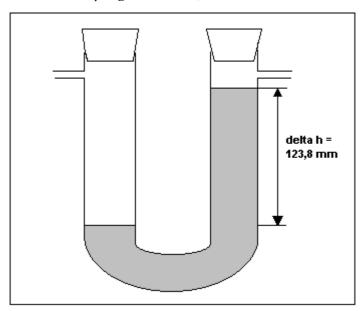


Bild 4.2 Skizze U-Rohr

Sämtliche Anbauten sollten als sogenanntes 'loose equipment' verbaut werden, d.h. es durften keine baulichen Veränderungen bzw. –eingriffe vorgenommen werden. Während das U-Rohr lediglich auf einem Brett befestigt werden musste und somit frei in der Kabine zu nutzen war, mussten für die Staurohre zweckmäßige, sichere und unkomplizierte, den Flugbetrieb standhaltende Lösungen gefunden werden. Als bestmögliche Lösung ergaben sich folgende Anbauorte und Konstruktionen:

1. Staurohr freie Strömung:

Genutzt wird das Gewinde für die Bodenverankerungsöse (Mooring-Fitting) und der Anschlussbeschlag der Querruder-Feststellung (Aileron-Lock) am äußeren Drittel der rechten Flügelunterseite.

Wobei sich das eigentliche Staurohr am unteren Ende eines 700 mm langen Rohres befindet, welches in das Gewinde geschraubt wird. Durch die Länge des Rohres ragt das Staurohr in die freie, von der Struktur unbeeinflussten Strömung. Das Rohr wird zusätzlich nach hinten durch eine an dem Anschlussbeschlag befestigten Strebe abgesichert. Am oberen, hinteren Ende des Rohres befindet sich der Anschluss für den Schlauch. Aus Sicherheitsgründen wurde eine Festigkeitsrechnung ohne Abstützungsstrebe durchgeführt und der Erprobungsanweisung (EO) beigefügt (s. Anhang A).

(s. Bild 4.3)

Bild 4.3 Staurohr freie Strömung – Anbau

2. Staurohr Propeller-Strömung:

In dem Fall des Propellerstaurohres wird die Fahnenstangenhalterung an der rechten Seite des Rumpfs direkt hinter der Cockpit-Seitenscheibe und die Haltegriffverschraubung auf der selben Seite direkt über der Cockpit-Seitenscheibe genutzt.

Wobei in die Fahnenstangenhalterung ein Rohr mit einer durchgängigen Bohrung gesteckt wird. In dieser Bohrung wird das vordere mit dem hinteren Ende des Staurohrs verschraubt und auf diese Weise geführt. Des weiteren wird das Staurohr, welches ca. 1 m parallel zur Flugzeuglängsachse nach vorn ragt, mit einer Schelle plus Winkel gesichert. Hierfür wird ein Gewinde der Haltegriff-Verschraubung genutzt. Die ursprüngliche Schraube wird durch eine längere ersetzt und nimmt zusätzlich den Winkel mit auf. Dadurch gibt es zwei Befestigungspunkte und es ist möglich die Öffnung des Staurohres in einigem Abstand zur Struktur und innerhalb des Propellerstroms zu positionieren. (s. Bild 4.4)

Bild 4.4 Staurohr Propellerströmung – Anbau

3. Schlauch zum Staurohr freie Strömung:

Es werden die Verschraubungen der Zugriffsöffnungen an der Flügelunterseite, die Ausleger der Hilfsflügellager und der Handlauf an der Rumpfseite genutzt, wobei der Schlauch an den Verschraubungen mittels mehrerer Kabelbinder fixiert wurde.

Ebenso wurde an Ausleger und Handlauf verfahren, hier wurde der Schlauch allerdings zusätzlich noch um dieselben gewickelt.(s. Bild 4.5)

Bild 4.5 Schlauchverlegung

Beide Schläuche werden durch das Fenster der Tür 1R in die Kabine geführt und mit den Anschlüssen des U-Rohrs verbunden.(s. Bild 4.6)

Bild 4.6 U-Rohr im Flugversuch

Zum Versuchsaufbau wurde eine Erprobungsanweisung (Engineering Order) geschrieben (s. Anhang A). Die Konstruktions- und Anbauzeichnungen befinden sich im Anhang C / Zeichnungen. Weitere Bilder zum Versuch in Anhang E / Bilder.

4.2 Windkanalversuch (Vorversuch)

Zur Überprüfung des Messaufbaus wird im Vorfeld des eigentlichen Flugversuchs ein Vorversuch im Windkanal durchgeführt.

Im Windkanal werden die beiden gefertigten Staurohre auf ihre Eigenschaften im Messverhalten getestet.

Es soll zum einen festgestellt werden, ob die Staurohre bei gleicher Anströmung auch tatsächlich keine Staudruckdifferenz messen. Und zum anderen, wie empfindlich die Staurohre auf eine schräge, nicht direkt von vorn auf die Öffnung treffende Anströmung reagieren. Das heißt, es soll untersucht werden, wie die Messung der Staudruckdifferenz bei einer Veränderung des Anströmwinkels beeinflusst wird.

Da sich das eine Staurohr während des Flugversuchs hinter dem mittleren Propeller befindet, soll so ausgeschlossen werden, dass der Propellerdrall Einfluss auf die Messung hat.

4.2.1 Versuchsaufbau Windkanal

Für den Versuchsaufbau im Windkanal müssen folgende Punkte erfüllt werden:

- die Öffnungen der Staurohre müssen in der gleichen Ebene und möglichst nah nebeneinander liegen. Dies ist nötig, um sicherzustellen, dass sie sich in der selben Strömung mit identischen Parametern befinden.
- 2.: das Propellerstaurohr muss drehbar gelagert sein und ein Drehwinkel muss ablesbar sein. Dies ist nötig, um eine definierte Anströmwinkeländerung vollziehen zu können.

Es konnten bereits in der HAW vorhandene Versuchsaufbauten genutzt werden.

Das Staurohr der freien Strömung wird an der in Strömungsrichtung rechten Seite einer Gitterrahmenkonstruktion an der Messstrecke mittels einer Klemme befestigt, und so ausgerichtet, dass die Staurohröffnung trotz des eingebauten Winkels parallel zur Strömung liegt.

Ebenfalls mittels einer Klemme, in diesem Fall allerdings samt Gewinde, wird das Propellerstaurohr auf eine Drehvorrichtung geschraubt, welche sich an der Unterseite der Messstrecke befindet und eine Gradanzeige besitzt.(s Bild 4.7)

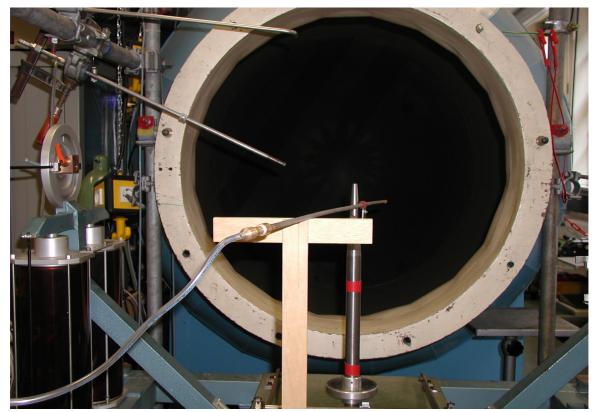


Bild 4.7 Versuchsaufbau Windkanal

4.2.2 Versuchsdurchführung Windkanal

Der Windkanalversuch fand am 24. April 2003 im großen Windkanal der Hochschule für angewandte Wissenschaften (HAW) Hamburg statt.

Nach dem Versuchsaufbau inklusive der Schlauchanschlüsse wird die Anzeige auf 0 mmWs kalibriert.

Um auch einen möglichen Einfluss der Geschwindigkeit erkennen zu können, wird der Kanal bei zwei unterschiedlichen Geschwindigkeiten gefahren: zunächst bei 20 m/s und anschließend bei 26 m/s.

Beginnend mit der geringeren Geschwindigkeit wird zunächst überprüft, ob auch bei einer frontalen Anströmung beider Staurohre (0° Verdrehung) keine Staudruckdifferenz angezeigt wird. Dieser Schritt wird am Ende des Versuchs wiederholt. Im Anschluss an diese Prüfung wird das Propellerstaurohr zunächst um 30° gedreht. Es wird also eine äußerst schräge Anströmung simuliert. Der Grad der Verdrehung wird daraufhin in 5°-Schritten verringert (gegen 0° gehend) bis die Staudruckdifferenz wieder 0 mmWs beträgt. Zur genaueren Bestimmung

der schrägsten Anströmung, bei der keine Staudruckdifferenz vorliegt, wird der Grad der Verdrehung dann noch einmal um 3° erhöht.

In gleicher Art und Weise wird bei der höheren Geschwindigkeit verfahren.

4.2.3 Versuchsergebnisse und Bewertung

Der Windkanal-Vorversuch ergab folgende Messwerte:

Tabelle 4.1 Werte des Windkanalversuchs

V_{∞} in m/s	α	Δq_{∞} in mmWs
20	30°	2,1
20	25°	0,9
20	20°	0,3
20	15°	0
20	10°	0
20	18°	0,2
26	30°	3,3
26	25°	1,5
26	20°	0,5
26	15°	0
26	10°	0
26	18°	0,3

Aus den ermittelten Werten lassen sich zwei Ergebnisse klar ablesen:

- 1.Bei einer frontalen Anströmung des Staurohrs der freien Strömung und einer gleichzeitigen Schräganströmung des Propellerstaurohres von bis zu 15° wird korrekter Weise keine Staudruckdifferenz angezeigt.
- 2. Eine Erhöhung der Geschwindigkeit bewirkt keine erkennbare Veränderung der maximal möglichen Schräganströmung ohne das eine Staudruckdifferenz angezeigt wird. Das Maximum liegt ebenfalls bei 15° Verdrehung. Die Größe des Fehlers erhöht sich hingegen mit Zunahme der Anströmgeschwindigkeit.

Es lässt sich somit feststellen, dass die Staurohre bis zu einer Schräganströmung von 15° (sei es durch Turbulenzen oder den Propellerdrall) mit einer sehr hohen Messgenauigkeit arbeiten. Vergleicht man die Ergebnisse mit der Literatur, so heißt es bei **Wuest 1969**, S. 60 zum Einfluss der Strömungsrichtung:

Pitotrohre sind nicht sehr empfindlich gegenüber Schräganblasung. Wenn die Sondenspitze als dünnwandiges Rohr ausgebildet ist, weicht der Gesamtdruck erst bei einem Winkel von +/- 23° um 1% des Staudrucks ab.

So ergibt sich aus der Windkanalmessung folgender Fehler (*Err*):

Ausgehend von: 1. $v_{\infty} = 26 \text{ m/s}$

2. $\alpha = 20^{\circ}$

3. $\Delta q_{\infty} = 0.5 \text{ mmWs} = 0.5 * 9.81 \text{ Pa} = 4.905 \text{ Pa}$

Berechnung (Thomas 1996, S.20):

$$\Delta q_{\infty} = \frac{\rho_{\infty}}{2} * v_{\infty}^{2} = \frac{1,225}{2} * 26^{2} = \underline{414,05 \,\text{Pa}}$$
 (4.6)

daraus folgt:

$$Err = \frac{100}{414.05} * 4,905 = \underbrace{1,1846\%}_{======}$$
 (4.7)

Auch im Bereich einer Schräganströmung größer 15° liegt der Fehler nur geringfügig über den aus der Literatur bekannten Toleranzen.

Zusammenfassend ergibt sich aus dem Vorversuch, dass die eigens für den Flugversuch gefertigten Staurohre auch für den Einsatz am Flugzeug (sowohl in der freien Strömung, wie auch hinter dem Propeller) geeignet sind.

4.3 Versuchsdurchführung

Die Durchführung des Flugversuchs fand am 04.April 2003 am Flughafen Rechlin, Mecklenburg-Vorpommern, statt.

Vor dem eigentlichen Flugversuch wird ein Belastungstest des Versuchsaufbaus am Boden durchgeführt.

Zu ermitteln sind die Steigraten und Gleitwinkel bei verschiedenen Geschwindigkeiten und Klappenstellungen. Sowie die Steigraten bei Ausfall des kritischen Motors (OEI).

Fliegerisch umgesetzt wird dies durch das Durchfliegen eines Höhenbandes mit sich regelmäßig abwechselnden Steig- und Sinkflügen. Sofern möglich werden während eines Steig- bzw. Sinkfluges unterschiedliche Eigengeschwindigkeiten mit einem definierten Höhengewinn bzw. –verlust innerhalb eines bestimmten Zeitintervalls erflogen.

Um Windscherungseffekte möglichst zu vermeiden, wird normal zur vorherrschenden Windrichtung geflogen.

Zwischen den Steig- und Sinkflügen wird in geeigneten Abständen kurzzeitig in den Horizontalflug übergegangen, um damit eine thermische Stabilisierung der Motoren zu erreichen und sie somit vor einer möglichen Überlastung zu schützen.

Vor dem Start wird der Höhenmesser des Flugzeuges auf die Bezugsdruckfläche von 1013,25 hPa eingestellt, womit erreicht wird, dass die jeweils angezeigte Höhe der Druckhöhe entspricht. Des weiteren wird die Lufttemperatur in verschiedenen Höhen ermittelt, um so eine mögliche Abweichung zur Standardatmosphäre bestimmen zu können.

Während des Fluges wird folgendes ermittelt:

1.: Die Geschwindigkeit wird jeweils über ein gewisses Zeitintervall gemäß der Fahrtmesseranzeige konstant gehalten.

 $\Rightarrow v_{IAS}$

2.: Zu Beginn des jeweiligen Zeitintervalls wird die Uhrzeit notiert. Entsprechend der Startmasse und dem durchschnittlichen Kraftstoffverbrauch (SFC) erhält man die zum Zeitintervall dazugehörige Masse des Flugzeugs, und somit die jeweilige Gewichtskraft.

 $\Rightarrow t$

 $\Rightarrow W$

3.: Zu Beginn, in regelmäßigen Abständen während und am Ende eines jeden Zeitintervalls werden die durchflogenen Höhen mit den dazugehörigen, per Stoppuhr ermittelten, Zeiten notiert. Wodurch die Steigrate bzw. Sinkrate entsprechend der dazugehörigen Eigengeschwindigkeit des Flugzeuges bestimmte werden kann.

 $\Rightarrow H_p$

 $\Rightarrow R/C, R/D$

4.3.1 Basisdaten

Bei den folgenden Daten handelt es sich um die Basis-Parameter, welche sich aus den Bedingungen während des Flugversuchs bzw. aus den Anforderungen an den Flugversuch ergeben:

Lufttemperatur:	
1000 ft	5 °C
3000 ft	3 °C
5000 ft	1 °C
(Temperaturen über das gesamte Höhenband im Vergleic s. Anhang B)	h zur ISA-Temperatur :
Windgeschwindigkeit	15-17 kt
Wind aus Richtung	330°
Flugrichtung (Kurs)	060° und 240°
Bezugsdruckfläche	1013,25 hPA
Leistungseinstellungen:	
mit 2 Motoren	,
mit 3 Motoren	max. climb (82%)
Klappenstellungen	0° und 10°
Startzeiten (T/O):	
1.Flug (Sinkflüge + Steigflüge 2 Motoren)	
2.Flug (Steigflüge 3 Motoren)	11:48 UTC
Startmassen (TOW):	
1.Flug	9210 kg
2.Flug	9530 kg
durchs. Kraftstoffverbrauch (SFC)	5 kg/h

4.3.2 Sinkflüge

1. Bei einer Klappenstellung von 0° wurden folgende Werte erflogen. Wobei in der obersten Zeile die Eigengeschwindigkeit (v_{IAS}) , die durchschnittliche, aktuelle Masse (m), sowie die Startzeit des Intervalls zu finden sind. In den Spalten darunter jeweils die Intervall-Zeit (t) und die dazugehörige Druckhöhe (H_p) :

Tabelle 4.2 Sinkflüge Klappenstellung 0°

l abelle 4.2	Sirikiluge	Kiappensteil	ung u					
140 km/h;	8895 kg;	150 km/h;	8910 kg;	160 km/h;	8952,5 kg	170 km/h ;	8965 kg;	
10:02 UTC		09:59 UTC		09:51 UTC		09:48 UTC		
<i>t</i> in s	H_p in ft	<i>t</i> in s	H_p in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	
0	5700	0	6500	0	4700	0	5600	
25	5600	11	6400	48	4500	26	5400	
41	5500	24	6300	61	4400	64	5200	
77	5400	44	6200			87	5000	
107	5300	92	6100			111	4900	
134	5200	111	6000					
		130	5900					

2. Bei einer Klappenstellung von 10° wurden folgende Werte erflogen:

Tabelle 4.3 Sinkflüge Klappenstellung 10°

Tabelle 4.5	30 km/h; 8860 kg; 140 km/h; 8872,5 kg 150 km/h; 9090 kg; 160 km/h; 9107,5 kg												
130 km/h;	8860 kg;	140 km/h;	8872,5 kg	150 km/h	; 9090 kg ;	160 km/h	; 9107,5 kg						
10:09 UTC		10:06 UTC		09:23 UTC	7	09:20 UTC							
<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft						
0	3700	0	4900	0	4400	0	5700						
26	3600	29	4800	19	4200	22	5500						
51	3500	40	4700	55	4000	36	5400						
68	3400	50	4600	87	3800	58	5200						
78	3300	75	4500	118	3600	76	5000						
91	3200	83	4400	150	3400	93	4800						
110	3100	94	4300										
129	3000	125	4200										
		147	4100										
		161	4000										
		177	3900										

4.3.3 Steigflüge

Während bei den Sinkflügen lediglich neben den Geschwindigkeiten die Klappenstellungen variiert wurden, kommt bei den Steigflügen die Untersuchung der verschiedenen Steigleistungen mit und ohne Motorausfall hinzu. Man erhält somit vier Tabellen:

1. Steigflug mit 2 Motoren und Klappenstellung 0°:

Tabelle 4.4 Steigflüge Klappenstellung 0° / 2 Motoren

i abelle 4.4	Steighuge	e Kiappensie	liung 0° / 2 iv	lotoren			
140 km/h	; 8990 kg ;	150 km/h ;	9010 kg;	160 km/h ;	; 9030 kg ;	170 km/h	; 9040 kg;
09:43 UTC		09:39 UTC	1	09:35 UTC		09:33 UTO	2
<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft
0	500	0	4600	0	4800	0	4300
13	5100	19	4700	14	4900	42	4500
39	5200	37	4800	29	5000	61	4600
55	5300	54	4900	72	5100	81	4700
73	5400	69	5000	88	5200		
88	5500	94	5100	122	5300		
113	5600	111	5200				
		129	5300				

2. Steigflug mit 2 Motoren und Klappenstellung 10°:

Tabelle 4.5 Steigflüge Klappenstellung 10° / 2 Motoren

l abelle 4.5	Otolgilage	rtiappenote	nung 10 / Z	MOTOLOGIC				
130 km/h;	9145 kg;	140 km/h;	9157,5 kg	150 km/h;	9172,5 kg	160 km/h ;	9187,5 kg	
09:12 UTC		09:09 UTC		09:06 UTC	1	09:03 UTC		
<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	
0	4000	0	3100	0	2100	0	1300	
22	4100	18	3200	40	2300	28	1400	
39	4200	45	3300	66	2400	65	1500	
56	4300	73	3400	91	2500	107	1700	
80	4400	97	3500	117	2600	127	1800	
100	4500	119	3600	142	2700	149	1900	
118	4600	141	3700	153	2800			
137	4700	157	3800	169	2900			

3. Steigflug mit 3 Motoren und Klappenstellung 0° :

Tabelle 4.6 Steigflüge Klappenstellung 0° / 3 Motoren

	oteighuge Mappe						
150 km/h ; 94'	70 kg ;	160 km/h ; 94	82,5 kg;	170 km/h ; 948	170 km/h ; 9487,5 kg ;		
11:59 UTC		11:57 UTC		11:56 UTC			
<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft		
0	4200	0	3600	0	2800		
13	4300	8	3700	14	2900		
26	4400	15	3800	22	3000		
37	4500	34	3900	33	3100		
50	4600	45	4000	47	3200		
62	4700			60	3300		
73	4800			77	3400		
82	4900						
90	5000						

4. Steigflug mit 3 Motoren und Klappenstellung 10° :

 Tabelle 4.7
 Steigflüge Klappenstellung 10° / 3 Motoren

140 km/h; 950		150 km/h ; 951		160 km/h ; 9522,5 kg ;		
11:52 UTC	, ,	11:50 UTC	, ,	11:49 UTC		
<i>t</i> in s	$H_{\rm p}$ in ft	t in s	$H_{\rm p}$ in ft	<i>t</i> in s	$H_{\rm p}$ in ft	
0	2300	0	1300	0	300	
5	2400	9	1400	9	400	
11	2500	22	1500	20	500	
20	2600	35	1600	29	600	
25	2700	44	1700	39	700	
35	2800	55	1800	49	800	
44	2900	65	1900	60	900	
54	3000	71	2000	72	1000	

4.4 Versuchsergebnisse

In diesem Unterabschnitt werden die direkt aus dem Flugversuch ablesbaren Ergebnisse dargestellt. Da aus den reinen Zeit- und Höhentabellen nicht ersichtlich ist, in wie weit der Flugversuch plausible und somit weiterverarbeitbare Resultate geliefert hat, werden die Tabellen mit Hilfe von *Microsoft Excel* zu Graphiken verarbeitet. Dargestellt wird die Höhe (gleich der Druckhöhe) über der Zeit. Daraus ergibt sich für jede Geschwindigkeit gemittelt eine Gerade, die dem Höhenverlust bzw. –gewinn je nach Eigengeschwindigkeit des Flugzeuges während eines Zeitintervalls entspricht. Die Steigungen dieser Geraden sind die Sinkraten (Bild 4.8 und 4.9) bzw. Steigraten (Bilder 4.10 bis 4.13) bei den unterschiedlichen Klappenstellungen und Motoreinstellungen (2 oder 3 Motoren -- nur Steigflüge) während des Flugversuchs.

Im zweiten Schritt werden dann die Steigraten über die Eigengeschwindigkeit aufgetragen und jene mit gleicher Klappenstellung und Motoreinstellung zu Kurven zusammengefasst (Bild 4.14). Diese Kurven lassen eine erste Einschätzung der Plausibilität zu.

Bei den Sinkraten wird anders verfahren. Hier werden mittels der Gleitwinkel die Gleitzahlen berechnet, welche dann wiederum eine Plausibilitätsabschätzung zulassen.

4.4.1 Sinkraten und Gleitzahlen

1. Graphiken der Sinkraten: Die in den Graphiken auf der rechten Seite angegebenen Steigungen bei den verschiedenen Geschwindigkeiten entsprechen den über die Intervalle gemittelten Sinkraten in ft/s.

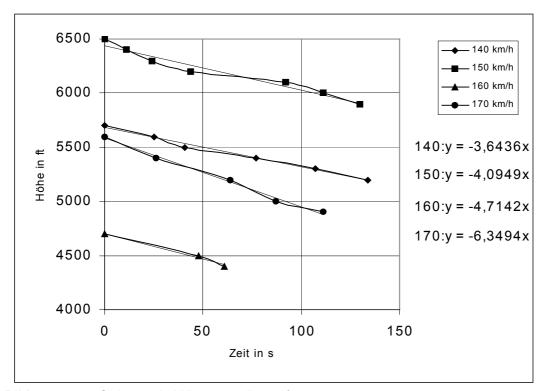


Bild 4.8 Sinkraten bei Klappenstellung 0°

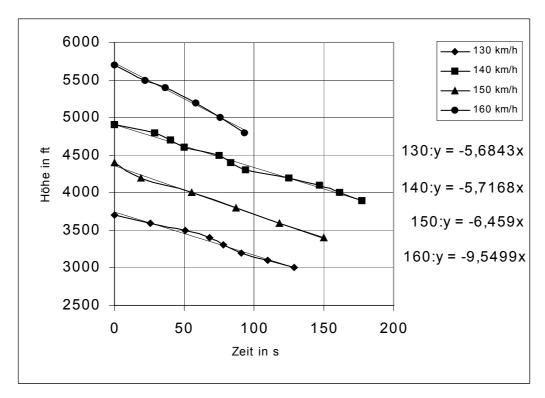


Bild 4.9 Sinkraten bei Klappenstellung 10°

2. Berechnung der Gleitzahlen:

Bei dieser, nur der Abschätzung dienenden, Berechnung der Gleitzahlen wird mit den nicht normierten (d.h. in den unterschiedlichen Höhen, bei unterschiedlichen Massen erflogenen) Sinkraten gearbeitet.

Die zweite Bezugsgröße ist die Eigengeschwindigkeit des Flugzeuges. Genauer handelt es sich hier um die Äquivalent-Geschwindigkeit (v_{EAS}). Da alle erflogenen Geschwindigkeiten kleiner M = 0,5 sind und somit die Kompressibilität der Luft vernachlässigbar gering ist (**Dubs 1966**, Seite 50), sind die Äquivalent-Geschwindigkeiten identisch mit den kalibrierten Geschwindigkeiten (v_{CAS}), welche sich wiederum gemäß Lufthansa-Flughandbuch (s. Anhang B) aus der angezeigten Geschwindigkeit (v_{LAS}) ergeben.

Berechnung der Gleitzahl E (=L/D; Roskam 1997, Seite 336 f.):

$$E = -\frac{1}{\tan \gamma} \tag{4.1}$$

mit:

$$\gamma = \arcsin(\frac{R/D}{v_{EAS}}) \tag{4.2}$$

a. Klappenstellung 0°:

$$v_{IAS} = 140 \text{ km/h}$$
: $v_{CAS} = v_{EAS} = 143 \text{ km/h} = 39,722 \text{ m/s}$
 $R/D = -3,6436 \text{ ft/s} = -1,11057 \text{ m/s}$

$$\gamma = \arcsin(\frac{-1,11057}{39,722}) = \underline{-1,6021^\circ}$$

$$E = -\frac{1}{\tan(-1,6021^\circ)} = \underbrace{\frac{35,753}{}}_{}$$

$$v_{LAS} = 150 \text{ km/h}$$
: $E = 34,482$

$$v_{LAS} = 160 \text{ km/h}$$
: $E = 32,075$

$$v_{LAS} = 170 \text{ km/h}$$
: $E = 25,242$

b. Klappenstellung 10°:

$$v_{LAS} = 130 \text{ km/h}$$
: $E = 21,2997$

$$v_{LAS} = 140 \text{ km/h}$$
: $E = 22,934$

$$v_{LAS} = 150 \text{ km/h}$$
: $E = 21,847$

$$v_{LAS} = 160 \text{ km/h}$$
: $E = 15,809$

4.4.2 Steigraten

1. Graphiken der Steigraten. Die in den Graphiken auf der rechten Seite angegebenen Steigungen bei den verschiedenen Geschwindigkeiten entsprechen den über die Intervalle gemittelten Steigraten in ft/sek.

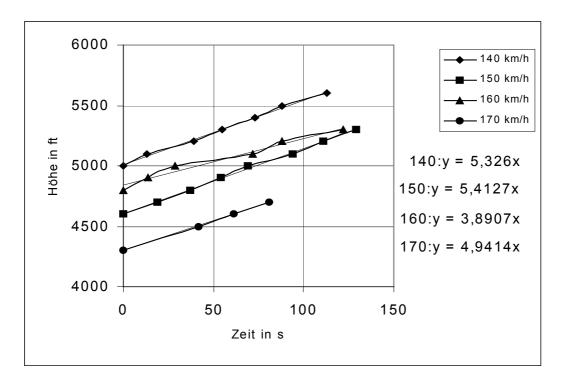


Bild 4.10 Steigraten bei Klappenstellung 0° / 2 Motoren

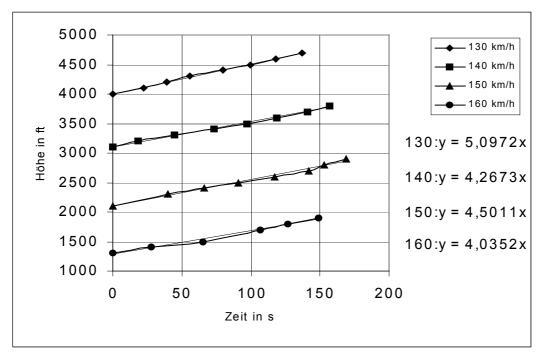
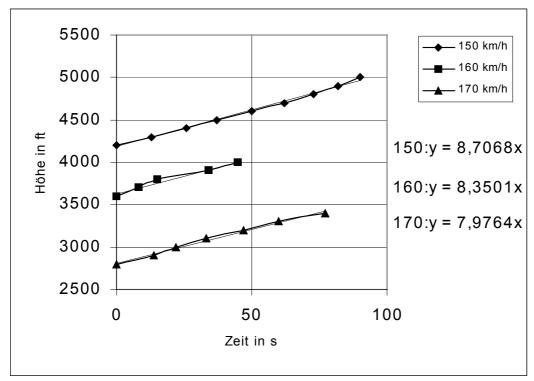



Bild 4.11 Steigraten bei Klappenstellung 10° / 2 Motoren

Bild 4.12 Steigraten bei Klappenstellung 0° / 3 Motoren

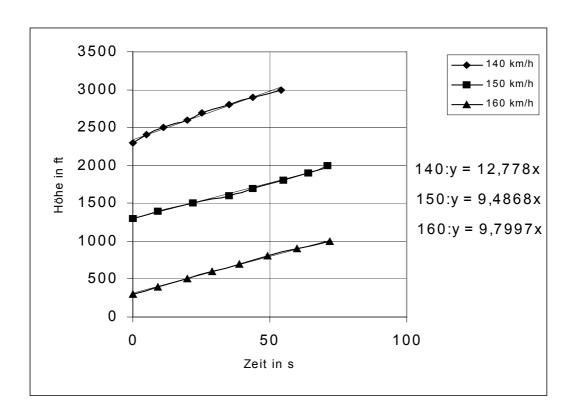
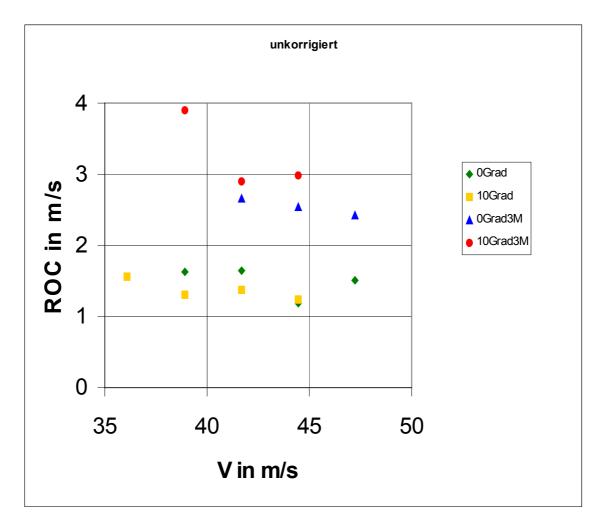



Bild 4.13 Steigraten bei Klappenstellung 10° / 3 Motoren

2. Graphik der Steigraten über die Eigengeschwindigkeit (v_{IAS})

Für diese Darstellung wurden die Steigraten aus den Diagrammen 4.10 bis 4.13 in ein einzelnes Diagramm übertragen und über die Geschwindigkeit aufgetragen. Zuvor wurden die Steigraten von ft/s in m/s umgerechnet.

Bild 4.14 Steigraten über v_{IAS} unkorrirgiert

4.5 Diskussion der Ergebnisse

Bei der Diskussion der Ergebnisse muss zunächst zwischen den aus den Sinkflügen gewonnenen Ergebnissen und denen gewonnen aus den Steigflügen unterschieden werden.

Betrachtet man die Gleitzahlen als vorläufige Ergebnisse der Sinkflüge, so muss man feststellen, dass diese in einer Größenordnung liegen, welche für diese Art Flugzeug nicht zutreffen können.

Wenn gleich Flugkapitän Selig bei Wagner 1996, S. 353 mit folgenden Worten zitiert wird:

Dank des Doppelflügels kann man den Gleitwinkel so gut steuern, dass sogar Ziellandungen ohne Gas möglich sind.

So sind doch eher Gleitzahlen von 10 bis 12 (s. Kapitel 5.5) zu erwarten, als die im Flugversuch ermittelten Werte von ca. 22 bzw. 34.

Somit bleibt nur festzustellen, dass die Sinkflüge sehr wahrscheinlich nicht mit Nullschub, sondern mit einem nicht definierbaren Restschub geflogen wurden. Die so ermittelten Gleitzahlen sind entsprechend höher als zu erwarten war und dadurch nicht verwertbar.

Die Ursache, die zu dem störenden Restschub geführt hat, ist zum momentanen Zeitpunkt nicht definitiv zu erklären.

Von einem im Prinzip korrekten Messaufbau (es war ein sehr gutes Ansprechverhalten der Messeinrichtung während des Flugversuchs feststellbar³) und einem bestmöglichen Abfliegen des Flugversuchsprogramms ausgehend, könnte als einzige Möglichkeit ein Leck in der Propellerstaurohrleitung die Ergebnisse verfälscht haben. – Ein Leck an dieser Stelle hat zur Folge, dass ein geringerer Staudruck an das U-Rohr von der Motorseite weitergegeben wird, was dann durch mehr Schub vom Propeller ausgeglichen werden muss, um das gewünschte Gleichgewicht zwischen den beiden Staudrücken zu erzielen.

Bei den Steigflügen ist das vorläufige Ergebnis hingegen sehr viel besser. Die erflogenen Steigraten liegen quantitativ in einem Bereich, der für die Ju52 als durchaus plausibel gewertet werden kann.

Auf grund der geringen Anzahl der bisherigen Werte für die Steigraten scheint es aber sinnvoll, nicht nur eine gemittelte Steigrate pro Geschwindigkeit / Klappenstellung / Motoreinstellung in die Auswertung mit einzubeziehen, sondern sämtliche Steigraten der einzelnen Höhenintervalle zu verwerten und bereits an dieser Stelle die "Ausreißer" zu eliminieren.

Im Anschluss kann eine Auswertung und schließlich auch eine Bewertung der Ergebnisse erfolgen.

Laut Flugingenieur bewirkten minimalste Veränderungen bei der Schubeinstellung deutlich erkennbare Veränderungen an der U-Rohr-Anzeige.

5 Aufarbeitung der Flugversuchsergebnisse

5.1 Korrektur der Steigraten

Bei den zu korrigierenden Steigraten handelt es sich um alle Steigraten, die sich aus sämtlichen im Flugversuch erflogenen Höhenintervallen (s. Tabellen 4.4 bis 4.7) ergeben. Zunächst werden folgende Korrekturen zur Ermittlung der wahren Steigraten (R/C) in Abhängigkeit zur wahren Fluggeschwindigkeit (v_{TAS}) durchgeführt:

1. die angezeigten Geschwindigkeiten (v_{IAS}) werden mit Hilfe des Lufthansa Flughandbuchs (s. Anhang B) zu den kalibrierten Geschwindigkeiten (v_{CAS}). Diese wiederum werden um den Dichtefehler, welcher den Tabellen zur Standardatmosphäre (**Thomas 1996**) entnommen wird, korrigiert und man erhält die wahre Geschwindigkeit (v_{TAS}) bei der Anfangs- und der Endhöhe eines jeden Intervalls:

$$v_{IAS} = v_{CAS} * \sqrt{\frac{\rho_0}{\rho}} = v_{CAS} * \sqrt{\sigma}$$

$$(5.1)$$

2. die durchflogene Höhendifferenz (ΔH) wird entsprechend der Diskrepanz zwischen der Temperatur beim Flugversuch (T) und der Temperatur der Standardatmosphäre (T_{ISA} , s. Anhang B) korrigiert, um der Veränderung der Schichtdicke bei einer von der Standardatmosphäre abweichenden Temperatur Rechnung zu tragen:

$$\Delta H_{ISA} = \Delta H * \frac{T}{T_{ISA}} \tag{5.2}$$

3. des weiteren wird die durchflogene Höhendifferenz (ΔH) um den Faktor (Δh) korrigiert, der sich aus der Zunahme der wahren Eigengeschwindigkeit (Δv_{TAS}) mit steigender Flughöhe und entsprechend abnehmender Luftdichte bei konstanter angezeigter Geschwindigkeit ergibt:

mit:
$$v_{TAS2} = v_{TAS}$$
 in der Höhe 2 $v_{TASI} = v_{TAS}$ in der Höhe 1

$$m * g * \Delta h = \frac{m}{2} * (v_{TAS2}^2 - v_{TAS1}^2)$$
 (5.3)

daraus folgt:
$$\Delta h = \frac{v_{TAS2}^2 - v_{TAS1}^2}{2 * g}$$
 (5.4)

aus 2. und 3. erhalten wir die korrigierte Höhendifferenz (ΔH_{korr}) wie folgt:

$$\Delta H_{korr} = \Delta H_{ISA} + \Delta h \tag{5.5}$$

die korrigierte Höhendifferenz eines jeden Intervalls wiederum geteilt durch die Intervall-Zeit (t) ergibt die wahre Steigrate (R/C):

$$R/C = \frac{\Delta H_{korr}}{t} \tag{5.6}$$

Im Diagramm (Bild 5.2) wird die wahre Steigrate über der wahren Geschwindigkeit aufgetragen, diese ergibt sich jeweils aus dem Mittelwert der wahren Geschwindigkeiten am Anfang und am Ende eines jeden Intervalls.

Sämtliche aus der Korrektur hervorgehenden Daten befinden sich in Tabellenform im Anhang B.

Da das Diagramm der korrigierten Steigraten nur ausgewählte Steigraten (ohne die "Ausreißer") enthalten soll, werden jeweils die Steigraten der Intervalle mit der gleichen Geschwindigkeit / Klappenstellung / Motoreinstellung zur Beurteilung in Diagramme eingegeben (beispielhaft s. Bild 5.1, Anhang C), in denen die Ausreißer festgestellt und für die weitere Bearbeitung ausgeschlossen werden:

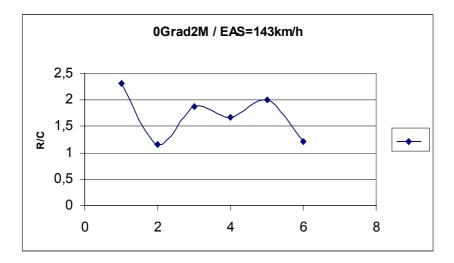
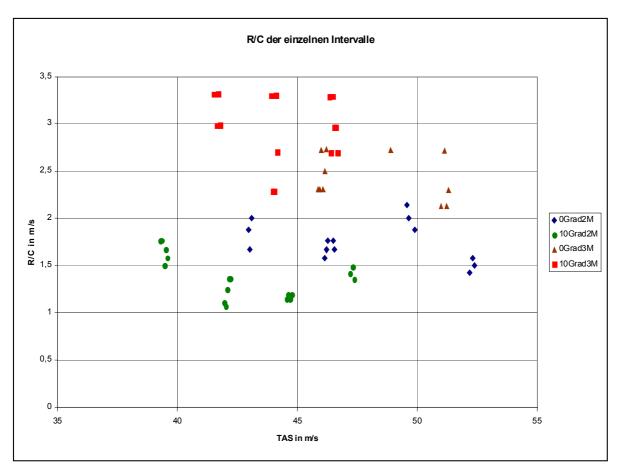



Bild 5.1 Diagramm zur Ermittlung der "Ausreißer"

Nach der Eliminierung aller "Ausreißer" ergibt sich folgende Tabelle und das dazugehörige Diagramm der wahren Steigraten über die wahre Geschwindigkeit:

 Tabelle 5.1
 Korrigierte Steigraten der einzelnen Intervalle

Tabelle 3. I	Romgiente	Stelgrateri dei	emzemen m	lei valle			
0Grad2M		10Grad2M		0Grad3M		10Grad3M	
R/C	TAS	R/C	TAS	R/C	TAS	R/C	TAS
1,87928	42,954	1,7619	39,291	2,3048	45,860	3,3095	41,534
1,67106	43,019 1,762		39,351	2,3056	45,930	2,9806	41,659
2,00596	43,085	1,4992	39,471	2,7258	45,999	3,3129	41,720
1,5792	46,138	1,6663	39,529	2,3072	46,068	2,9827	41,782
1,6675	46,208	1,5792	39,590	2,5004	46,138	3,2959	43,918
1,7662	46,278	1,1059	41,971	2,7287	46,208	2,2826	43,984
1,7681	46,488	1,0667	42,034	2,7210	48,893	2,2834	44,049
1,6705	46,558	1,2449	42,097	2,1298	50,991	3,2993	44,114
2,1447	49,562	1,3586	42,160	2,7125	51,144	2,7004	44,179
2,0024	49,636	1,3591	42,224	2,1320	51,220	3,2848	46,348
1,8787	49,892	1,1448	44,575	2,2968	51,297	2,6885	46,416
1,4276	52,192	1,1910	44,641			3,2870	46,483
1,5786	52,309	1,1456	44,707			2,9593	46,552
1,5002	52,389	1,1918	44,774			2,9603	46,621
		1,4138	47,210			2,6921	46,690
		1,4852	47,314				
		1,3506	47,384				

Bild 5.2 Steigraten der Intervalle über v_{TAS} korrigiert

5.2 Kurvenverläufe der Steigraten

Auf grund der unregelmäßigen Verteilung der Steigraten, resultierend aus den einzelnen Intervallen (Bild 5.2), lässt sich zunächst nur eine Aussage über die Quantität der einzelnen Kurven der Steigraten machen. Zur Ermittlung des Kurvenverlaufs muss allerdings die Theorie herangezogen werden.

Soll eine Steigrate theoretisch berechnet werden, so bedarf es folgender Parameter:

- Fluggeschwindigkeit [v]
- Schub [*T*] mit:

o Wirkungsgrad $[\eta]$ o Wellenleistung $[P_S]$

• Widerstand [D] mit:

o Nullwiderstand $[c_{D\theta}]$ o Oswald-Faktor [e]o Flügelfläche [S]o Flügelstreckung [A]o Luftdichte $[\rho]$

• Gewichtskraft [W] mit:

 \circ Masse [m]

o Erdbeschleunigung [g]

Während die Fluggeschwindigkeit (v = 120 bis 240 km/h), die Wellenleistung ($P_S = 441$ kW), die Flügelfläche (S = 110,5 m²), die Flügelstreckung (A = 7,75), die Luftdichte ($\rho_0 = 1,225$ kg/m³) und die Gewichtskraft ($W_{MTOW} = 103005$ N) unstrittig bekannt sind, werden die Parameter $c_{D0/0Grad}$ (= 0,0298), $c_{D0/10Grad}$ (= 0,03487) und e (= 0,78) den recherchierten Datenblättern entnommen und der Wirkungsgrad wie folgt berechnet:

Wirkungsgrad [η] für Verstellpropeller nach *Aerodynamic Theory* (**Durand 1935**, S. 173 f):

Mit:

- Propellerdrehzahl $[n] = 1400 \text{ min}^{-1}$
- Propellerradius [r] = 1,60 m
- Luftdichte $[\rho] = 1,225$

Berechnung:

1. Propellerfortschrittsgrad [λ] :

$$\lambda = \frac{v}{\pi * n * r * 2} \tag{5.7}$$

2. Winkelgeschwindigkeit $[\Omega]$:

$$\Omega = \frac{v}{\lambda * r} \tag{5.8}$$

3. Drehmoment $[Q_c]$:

$$Q_{C} = \frac{P_{S}}{\pi * \Omega^{3} * \rho * r^{5}}$$
 (5.9)

Wirkungsgrad [η]:

$$Q_C = \frac{2*(1-\eta)*\lambda^3}{\eta^3} \qquad \text{(nach } \eta \text{ auflösen)} \qquad (5.10)$$

Als Ergebnis erhält man den theoretischen Wirkungsgrad ($\eta_{Theorie}$) in Abhängigkeit der Fluggeschwindigkeit ($\eta = f(v)$), dem ein Maximalwert (η_{max}) von 1 zugrunde liegt:

Tabelle 5.2 naporio

1 42 5 11 5	·- <u> </u>	rrieone										
V _{km/h}	120	125	130	140	150	160	170	180	190	200	220	240
$\eta_{Theorie}$	0,748	0,763	0,777	0,803	0,826	0,846	0,863	0,879	0,892	0,904	0,923	0,938

Somit gilt es im weiteren Verlauf, den für die Ju52/3m korrekten maximalen Wirkungsgrad zu finden (s. Kap. 5.3). Für den Kurvenverlauf wird zunächst ein maximaler Wirkungsgrad von 0,8 vorgegeben, daraus folgt:

$$\eta = \eta_{Theorie} * \eta_{\text{max}} = \eta_{Theorie} * 0.8$$
(5.11.1)

Tabelle 5.3 $\eta_{Theorie}$ mit gewähltem $\eta_{max} = 0.8$

V _{km/h}	120	125	130	140	150	160	170	180	190	200	220	240
η _{Theorie}	0,598	0,610	0,622	0,642	0,661	0,677	0,690	0,703	0,718	0,723	0,738	0,750

Mit dem so ermittelten Wirkungsgrad und den restlichen Parametern lassen sich die Steigraten in Abhängigkeit der Geschwindigkeit nach dem folgenden Prinzip (**Roskam 1996**, S. 375 f, **Young 2001**, Ch.2) berechnen:

$$R/C = v * \sin \gamma \tag{5.12}$$

mit:

$$\sin \gamma = \frac{T - D}{W} \tag{5.13}$$

mit:

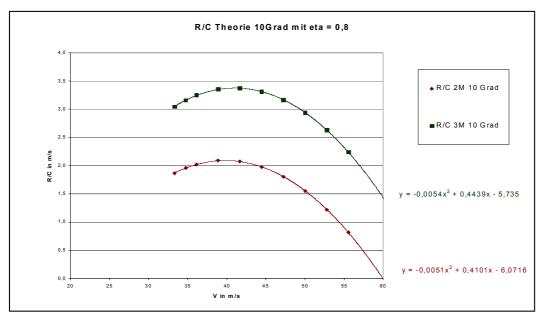
$$T = \frac{\eta * P_S}{v} \tag{5.14}$$

bei : a.) Steigflug mit 3 Motoren und max. climb multipliziert mit 3*0,82!

b.) Steigflug mit 2 Motoren und max. continous multipliziert mit 2!

2.
$$D = c_D * \frac{\rho}{2} * v^2 * S \tag{5.15}$$

mit:
$$c_D = c_{D0} + \frac{c_L^2}{\pi * A * e}$$
 (5.16)


und:
$$c_{L} = \frac{2*W}{\rho * v^{2} * S}$$
 (5.17)

Als Ergebnis erhalten wir die Kurvenverläufe der Steigraten als Funktion der Geschwindigkeit bei einem gewählten maximalen Wirkungsgrad von 0,8 für die Steigflüge mit 3 Motoren und mit 2 Motoren, sowie jeweils für die Klappenstellungen 0° und 10° (die dazugehörige Tabelle mit allen benötigten Parametern befindet sich in Anhang B):

Bild 5.3 Kurvenverläufe der Steigraten bei Klappenstellung 0° und η_{max} = 0,8

58

Bild 5.4 Kurvenverläufe der Steigraten bei Klappenstellung 10° und η_{max} = 0,8

Die auf der rechten Seite der Diagramme enthaltenen Gleichungen sind die für die Kurvenverläufe benötigten Funktionen.

5.3 Normierung der Steigraten

Bevor die Kurvenverläufe mit den Flugversuchsergebnissen kombiniert werden (Kap. 5.4) müssen die Daten der Steigraten noch normiert werden, da diese während des Flugversuchs in unterschiedliche Höhen und bei verschiedenen Massen erflogen worden sind. Normiert wird die Masse auf das maximale Startgewicht (MTOW). Bei der Höhe sollen die Bedingungen auf Höhe des Meeresspiegels (SL) gelten. Das bedeutet, die Steigraten werden so korrigiert, dass man im Anschluss an die Normierung voraussetzen kann, sämtliche Steigraten wären mit der Masse 10500 kg bei einer Luftdichte von 1,225 kg/m³ erflogen worden. Hierzu werden Normierungsfaktoren berechnet. Die Normierungsfaktoren gelten jeweils für die Steigraten, welche mit der gleichen Klappenstellung und Motoreinstellung, sowie bei der gleichen Eigengeschwindigkeit erflogen worden sind.

Die Berechnung des Normierungsfaktors erfolgt folgendermaßen (Young 2001, Ch. 2 / 5):

Benötigt werden folgende Parameter:

• $c_{D0} = 0.0298 / 0.03487$ (aus Literatur)

• e = 0.78 (aus Literatur)

• $\eta = f(\eta_{max}, v)$ (s. Kap. 5.2; mit $\eta_{max} = 0.8$)

• *A* = 7.75

• $S = 110.5 \text{ m}^2$

• $P_S = 441 \text{ kW}$

• $\rho_0 = 1,225 \text{ kg/m}^3$

Variiert werden:

$$\circ v_{TAS} = f(\rho)$$
$$\circ W = f(m)$$

Basis-Gleichung:

$$R/C = (\frac{P_S * \eta}{v_{TAS}} - D) * \frac{v_{TAS}}{W}$$
 (5.18)

mit:

$$D = \frac{c_{D0} * \rho_0 * S * v_{TAS}^2}{2} + \frac{2 * W^2}{\pi * A * e * \rho_0 * S * v_{TAS}^2}$$
(5.19)

Werden auf der rechte Seite der Basis-Gleichung zum einen die normierten Werte ($v_{TAS} / SL = v_{EAS}$ und W = 10500 kg) und zum anderen die gemessenen Werte ($v_{TAS} = v_{EAS} / \sqrt{\sigma}$) eingesetzt und im Anschluss dividiert, so ergibt sich folgende Gleichung:

$$\frac{R/C_{norm}}{R/C_{mess}} = \frac{\left(\frac{P_S * \eta}{v_{norm}} - D_{norm}\right) * \frac{v_{norm}}{W_{norm}}}{\left(\frac{P_S * \eta}{v_{mess}} - D_{mess}\right) * \frac{v_{mess}}{W_{mess}}}$$
(5.20)

Die einzige unbekannte stellt R/C_{norm} dar und es kann entsprechend aufgelöst werden:

$$R/C_{norm} = \frac{(\frac{P_{S} * \eta}{v_{norm}} - D_{norm}) * \frac{v_{norm}}{W_{norm}}}{(\frac{P_{S} * \eta}{v_{mess}} - D_{mess}) * \frac{v_{mess}}{W_{mess}}} * R/C_{mess}$$
(5.21)

entsprechend ergibt sich der Normierungsfaktor k:

$$k = \frac{\left(\frac{P_S * \eta}{v_{norm}} - D_{norm}\right) * \frac{v_{norm}}{W_{norm}}}{\left(\frac{P_S * \eta}{v_{mess}} - D_{mess}\right) * \frac{v_{mess}}{W_{mess}}}$$
(5.22)

und somit gilt:

$$R/C_{norm} = k * R/C_{mess}$$
 (5.23)

Dieser Normierungsfaktor wird jetzt auf die bereits korrigierten und von Ausreißern eliminierten Steigraten (s Kap. 5.1, Tab. 5.1) angewendet. Als Ergebnis erhält man die korrigierten und normierten Steigraten (R/C_{norm}) in Abhängigkeit der wahren Eigengeschwindigkeit:

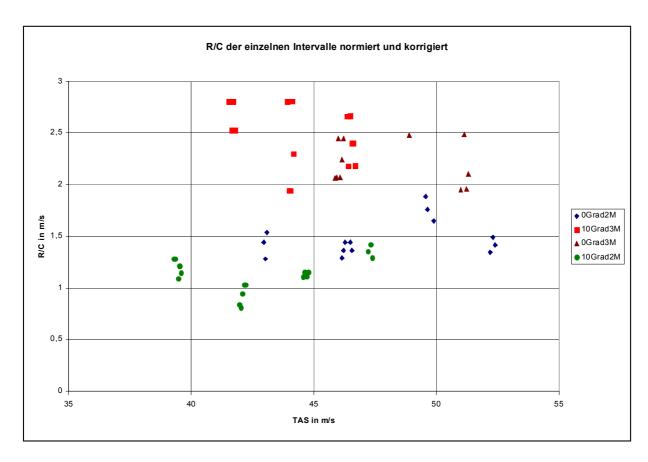
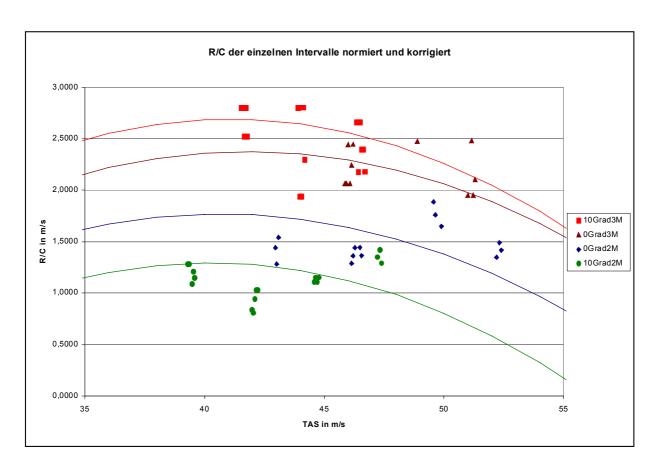

 Tabelle 5.4
 Normierte Steigraten mit Normierungsfaktoren mit 2 Motoren

Tabelle 5.4	Nonnene	steigraten mit	Normerungs	iaktoren iilit z	MOTOLELL		
0Grad2M				10Grad2M			
R/C	k	R/C _{norm}	TAS	R/C	k	R/C _{norm}	TAS
1,8792	792 0,767 1,441407		42,954	1,7619	0,7268	1,2805	39,291
1,6710	0,767	1,281709	43,019	1,7625	0,7268	1,2810	39,351
2,0059	0,767	1,538598	43,085	1,4992	0,7268	1,0896	39,471
1,5792	0,8160	1,288626	46,138	1,6663	0,7268	1,2111	39,529
1,6675	0,8160	1,360696	46,208	1,5792	0,7268	1,1478	39,590
1,7662	0,8160	1,441246	46,278	1,1059	0,7585	0,8388	41,971
1,7681	0,8160	1,442779	46,488	1,0667	0,7585	0,8091	42,034
1,6705	0,8160	1,363109	46,558	1,2449	0,7585	0,9443	42,097
2,1447	0,8780	1,883059	49,562	1,3586	0,7585	1,0305	42,160
2,0024	0,8780	1,758144	49,636	1,3591	0,7585	1,0309	42,224
1,8787	0,8780	1,649464	49,892	1,1448	0,9668	1,1068	44,575
1,4276	0,9438	1,347329	52,192	1,1910	0,9668	1,1515	44,641
1,5786	0,9438	1,489924	52,309	1,1456	0,9668	1,1076	44,707
1,5002	0,9438	1,415926	52,389	1,1918	0,9668	1,1523	44,774
				1,4138	0,9563	1,3520	47,210
				1,4852	0,9563	1,4203	47,314
				1,3506	0,9563	1,2916	47,384

 Tabelle 5.5
 Normierte Steigraten mit Normierungsfaktoren mit 3 Motoren

0Grad3M				10Grad3M			
R/C	k	R/C _{norm}	TAS	R/C	k	R/C _{norm}	TAS
2,3048	0,8969	2,0672	45,860	3,3095	0,8462	2,8005	41,534
2,3056	0,8969	2,0679	45,930	2,9806	0,8462	2,5222	41,659
2,7258	0,8969	2,4448	45,999	3,3129	0,8462	2,8034	41,720
2,3072	0,8969	2,0694	46,068	2,9827	0,8462	2,5239	41,782
2,5004	0,8969	2,2426	46,138	3,2959	0,8502	2,8022	43,918
2,7287	0,8969	2,4473	46,208	2,2826	0,8502	1,9406	43,984
2,7210	0,9109	2,4786	48,893	2,2834	0,8502	1,9413	44,049
2,1298	0,9169	1,9528	50,991	3,2993	0,8502	2,8051	44,114
2,7125	0,9169	2,4871	51,144	2,7004	0,8502	2,2958	44,179
2,1320	0,9169	1,9548	51,220	3,2848	0,8099	2,6603	46,348
2,2968	0,9169	2,1059	51,297	2,6885	0,8099	2,1774	46,416
				3,2870	0,8099	2,6621	46,483
				2,9593	0,8099	2,3967	46,552
				2,9603	0,8099	2,3975	46,621
				2,6921	0,8099	2,1803	46,690

In Diagrammform dargestellt ergibt sich folgendes Bild:


Bild 5.5 Steigraten der Intervalle über v_{TAS} korrigiert und normiert

5.4 Ermittlung des max. Wirkungsgrades und Überprüfung der Parameter $c_{D\theta}$ und e

In diesem Kapitel sollen die aus der Literatur recherchierten Parameter $c_{D\theta}$ und e mit Hilfe der Flugversuchsergebnisse überprüft, sowie der maximale Wirkungsgrad ermittelt werden.

Hierzu werden die Ergebnisse der beiden vorherigen Kapitel (5.2: die Kurvenverläufe der Steigraten / 5.3: die korrigierte und normierte Verteilung der Steigraten) miteinander kombiniert und ausgewertet.

Das heißt, dass die Kurvenverläufe in das Diagramm der Steigraten eingearbeitet werden und in ihrer Lage zur y-Achse so variiert werden, dass die Steigraten aus dem Flugversuch bestmöglich abgedeckt werden. Es werden jeweils die theoretisch entwickelten Kurvenverläufe mit den dazugehörigen Messpunkten kombiniert.(s. Bild 5.6)

Bild 5.6 Steigraten und Steigkurven über v_{TAS}

Tabelle 5.6 Werte der Steigratenkurven zu Bild 5.6

	· orto do: otorgratorita	to dor otolgratoritaryon za bila olo							
V in m/s	10 Grad 3M	0 Grad 3M	0 Grad 2M	10 Grad 2M					
32	2,2452	1,9268	1,431	0,9508					
34	2,4202	2,092	1,569	1,0978					
36	2,552	2,2196	1,671	1,204					
38	2,6406	2,3096	1,737	1,2694					
40	2,686	2,362	1,767	1,294					
42	2,6882	2,3768	1,761	1,2778					
44	2,6472	2,354	1,719	1,2208					
46	2,563	2,2936	1,641	1,123					
48	2,4356	2,1956	1,527	0,9844					
50	2,265	2,06	1,377	0,805					
52	2,0512	1,8868	1,191	0,5848					
54	1,7942	1,676	0,969	0,3238					
56	1,494	1,4276	0,711	0,022					
58	1,1506	1,1416	0,417	-0,3206					
60	0,764	0,818	0,087	-0,704					
62	0,3342	0,4568	-0,279	-1,1282					
64	-0,1388	0,058	-0,681	-1,5932					
66	-0,655	-0,3784	-1,119	-2,099					
68	-1,2144	-0,8524	-1,593	-2,6456					
70	-1,817	-1,364	-2,103	-3,233					

Mit den so erhaltenen Kurven und den dazugehörigen Werten wird im Anschluss mit Hilfe von *Microsoft Excel* eine Auswertung durchgeführt. Das Ergebnis dieser Auswertung liefert zum einen die gewünschte Überprüfung von c_{D0} und e, und zum anderen die ebenfalls angestrebte Bestimmung von η_{max} .

Bei dieser Auswertung wird wie folgt vorgegangen:

Ausgegangen wird von folgender Gleichung (Young 2001, Ch.2 / 5):

$$\sin \gamma = \frac{\eta * P_S}{W * \nu_{TAS}} - \frac{D}{W} \tag{5.24}$$

mit:

$$D = \frac{c_{D0} * \rho_0 * S * v_{TAS}^2}{2} + \frac{2 * W^2}{\pi * A * e * \rho_0 * S * v_{TAS}^2}$$
(5.18)

und:

$$\sin \gamma = \frac{R/C}{v_{TAS}} \tag{5.25}$$

sowie:

•
$$P_S = 2 * 441000 \text{ W} = 882000 \text{ W}$$
 (bei 2 Motoren , max. cont.)
• $P_S = 3 * 0.82 * 441000 \text{ W} = 1084860 \text{ W}$ (bei 3 Motoren , max. climb)
• $W = 9.81 \text{ m/s}^2 * 10500 \text{ kg} = 103005 \text{ N}$
• $S = 110.5 \text{ m}^2$
• $\rho_0 = 1.225 \text{ kg/m}^3$
• $A = 7.75$

bekannt, aber variiert werden:

- *R/C*
- \bullet v_{TAS}

unbekannt sind:

- *c*_{D0}
- e
- η

Durch umformen und einsetzen (Unbekannte fett), ergibt sich aus der Ausgangsgleichung:

$$0 = \eta(\frac{P_S}{W^* v_{Tas}}) - c_{D\theta}(\frac{\rho^* S^* v^2_{TAS}}{2^* W}) - \frac{1}{e}(\frac{2^* W}{\pi^* A^* S^* \rho^* v_{TAS}^2}) - \frac{R/C}{v_{TAS}}$$
(5.26)

daraus folgt:

$$0 = \eta \left(\frac{P_S}{103005 * v_{Tas}}\right) - c_{D\theta} \left(\frac{1,225 * 110,5 * v_{TAS}^2}{2 * 103005}\right) - \frac{1}{e} \left(\frac{2 * 103005}{3,14 * 7,75 * 110,5 * 1,225 * v_{TAS}^2}\right) - \frac{R/C}{v_{TAS}}$$
(5.26.1)

Mit den Wertepaaren von v_{TAS} und R/C, entnommen aus den bereits an die Flugversuchsdaten angepassten Kurven der Steigraten, sowie den Wellenleistungen (entsprechend Steigflug mit 2 oder 3 Motoren), werden die Gleichungen mehrmals gleichzeitig in *Microsoft Excel* eingegeben.

Im Anschluss können mit Hilfe des *MS Excel Solvers* die drei Unbekannten bestimmt werden (s. Bild 5.7).

Basisglei	ahuna:			1						
Basisglei	ahuna:		D	- *1	,225*1105	* v ²	2.*	102005	D	1.0
	chung.					$$) $-\frac{1}{e}$	$\frac{2^{\pi}}{\pi * 7,75*1}$	103005	$\frac{1}{ v ^2}$) – $(\frac{R}{ v ^2}$	$\frac{\sqrt{C}}{v}$)
		0 = eta(a	$)-c_{D0}(b)$	$-\frac{1}{e}(c)-($	<i>d</i>)					
Unbekannte			Variablen							
e ta	0,558913		R/C 1	1,2694	R/C 2	2,6406		1,2694	R/C 4	2,6406
cdo	0,03487		Ps 1	882000	Ps 2	1084860	Ps 3	882000	Ps 4	1084860
е	0,78		v 1		v 2		v 3		v 4	38
Lösung = ve	ränderba	re Zellen								
G leichung:	1	П	Ш	IV						
Parameter					-					
а	0,225334	0,277161	0,225334	0,277161						
b -	-0,948806	-0,948806	-0,948806	-0,948806						
С	-0,04331	-0,04331	-0,04331	-0,04331						
d	0,033405	0,069489	0,033405	0,069489						
Fehler der ei		•								
Gleichung:										
	0,003926	-0,003192	0,003926	-0,003192						
die Fehlerqu										
Gleichung:										
	1,54E-05	1,02E-05	1,54E-05	1,02E-05	5,12E-05					
			Zielzelle	(g eforde rt:	Minimum)					

Bild 5.7 Beispiel *Excel*-Tabelle: Ermittlung c_{D0} , e, η

Der *Solver* arbeitet wie folgt:

Ziel ist es die drei Unbekannten so zu wählen, dass am Ende die Gleichung aufgeht. Bei mehrmaliger Eingabe der Gleichung mit jeweils unterschiedlichen Wertepaaren ist dies nur näherungsweise möglich. Der jeweils entstehende Fehler wird ermittelt und quadriert. Die Fehlerquadrate, die sich aus den einzelnen Gleichungen ergeben, werden aufsummiert. Die drei zu bestimmenden Unbekannten werden nun so lange optimiert, bis die Summe der Fehlerquadrate möglichst gering ist (gegen 0 geht).

Beim Anwenden des *Solvers* sind die errechneten Werte für $c_{D\theta}$ und e zum Teil drastisch auseinandergelaufen (z.B.: $c_{D\theta}$ <0 und e>1). Auch die Nutzung der Möglichkeit, Nebenbedingungen (z.B.: $c_{D\theta}$ muss größer 0,01 und e muss kleiner 0,9 sein) im *Solver* zu setzen, brachte nicht den gewünschten Erfolg. Vielmehr stellten sich als Ergebnis die im *Solver* gesetzten Grenzen ein.

Somit war es erforderlich davon auszugehen, dass die aus der Literatur bekannten Werte von $c_{D\theta}$ und e korrekt sind und entsprechend als unveränderlich im *Excel*-Programm gesetzt werden können.

Die Auswertung erfolgt entsprechend mit Hilfe von η_{max} :

Im ersten Schritt werden verschiedene Wirkungsgrade bei unterschiedlichen Geschwindigkeiten und Klappenstellungen durch *Excel* ermittelt (s. Tabelle 5.7).

Tabelle 5.7 Wirkungsgrade aus dem Flugversuch

		0 G	rad		10 Grad				
V in m/s	38	40	44	50	38	40	44	50	
η	0,543	0,555	0,576	0,602	0,558	0,57	0,59	0,629	

Im zweiten Schritt werden aus den so ermittelten Wirkungsgraden des Flugversuchs und den Wirkungsgraden aus der Theorie (s. Kap.5.2) mit Hilfe der Gleichung

$$\eta_{\text{max}} = \frac{\eta}{\eta_{\text{Theorie}}} \tag{5.11.2}$$

die jeweiligen maximalen Wirkungsgrade errechnet (s. Tabelle 5.8).

 Tabelle 5.8
 max. Wirkungsgrade aus Flugversuch

		0 G	rad		10 Grad					
η	0,543	0,555	0,576	0,602	0,558	0,57	0,59	0,629		
$\eta_{ extit{Theorie}}$	0,79554	0,81246	0,84198	0,87857	0,79554	0,81246	0,84198	0,87857		
$\eta_{ extit{max}}$	0,682555	0,68311	0,68410	0,68520	0,70141	0,701573	0,700729	0,715936		

Im dritten und letzten Schritt wird aus den errechneten maximalen Wirkungsgraden ein Mittelwert gebildet:

Dieser lautet: $\eta_{max} = 0.69433$

Da sowohl die Zwischenergebnisse, wie auch das Endergebnis plausible Werte für ein Flugzeug von der Bauart einer Ju52/3m darstellen und sämtliche Rechnungen auf den Literaturwerten von c_{D0} und e beruhen, muss man davon ausgehen, dass auch diese Werte als zutreffend eingestuft werden können.

Die ermittelten, bzw. überprüften Parameter lauten:

•
$$c_{D0/0 Grad} = 0.0298$$

•
$$c_{D0/10 Grad} = 0.03487$$

•
$$e = 0.78$$

$$\bullet \ \eta_{max} = 0,69$$

5.5 Berechnung ausgewählter Flugleistungsdaten mit Hilfe der flugmechanischen Theorie

Mit den in Kap. 5.4 überprüften und gewonnenen Parametern c_{D0} , e und η_{max} lassen sich weitere Daten generieren, welche zum Teil im Anschluss (Kap. 5.6) mit den Flugversuchswerten verglichen werden können.

Die generierten Daten sind alle abhängig von der Fluggeschwindigkeit (ν) und beziehen sich auf das maximale Startgewicht von 10500 kg, sowie die Bedingungen auf Meereshöhe.

Es handelt sich hierbei um: (Young2001, Ch. 2 / 4 / 5)

• Wirkungsgrad (η):

$$\eta = \eta_{Theorie} * \eta_{max} = \eta_{Theorie} * 0,69$$
(5.11.3)

• Schübe: 1. max. Schub eines Motors (*T*):

$$T = \frac{\eta * P_{S}}{v} \tag{5.14}$$

mit: $P_S = 441 \text{ kW}$

2. Schub bei max. climb und 3 Motoren ($T_{maxclimb}$):

$$T_{maxclimb} = 3 * 0.82 * T (5.28)$$

3. Schub bei max. continous und 3 Motoren ($T_{maxcont}$):

$$T_{maxcont} = 3 * T \tag{5.29}$$

4. Schub bei max. cont. und 2 Motoren (T_{OEI}):

$$T_{OFI} = 2 * T$$
 (5.30)

• Widerstandsbeiwert (c_D) :

$$c_D = c_{D0} + \frac{c_L^2}{\pi * A * e} \tag{5.16}$$

• Widerstand (D):

$$D = c_D * \frac{\rho}{2} * v^2 * S \tag{5.15}$$

• Auftriebsbeiwert (c_L):

$$c_L = \frac{2*W}{\rho * v^2 * S} \tag{5.17}$$

• Gleitzahl (*E*):

$$E = \frac{L}{D} = \frac{c_L}{c_D} \tag{5.31}$$

Für die verschiedenen Geschwindigkeiten und die beiden Klappenstellungen 0° und 10° ergeben sich daraus folgende zwei Tabelle:

Tabelle 5.9 Flugleistungsdaten nach flugmechanischer Theorie Klappenstellung 0°

	V_{kmh}	V _{m/s}	η	Т	T_{ges}	T _{mcl}	T _{OEI}	C_L	C_D	D	Ε
	120	33,333	0,5158	6824,03	20472,10	16787,12	13648,07	1,370	0,128	9670,24	10,6517
	125	34,722	0,5263	6684,43	20053,29	16443,70	13368,86	1,262	0,113	9278,43	11,1016
	130	36,111	0,5361	6547,01	19641,05	16105,66	13094,04	1,167	0,101	8960,31	11,4957
	140	38,888	0,5541	6283,49	18850,48	15457,40	12566,99	1,006	0,083	8508,47	12,1062
0	150	41,666	0,5698	6030,76	18092,29	14835,68	12061,53	0,876	0,070	8256,28	12,4760
G	160	44,444	0,5836	5790,77	17372,31	14245,30	11581,54	0,770	0,061	8162,95	12,6186
R	170	47,222	0,5957	5563,14	16689,41	13685,32	11126,27	0,682	0,054	8199,33	12,5626
D	180	50,000	0,6062	5346,68	16040,05	13152,84	10693,37	0,608	0,049	8344,14	12,3446
	190	52,777	0,6155	5142,99	15428,97	12651,75	10285,98	0,546	0,045	8581,53	12,0031
	200	55,555	0,6235	4949,34	14848,03	12175,38	9898,69	0,493	0,042	8899,53	11,5742
	220	61,111	0,6368	4595,38	13786,14	11304,64	9190,76	0,407	0,038	9742,61	10,5726
	240	66,666	0,647	4279,91	12839,72	10528,57	8559,81	0,342	0,036	10821,3	9,5187

Tabelle 5.10 Flugleistungsdaten nach flugmechanischer Theorie Klappenstellung 10°

	V_{kmh}	V _{m/s}	η	Т	T _{ges}	T _{mcl}	T _{OEI}	C_L	C_D	D	E
	120	33,3333	0,5158	6.824,034	20472,10	16787,12	13.648,07	1,370	0,134	10051,5	10,2477
	125	34,7222	0,5263	6.684,431	20053,29	16443,70	13.368,86	1,262	0,119	9692,14	10,6277
	130	36,1111	0,5361	6.547,018	19641,05	16105,66	13.094,04	1,167	0,107	9407,77	10,9489
	140	38,8889	0,5541	6.283,494	18850,48	15457,40	12.566,99	1,006	0,088	9027,42	11,4102
10	150	41,6667	0,5698	6.030,763	18092,29	14835,68	12.061,53	0,877	0,075	8852,02	11,6363
G	160	44,4444	0,5836	5.790,771	17372,31	14245,30	11.581,54	0,770	0,066	8840,77	11,6511
R	170	47,2222	0,5957	5.563,137	16689,41	13685,32	11.126,27	0,682	0,059	8964,52	11,4903
D	180	50,0000	0,6062	5.346,684	16040,05	13152,84	10.693,37	0,609	0,054	9202,00	11,1938
	190	52,7777	0,6155	5.142,988	15428,97	12651,75	10.285,98	0,546	0,051	9537,36	10,8002
	200	55,5556	0,6235	4.949,343	14848,03	12175,38	9.898,69	0,493	0,048	9958,62	10,3433
	220	61,1111	0,6368	4.595,380	13786,14	11304,64	9.190,76	0,407	0,044	11024,1	9,3436
	240	66,6667	0,647	4.279,905	12839,72	10528,57	8.559,81	0,342	0,041	12346,4	8,3429

Basierend auf den Daten dieser beiden Tabellen ergibt sich die Möglichkeit, für die Flugmechanik relevante Diagramme zu erstellen:

1. Propellerwirkungsgrad, mit einem maximalen Wirkungsgrad von 0,69, aufgetragen über die Fluggeschwindigkeit:

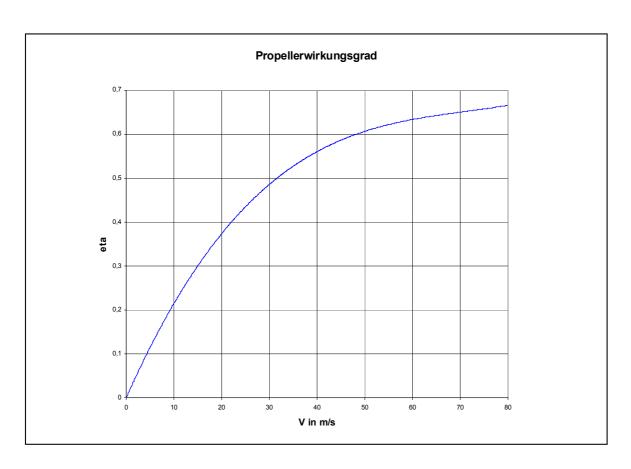


Bild 5.8 Propellerwirkungsgrad Ju52/3M

2. Widerstandspolare

als parabolische Polare (errechnet: s. oben) für die Klappenstellungen 0° ($c_{D\theta}$ = 0,0298) und 10° ($c_{D\theta}$ = 0,03487):

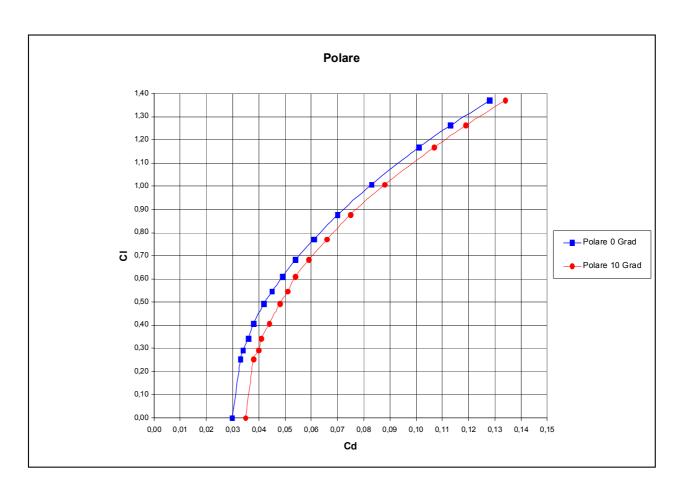


Bild 5.9 Widerstandspolare für Klappenstellung 0° und 10°

3. (T/W)V und (D/L)V über V

Mit Hilfe dieses Diagramms lässt sich eine Aussage über jene Eigengeschwindigkeit des Flugzeuges machen, bei der die max. Steigrate zu erwarten ist.

Die Daten dieses Diagramms beziehen sich auf die Bedingungen auf Meereshöhe sowie die max. Startmasse.

Die max. Steigrate, je nach Motoreinstellung bzw. Klappenstellung, ist immer bei der Eigengeschwindigkeit zu erreichen, bei der die maximale Differenz zwischen den entsprechenden Kurven zu finden ist (Ergebnisse: s. rechte Seite Diagramm):

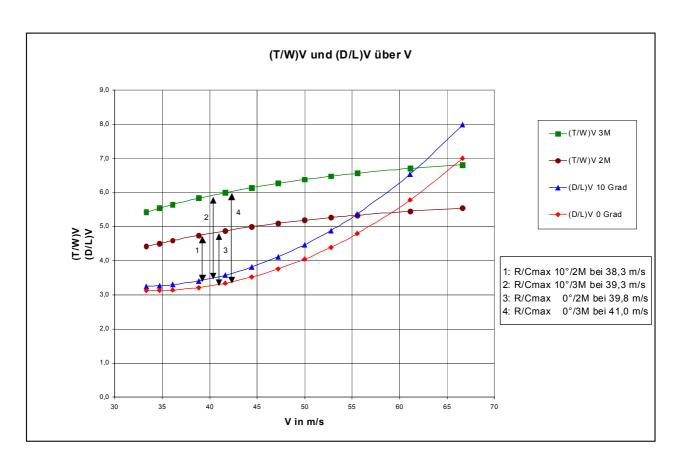


Bild 5.10 (T/W)V und (D/L)V über V

4. Steigraten

Jeweils für die Klappenstellungen 0° und 10°, sowie für die beiden Motoreinstellungen mit 3 und mit 2 Motoren:

Berechnet mit den Werten aus den Tabellen 5.7/5.8 mit folgender Gleichung (**Roskam 1997**, S. 379)

$$R/C = \frac{(T-D)^*v}{W}$$
 (5.32)

mit:

 T_{OEI} bei 2 Motoren T_{mcl} bei 3 Motoren

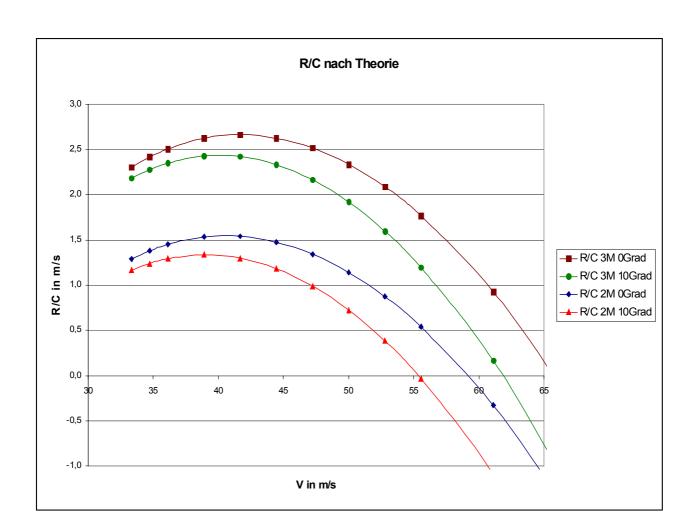


Bild 5.11 Steigraten nach theoretischer Berechnung

Die flugmechanische Theorie und entsprechend sämtliche in diesem Kapitel gewonnenen Ergebnisse legen ein Flugzeug **ohne Doppelflügel** zu Grunde!

5.6 Vergleich der theoretischen Ergebnisse mit den Flugversuchsergebnissen

In diesem Kapitel sollen die aus dem Flugversuch gewonnenen Steigraten mit denen nach den Methoden der Flugmechanik (welche ein Flugzeug ohne Doppelflügel zu Grunde legen) berechneten Steigraten verglichen werden.

Dies geschieht, in dem die jeweils vier ermittelten Kurven (Steigflug mit 2 und 3 Motoren und jeweils mit 0° und 10° Klappenstellung) in ein Diagramm gelegt werden (s. Bild 5.12).

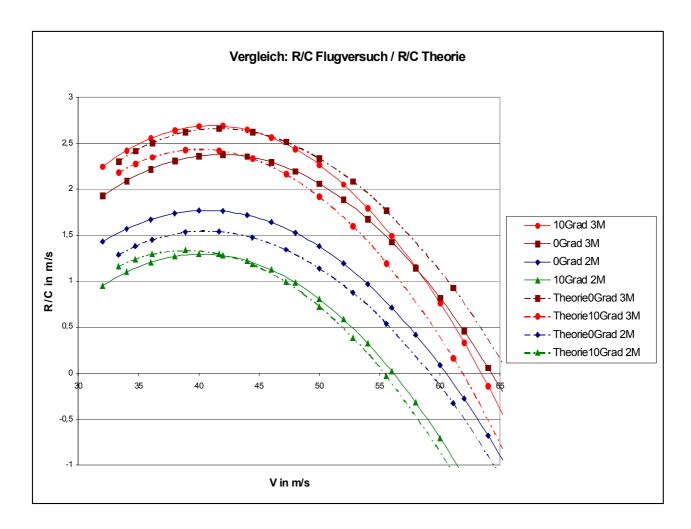


Bild 5.12 Vergleich Steigraten Flugversuch / Theorie

Aus dem Diagramm ist folgendes abzulesen:

• die Steigratenkurve aus dem Flugversuch mit 2 Motoren und der Klappenstellung 0° liegt über ihrem Äquivalent aus der Theorie, während jene mit der Klappenstellung 10° und 2 Motoren nahezu auf gleicher Höhe mit der Theoriekurve liegt.

• bei den Kurven bezogen auf die Steigflüge mit 3 Motoren findet in dem für diese Diplomarbeit relevanten Geschwindigkeitsbereich zwischen 35 und 50 m/s eine Umkehrung der Lage der Steigratenkurven des Flugversuchs gegenüber den Theoriekurven statt. D.h. die Flugversuchskurve für den Steigflug mit der Klappenstellung 10° liegt über der des Steigfluges mit der Klappenstellung 0°, während bei den Theoriekurven ein gegenteiliges Bild abzulesen ist: Kurve zur Klappenstellung 0° über der Kurve zur Klappenstellung 10°.

5.7 Interpretation und Diskussion der Ergebnisse

Die in Kap. 5.5 erhaltenen Ergebnisse führen zu folgender Interpretation:

Bei Steigflügen mit drei Motoren macht sich der Doppelflügel und seine Wirkung auf Widerstand und Auftrieb stark bemerkbar. Im Gegensatz zur auf herkömmlichen Flügeln basierenden Theorie, wird im Flugversuch mit einer Klappenstellung von 10° ein besseres Ergebnis der Steigleistung erzielt als mit einer Klappenstellung von 0°.

Zurückführen kann man dies wahrscheinlich auf eine Erhöhung des Auftriebs aufgrund einer aerodynamischen Wechselwirkung zwischen Haupt- und Hilfsflügel. D.h. es scheinen bei 10° Klappenstellung günstigere strömungsmechanische Zustände vorzuherrschen, als bei 0° Klappenstellung, so dass sich auch der eigentlich durch eine Anstellung einer Klappe vergrößernde Widerstand nicht merklich auswirkt. Vielmehr kommt der verbesserte Auftrieb, in einem deutlich stärkeren Maße zu tragen.

Dieses Ergebnis entspricht den Empfehlungen des Flughandbuchs, welches eine Klappenstellung von 10° bei Motorausfall vorsieht.

Betrachtet man nun allerdings den Vergleich der Kurven der Steigflüge mit zwei Motoren, also bei Motorausfall, ergibt sich ein anderes Bild. Das Ergebnis hier widerspricht dem Flughandbuch. Im Gegensatz zu den Empfehlungen des Flughandbuchs entspricht das Ergebnis des Flugversuchs den Kurven aus der Theorie. So liegt sowohl die Theoriekurve, wie auch die Flugversuchskurve für den Steigflug mit 0° Klappenstellung über der von dem Steigflug mit 10° Klappenstellung. Mit 0° Klappenstellung lässt sich also eine bessere Steigrate erzielen.

Erklären lässt sich dies am ehesten mit einer Veränderung der strömungsmechanischen Zustände durch den Motorausfall. So wird durch den Ausfall des einen Motors der Hilfsflügel auf dieser Seite des Flugzeuges nicht mehr zusätzlich zur normalen Anströmung durch den Propeller angeströmt. Dies könnte zur Folge haben, dass sich die Auftriebswirkung des Hilfsflügels bzw. die Auftriebswirkung durch die Wechselwirkung zwischen Haupt- und Hilfsflügel verringert und sich entsprechend der Widerstand im größerem Maße auswirkt.

Des weiteren kommt der erhöhte Widerstand des Seitenruders zum tragen, da es bei Motorausfall ausgeschlagen werden muss, um einen Geradeausflug zu gewährleisten.

Zusätzlich kann es zu einem leichten Schiebeflug kommen, wodurch sich wiederum der Rumpfwiderstand erhöht.

Sämtliche Einflüsse zusammengenommen werden die Ursache dafür sein, dass das Ausschlagen des Hilfsflügels die Widerstandserhöhungen als negative Folge des Motorausfalls nicht korrigieren kann. Im Gegenteil: der Hilfsflügel verliert mit seiner Anstellung von 10° seine positive Wirkung auf den Auftrieb.

Mit dem Ergebnis, dass entsprechend der Theorie, wie bei herkömmlichen Flügeln auch, eine Konfiguration ohne Klappenanstellung des Hilfsflügels bei Motorausfall gewählt werden sollte. Mit 0° Klappenstellung des Hilfsflügels ist dann sogar eine bessere Steigleistung möglich, als es der Theorie nach mit herkömmlichen Flügeln möglich wäre.

Sollen entsprechende operative Empfehlungen abgegeben werden, so lauten diese:

- Steigflug mit drei Motoren bei *maximum climb power*: für das Erreichen der besten Steigleistung ist eine Klappenstellung von 10° zu wählen.
- Steigflug bei Ausfall eines Motors (OEI) und *maximum continous power*: für das Erreichen der besten Steigleistung ist eine Klappenstellung von 0° (*clean configuration*) zu wählen.

6 Zusammenfassung und Ausblick

Die in dieser Diplomarbeit erzielten Ergebnisse basieren zum einen auf Parametern, welche aus Literaturrecherchen resultieren, und zum anderen aus in einem Flugversuch gewonnen Daten. Nach einer Auswertung mit Hilfe flugmechanischer Berechnungsmethoden ist es gelungen, das gewünschte Endergebnis in Form von operativen Empfehlungen zu erlangen. Dieses kann jedoch nur als ein erster Anhaltspunkt verstanden werden.

Während die Schlussfolgerungen durchaus plausibel erscheinen, muss allerdings erwähnt werden, dass die Flugversuchsergebnisse weiter fundiert werden müssten, um endgültige Gewissheit über die günstigste Klappenstellung für einen Steigflug mit und ohne Motorausfall zu erlangen.

Bedingt durch die zeitlich eingeschränkten Möglichkeiten den Flugversuch durchzuführen, blieb die Anzahl der Messreihen bzw. Messpunkte in einem Rahmen, der eine absolut sichere Ergebnisfindung nicht ermöglichen konnte. Dementsprechend sind weitere Flugversuche anstrebenswert, um z.B. Fehler, basierend auf Thermikeinflüsse oder ähnlichem, möglichst gering zu halten.

Weitere Flugversuche bieten sich gerade auch deshalb an, da auf Grund der fehlerhaften Ergebnisse der Sinkflüge keine Polare ermittelt werden konnte, welche sich rein aus dem Flugversuch ergeben hätte. Denn durch diese Polare wäre es möglich gewesen, konkrete Aussagen über Widerstand und Auftrieb der im Flugversuch genutzten Ju52 der Lufthansa zu erlangen. Sollten die in dieser Arbeit erzielten Ergebnisse somit noch nicht ausreichend sein, so müsste bei weiteren Flugversuchen folgendes beachtet bzw. erreicht werden:

- Beim Versuchsanbau am Flugzeug müssen Leckagen ausgeschlossen werden können.
- Für die Staudruckmessung zur Ermittlung vom Nullschub sollten bereits am Boden Vorversuche stattfinden, mit deren Hilfe man zuvor berechnete Staudruckdifferenzen (bei verschiedenen Propellerdrehzahlen) zwischen "freier Strömung" und Propellerströmung mit dem Messequipment überprüfen kann.
- Um die Auswirkungen von Störgrößen, wie z.B. Thermik, zu minimieren, sollten mehrere Steigflüge bzw. Sinkflüge bei identischer Geschwindigkeit durchgeführt werden.

Neben weiteren Flugversuchen bieten sich noch zwei weitere Untersuchungsmöglichkeiten an. Zum einen könnte man ein 2D oder 3D Modell des Doppelflügels bzw. des Flugzeuges in einem Windkanal bezüglich des Widerstands- und Auftriebsverhaltens überprüfen. Zum anderen ließe sich das ermittelte Profil des Doppelflügels (s. Anhang D) nutzen, um eine CFD (Computer Fluid Dynamics)- Untersuchung durchführen. Auf diese Weise ließen sich wahrscheinlich weitere Erkenntnisse zum Doppelflügel und seinen aerodynamischen Eigenschaften machen.

Die in dieser Arbeit bereits erzielten Ergebnisse ließen sich mit Hilfe der oben angeführten Möglichkeiten verdichten und dadurch in ihrer Aussage absichern.

Literaturverzeichnis

Askue 1992 ASKUE, Vaughan: Flight Testing Homebuilt Aircraft. Ames, Iowa:

Iowa State University Press., 1992

Anderson 1989 Anderson, John D.: Introduction to Flight. 3. Aufl. New York:

McGraw-Hill, Inc., 1989

Billeb 1935 BILLEB, E.: Der Junkers-Doppelflügel. Dessau : Junkers

Flugzeugwerk AG - Mitteilungen, 1935

Dubs 1966 Dubs, Fritz: Aerodynamik der reinen Unterschallströmung. 2. Aufl.

Basel / Stuttgart : Birkhäuser Verlag, 1966

Durand 1935 Durand, William F.; Betz, A.; Wieselsberger, C.; Glauert, H.;

KONING, C.: Aerodynamic Theory, Volume IV. Berlin: Springer

Verlag, 1935

Junkers AG 1936 Junkers Flugzeugwerk AG: Der Junkers-Doppelflügel. Dessau:

Junkers Flugzeugwerk AG - Mitteilungen, 1936

Roskam 1997 Roskam, Dr. Jan.; Lan, Dr. Chuan-Tau Edward.: Airplane

Aerodynamics and Performance. Lawrence, Kansas: DARcorporation,

1997

Scholz 2001 Scholz, Dieter.: *Diplomarbeiten normgerecht verfassen*. Würzburg:

Vogel, 2001

Stinton 1998 Stinton, Darrol.: Flying Qualities and Flight Testing of the Airplane.

Reston, Virginia: AIAA, 1998

Thomas 1996 THOMAS, Dieter; FREYTAG, Jürgen: Flugtechnische Tabellen und

Formeln. Fürstenfeldbruck: Thomas, 1996

Wagner 1996 WAGNER, Wolfgang: Hugo Junkers Pionier der Luftfahrt – seine

Flugzeuge. Bonn: Bernard & Graefe Verlag, 1996

Wuest 1969 Wuest, Walter: Strömungsmeßtechnik. Braunschweig: Vieweg

Verlag, 1969

Young 2001 YOUNG, Trevor: Lecture Notes - Flight Mechanics. Limerick,

University of : Department of Mechanical & Aeronautical

Engineering, 2001

Anhang A

Engineering Order (EO) inkl. Festigkeitsrechnung

Engineering Order/Erprobungsanweisung

Titel: Vorläufige Befestigung von Messsonden zum Zwecke einer

Flugleistungsbeurteilung

Vorgang:

Für die Erstellung einer Procedere im AOM, über das Flugverhalten im Falle eines Gleitfluges (ohne Motorschub) bei bestimmten Hilfsflügelstellungen, sollen im Rahmen einer Diplomarbeit Staudruckmessungen durchgeführt werden.

Die Messungen sollen mit eigenem Messgerät durchgeführt werden, ohne dass Eingriffe und Änderungen an dem Flugzeugsystem und an der Flugzeugstruktur erfolgen müssen.

Die Befestigung der Messausrüstung soll nur an sekundären Anschlüssen der Flugzeugstruktur vorgenommen werden (Mooring-Fitting, Anschlussbeschlag der Querruder- Feststellung, Ausleger der Hilfsflügellager, Handlauf am Rumpf, Fahnenhalterungen)

Die Messsonden, die Befestigungs- Elemente, sowie die Messschläuche gelten als lose Ausrüstung.

Die Messungen werden während der Trainingsflüge durch bestimmte Personen der Flugbesatzung durchgeführt, welche Veranlassung zu dieser Erprobung gegeben haben.

Für die Beurteilung der Unbedenklichkeit ist vor Durchführung der Flüge ein Fit - Check durchzuführen und vom Prüfer und der Besatzung zu bestätigen.

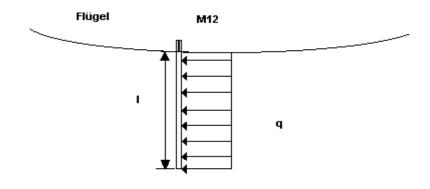
Nach Beendigung der Messung ist der Normalzustand wieder herzustellen.

Veranlassung:

Die Messeinrichtung besteht aus zwei Anlagen.

Eine Anlage misst den Staudruck in der ungestörten Luftströmung mit bestimmtem Anstellwinkel unter Gleitflugbedingungen. Die Messsonde befindet an einem Rohrstück, welches an der rechten Flügelunterseite am Mooring-Fitting befestigt wird. Das Rohrstück ist mit einer Stützstrebe abzusichern, welche an dem Anschlussbeschlag der Querruder- Feststellung befestigt wird. Die Schlauchverbindung wird entlang der Tragflügelhinterkante zum Handlauf am Rumpf geführt und von dort weiter an das rechte seitliche Schiebefenster.

<u>Hinweis:</u> Es ist darauf zu achten, dass die Verlegung des Schlauches entlang der Tragflügelhinterkante auf der Flügeloberseite erfolgen muss, damit die Luftströmung zwischen der Tragflügelunterseite und der Hilfsflügel und der Querruder nicht beeinträchtigt wird.


Die zweite Staudruckmessanlage misst die Strömung im Propellerstrahl von Motor 2. Die Befestigung der Messsonde erfolgt an der Fahnenstangen - Halterung. Die Schlauchführung von dort führt direkt durch das seitliche Schiebefenster der rechten Seite.

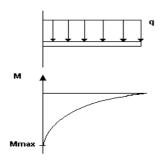
Die Messinstrumente werden gemäß Angaben der Besatzung in der Nähe des rechten Führersitzes positioniert.

Alle Einbaudetails und Skizzen mit Einzelheiten über den Anbau und die Sicherung der Anlage sind vor der Durchführung vom Diplomanten einzureichen und sind hiermit Bestandteil dieser Anweisung.

(Dipl.-Ing. Claasen, DLBS)

Festigkeitsrechnung für Befestigung/Halterung Staurohr freie Strömung

Geg.: 1 = 700 mm


 $D_i = 11 \text{ mm}$ $r_i = 5.5 \text{ mm}$

 $D_a=12 \text{ mm}$ $r_a=6.0 \text{ mm}$

V = 250 km/h rho = 1,225 kg/m³

 $q = rho/2 * v^2 = 1,225 \ / \ 2 * (\ 250 \ / 3,6 \)^2 = 2953,8 \ N/m^2$

mit $c_w = 1 \; : \qquad \qquad q_0 = q * D_a = 2953,8 * 0,012 = 35,45 \; N/m$

 $Mmax = q_0 * l^2 / 2 = 35,45 * 0,7^2 / 2 = 8,684 Nm = 8684,2 Nmm$

 $W = J / z_{max} = pi * (r_a^4 - r_i^4) / 4 * r_a = pi * (6^4 * 5,5^4) / 4*6 = 49,86 \text{ mm}^3$

 $\sigma_{zul\ddot{a}ssig} = Mmax$ / W = 8684,2 Nmm / 49,86 mm 3 = $\underline{174~N~/~mm^2}$

Anhang B

Tabellen

B.1 Auszug aus dem Lufthansa Flughandbuch

Tabelle B.1

IAS zu CAS nach Flughandbuch

flaps

0	0	10)°
IAS	$\Delta { m V}_{ m p}$	IAS	$\Delta { m V}_{ m p}$
170	+ 6	160	+6
165	+6	155	+ 5
160	+6	150	+ 5
155	+ 5	145	+ 4
150	+ 5	140	+ 4
145	+ 4	135	+ 3
140	+ 3	130	+ 3

$$CAS = IAS + \Delta V_p$$

B.2 Temperaturen beim Flugversuch gegenüber ISA

 Tabelle B.2
 Temperaturen beim Flugversuch gegenüber ISA

Tabelle B.2 H in ft	T in K	n Flugversuch ge T _{ISA} in K	H in ft	T in K	T _{ISA} in K
0	279,15	288,15	3100	276,05	281,95
100	279,05	287,95	3200	275,95	281,75
200	278,95	287,75	3300	275,85	281,55
300	278,85	287,55	3400	275,75	281,35
400	278,75	287,35	3500	275,65	281,15
500	278,65	287,15	3600	275,55	280,95
600	278,55	286,95	3700	275,45	280,75
700	278,45	286,75	3800	275,35	280,55
800	278,35	286,55	3900	275,25	280,35
				· ·	
900	278,25	286,35	4000	275,15	280,15
1000	278,15	286,15	4100	275,05	279,95
1100	278,05	285,95	4200	274,95	279,75
1200	277,95	285,75	4300	274,85	279,55
1300	277,85	285,55	4400	274,75	279,35
1400	277,75	285,35	4500	274,65	279,15
1500	277,65	285,15	4600	274,55	278,95
1600	277,55	284,95	4700	274,45	278,75
1700	277,45	284,75	4800	274,35	278,55
1800	277,35	284,55	4900	274,25	278,35
1900	277,25	284,35	5000	274,15	278,15
2000	277,15	284,15	5100	274,05	277,95
2100	277,05	283,95	5200	273,95	277,75
2200	276,95	283,75	5300	273,85	277,55
2300	276,85	283,55	5400	273,75	277,35
2400	276,75	283,35	5500	273,65	277,15
2500	276,65	283,15	5600	273,55	276,95
2600	276,55	282,95	5700	273,45	276,75
2700	276,45	282,75	5800	273,35	276,55
2800	276,35	282,55	5900	273,25	276,35
2900	276,25	282,35	6000	273,15	276,15
3000	276,15	282,15			

B.3 Tabelle zu den Kurvenverläufen mit $\eta = 0.8 / 0$ Grad

Tabelle B.3 Werte zu $\eta = 0.8 / 0$ Grad

V _{km/h}	eta	Т	T _{mcl}	Тові
120	0,598	7.911,5400	19.462,3884	15.823,0800
125	0,6102	7.750,0282	19.065,0693	15.500,0563
130	0,6216	7.591,1705	18.674,2793	15.182,3409
140	0,6424	7.284,8160	17.920,6474	14.569,6320
150	0,6606	6.991,7904	17.199,8044	13.983,5808
160	0,6766	6.713,5635	16.515,3662	13.427,1270
170	0,6906	6.449,3915	15.865,5032	12.898,7831
180	0,7029	6.199,5780	15.250,9619	12.399,1560
190	0,7136	5.962,6914	14.668,2208	11.925,3827
200	0,7229	5.738,3802	14.116,4153	11.476,7604
220	0,7383	5.327,8413	13.106,4895	10.655,6825
240	0,7502	4.962,5730	12.207,9296	9.925,1460

CL	CD	D	R/C 2M	R/C 3M	V _{m/s}
1,3697	0,1286	9.670,2436	1,9911	3,1688	33,3333
1,2623	0,1137	9.278,4318	2,0973	3,2990	34,7222
1,1671	0,1015	8.960,3060	2,1813	3,4055	36,1111
1,0063	0,0831	8.508,4707	2,2884	3,5535	38,8889
0,8766	0,0703	8.256,2797	2,3168	3,6178	41,6667
0,7705	0,0611	8.162,9512	2,2714	3,6039	44,4444
0,6825	0,0543	8.199,3330	2,1544	3,5145	47,2222
0,6088	0,0493	8.344,1386	1,9684	3,3527	50,0000
0,5464	0,0455	8.581,5310	1,7133	3,1187	52,7778
0,4931	0,0426	8.899,5311	1,3900	2,8137	55,5556
0,4075	0,0385	9.742,6077	0,5417	1,9957	61,1111
0,3424	0,0360	10.821,3161	-0,5800	0,8974	66,6667

B.3.1 Tabelle zu den Kurvenverläufen mit $\eta = 0.8 / 10$ Grad

Tabelle B.3.1 Werte zu $\eta = 0.8 / 10$ Grad

V _{km/h}	eta	Т	T _{mcl}	Тові
120	0,598	7.911,5400	23.734,6200	19.462,3884
125	0,6102	7.750,0282	23.250,0845	19.065,0693
130	0,6216	7.591,1705	22.773,5114	18.674,2793
140	0,6424	7.284,8160	21.854,4480	17.920,6474
150	0,6606	6.991,7904	20.975,3712	17.199,8044
160	0,6766	6.713,5635	20.140,6905	16.515,3662
170	0,6906	6.449,3915	19.348,1746	15.865,5032
180	0,7029	6.199,5780	18.598,7340	15.250,9619
190	0,7136	5.962,6914	17.888,0741	14.668,2208
200	0,7229	5.738,3802	17.215,1406	14.116,4153
220	0,783	5.650,4127	16.951,2382	13.900,0153
240	0,7502	4.962,5730	14.887,7190	12.207,9296

CL	C _D	D	R/C 2M	R/C 3M	V _{m/s}
1,3697	0,1337	10.051,5147	1,8677	3,0454	33,3333
1,2623	0,1188	9.692,1373	1,9578	3,1595	34,7222
1,1671	0,1066	9.407,7700	2,0244	3,2486	36,1111
1,0063	0,0882	9.027,4229	2,0924	3,3576	38,8889
0,8766	0,0753	8.852,0157	2,0758	3,3768	41,6667
0,7705	0,0661	8.840,7664	1,9789	3,3114	44,4444
0,6825	0,0594	8.964,5228	1,8036	3,1637	47,2222
0,6088	0,0544	9.201,9984	1,5519	2,9362	50,0000
0,5464	0,0506	9.537,3563	1,2236	2,6290	52,7778
0,4931	0,0477	9.958,6173	0,8188	2,2425	55,5556
0,4075	0,0436	11.024,1021	0,1642	1,7062	61,1111
0,3424	0,0410	12.346,4003	-1,5671	-0,0896	66,6667

B.4 Tabellen zur Korrektur der Steigraten

 Tabelle B.4
 Werte zur Korrektur der Steigraten

Tabelle	B.4	Werte	zur Ko	orrektu	r der S	Steigrate	en						
EAS _{km/h}	sigma 1	sigma 2	delta t	TISA	Т	EAS _{m/s}	TAS1	TAS2	delta H	deltaHisa	delta H _{korr}	R/C	TASmittel
143		0,8591		278,05			42,79	42,86	30,48		30,047	2,3113	42,8237
143		0,8565		277,85			42,86	42,92	30,48		30,058	1,1561	42,8885
143		0,8539		277,65			42,92	42,99	30,48		30,069	1,8793	
143		0,8513		277,45			42,99	43,05	30,48		30,079	1,6711	43,0191
143		0,8487		277,25			43,05	43,12	30,48		30,090	2,0060	
143	0,8487	0,8416	25	277,05	273,60	39,72	43,12	43,30	30,48	30,100	30,102	1,2041	43,2085
155	0,8722	0,8695	19	278,85	274,50	43,06	46,10	46,17	30,48	30,005	30,005	1,5792	46,1379
155	0,8695	0,8669	18	278,65	274,40	43,06	46,17	46,24	30,48	30,015	30,015	1,6675	46,2083
155	0,8669	0,8643	17	278,45	274,30	43,06	46,24	46,31	30,48	30,026	30,026	1,7662	46,2776
155	0,8643	0,8617	15	278,25	274,20	43,06	46,31	46,38	30,48	30,036	30,037	2,0024	46,3469
155	0,8617	0,8591	25	278,05	274,10	43,06	46,38	46,45	30,48	30,047	30,047	1,2019	46,4172
155	0,8591	0,8565	17	277,85	274,00	43,06	46,45	46,52	30,48	30,058	30,058	1,7681	46,4875
155	0,8565	0,8539	18	277,65	273,90	43,06	46,52	46,59	30,48	30,068	30,069	1,6705	46,5582
166	0,8669	0,8643	14	278,45	274,30	46,11	49,52	49,60	30,48	30,026	30,026	2,1447	49,5618
166	0,8643	0,8617	15	278,25	274,20	46,11	49,60	49,67	30,48	30,036	30,037	2,0024	49,6364
166	0,8617	0,8591	43	278,05	274,10	46,11	49,67	49,75	30,48	30,047	30,047	0,6988	49,7114
166	· ·	0,8565	16	277,85	274,00	46,11	49,96	49,82	30,48	30,058	30,059	1,8787	49,8915
166	<i>'</i>	0,8539	34	277,65	273,90	46,11	49,82	49,90	30,48	30,068	30,069	0,8844	49,8623
176	<u> </u>	0,8748		279,35			52,11	52,27	60,96		59,957	1,4276	
176	,	0,8722		279,05			52,27	52,35	30,48	29,994	29,994	1,5786	
176		0,8695		278,85			52,35	52,43	30,48	30,005	30,005	1,5002	52,3889
133		0,8854		280,05			39,20	39,26	30,48	29,941	29,941	1,3610	
133		0,8828		279,85			39,26	39,32	30,48		29,952	1,7619	
133		0,8801		279,65	,	,	39,32	39,38	30,48		29,962	1,7625	39,3505
133		0,8774		279,45			39,38	39,44	30,48		29,973	1,2489	
133	-	0,8748		279,25			39,44	39,50	30,48	29,983	29,984	1,4992	39,4705
133		0,8722		279,05			39,50	39,56	30,48		29,994	1,6663	39,5292
144	0,8722 0,9124	0,8695 0,9097		278,85 281,85			39,56		30,48 30,48		30,005 29,848	1,5792	
144				281,65			41,88	41,94				1,6582	
144		0,9069 0,9042		281,45			41,94 42,00	42,00 42,07	30,48 30,48		29,858 29,868	1,1059 1,0667	41,9707 42,0343
144		0,9042		281,25			42,00	42,13	30,48		29,808	1,2449	
144		0,8988		281,05			42,13	42,19			29,889	1,3586	
144		0,8961		280,85			42,19		30,48		29,900	1,3591	42,2236
	0,8961	0,8934		280,65					30,48			1,8694	
		,		.,	-, -	,	, .	,	-, -	- /	- , - ' -	,	

	siama	sigma	delta						delta				
EAS _{km/h}	1	2	t	TISA	Т	EAS _{m/s}	TAS1	TAS2	Н	deltaHISA	delta H _{korr}	R/C	TASmittel
155	0,9400	0,9344	40	283,75	276,95	43,06	44,41	44,54	60,96	59,499	59,500	1,4875	44,4749
155	0,9344	0,9316	26	283,45	276,80	43,06	44,54	44,61	30,48	29,765	29,765	1,1448	44,5747
155	0,9316	0,9289	25	283,25	276,70	43,06	44,61	44,67	30,48	29,775	29,775	1,1910	44,6406
155	0,9289	0,9261	26	283,05	276,60	43,06	44,67	44,74	30,48	29,785	29,786	1,1456	44,7067
155	0,9261	0,9233	25	282,85	276,50	43,06	44,74	44,81	30,48	29,796	29,796	1,1918	44,7743
155	0,9233	0,9206	11	282,65	276,40	43,06	44,81	44,87	30,48	29,806	29,806	2,7097	44,8411
155	0,9206	0,9179	16	282,45	276,30	43,06	44,87	44,94	30,48	29,816	29,817	1,8635	44,9069
166	0,9625	0,9597	28	285,45	277,80	46,11	47,00	47,07	30,48	29,663	29,663	1,0594	47,0351
166	0,9597	0,9568	37	285,25	277,70	46,11	47,07	47,14	30,48	29,673	29,674	0,8020	47,1049
166	0,9568	0,9512	42	284,95	277,55	46,11	47,14	47,28	60,96	59,377	59,378	1,4138	47,2099
166	0,9512	0,9484	20	284,65	277,40	46,11	47,28	47,35	30,48	29,704	29,704	1,4852	47,3140
166	0,9484	0,9456	22	284,45	277,30	46,11	47,35	47,42	30,48	29,714	29,714	1,3506	47,3839
155	0,8828	0,8801	13	279,65	274,90	43,06	45,82	45,89	30,48	29,962	29,963	2,3048	45,8597
155	0,8801	0,8774	13	279,45	274,80	43,06	45,89	45,97	30,48	29,973	29,973	2,3056	45,9300
155	0,8774	0,8748	11	279,25	274,70	43,06	45,97	46,03	30,48	29,983	29,984	2,7258	45,9995
155	0,8748	0,8722	13	279,05	274,60	43,06	46,03	46,10	30,48	29,994	29,994	2,3072	46,0679
155	0,8722	0,8695	12	278,85	274,50	43,06	46,10	46,17	30,48	30,005	30,005	2,5004	46,1379
155	0,8695	0,8669	11	278,65	274,40	43,06	46,17	46,24	30,48	30,015	30,015	2,7287	46,2083
155	0,8669	0,8643	9	278,45	274,30	43,06	46,24	46,31	30,48	30,026	30,026	3,3362	46,2776
155	0,8643	0,8617	8	278,25	274,20	43,06	46,31	46,38	30,48	30,036	30,037	3,7546	46,3473
166	0,8988	0,8961	8	280,85	275,50	46,11	48,64	48,71	30,48	29,899	29,900	3,7375	48,6744
166	0,8961	0,8934	7	280,65	275,40	46,11	48,71	48,78	30,48	29,910	29,910	4,2729	48,7478
166	0,8934	0,8908	19	280,45	275,30	46,11	48,78	48,86	30,48	29,920	29,921	1,5748	48,8202
166	0,8908	0,8881	11	280,25	275,20	46,11	48,86	48,93	30,48	29,931	29,931	2,7210	48,8928
176	0,9206	0,9179	14	282,45	276,30	48,89	50,95	51,03	30,48	29,816	29,817	2,1298	50,9910
176	0,9179	0,9151	8	282,25	276,20	48,89	51,03	51,11	30,48	29,827	29,827	3,7284	51,0675
176	0,9151	0,9124	11	282,05	276,10	48,89	51,11	51,18	30,48	29,837	29,837	2,7125	51,1443
176	0,9124	0,9097	14	281,85	276,00	48,89	51,18	51,26	30,48	29,847	29,848	2,1320	51,2200
176	0,9097	0,9069	13	281,65	275,90	48,89	51,26	51,34	30,48	29,858	29,858	2,2968	51,2975
176	0,9069	0,9042	17	281,45	275,80	48,89	51,34	51,41	30,48	29,868	29,868	1,7570	51,3753

	sigma	sigma	delta						delta				
EAS _{km/h}	1	2	t	TISA	Т	EAS _{m/s}	TAS1	TAS2	Н	deltaH _{ISA}	delta H _{korr}	R/C	TASmittel
144	0,9344	0,9316	5	283,45	276,80	40,00	41,38	41,44	30,48	29,765	29,765	5,9530	41,4114
144	0,9316	0,9289	6	283,25	276,70	40,00	41,44	41,50	30,48	29,775	29,775	4,9626	41,4725
144	0,9289	0,9261	9	283,05	276,60	40,00	41,50	41,57	30,48	29,785	29,786	3,3095	41,5340
144	0,9261	0,9233	5	282,85	276,50	40,00	41,57	41,63	30,48	29,796	29,796	5,9592	41,5968
144	0,9233	0,9206	10	282,65	276,40	40,00	41,63	41,69	30,48	29,806	29,806	2,9806	41,6588
144	0,9206	0,9179	9	282,45	276,30	40,00	41,69	41,75	30,48	29,816	29,817	3,3129	41,7199
144	0,9179	0,9151	10	282,25	276,20	40,00	41,75	41,81	30,48	29,827	29,827	2,9827	41,7825
155	0,9625	0,9597	9	285,45	277,80	43,06	43,89	43,95	30,48	29,663	29,663	3,2959	43,9183
155	0,9597	0,9568	13	285,25	277,70	43,06	43,95	44,02	30,48	29,673	29,673	2,2826	43,9835
155	0,9568	0,9540	13	285,05	277,60	43,06	44,02	44,08	30,48	29,683	29,684	2,2834	44,0491
155	0,9540	0,9512	9	284,85	277,50	43,06	44,08	44,15	30,48	29,694	29,694	3,2993	44,1138
155	0,9512	0,9484	11	284,65	277,40	43,06	44,15	44,21	30,48	29,704	29,704	2,7004	44,1788
155	0,9484	0,9456	9	284,45	277,30	43,06	44,21	44,28	30,48	29,714	29,714	3,3016	44,2440
155	0,9456	0,9428	7	284,25	277,20	43,06	44,28	44,34	30,48	29,724	29,724	4,2463	44,3096
166	0,9913	0,9883	9	287,45	278,80	46,11	46,31	46,38	30,48	29,563	29,563	3,2848	46,3481
166	0,9883	0,9855	11	287,25	278,70	46,11	46,38	46,45	30,48	29,573	29,573	2,6885	46,4162
166	0,9855	0,9826	9	287,05	278,60	46,11	46,45	46,52	30,48	29,583	29,583	3,2870	46,4833
166	0,9826	0,9797	10	286,85	278,50	46,11	46,52	46,59	30,48	29,593	29,593	2,9593	46,5520
166	0,9797	0,9768	10	286,65	278,40	46,11	46,59	46,66	30,48	29,603	29,603	2,9603	46,6209
166	0,9768	0,9739	11	286,45	278,30	46,11	46,66	46,72	30,48	29,613	29,613	2,6921	46,6902
166	0,9739	0,9711	12	286,25	278,20	46,11	46,72	46,79	30,48	29,623	29,623	2,4686	46,7586

B.5 Protokollblatt

Tabelle B.5 Beispiel Protokollblatt Flugversuch

Messpunkt	kt	Geschwindigkeit	Uhrzeit	Zeit	Druckhöhe	Außentemperatur
MP	IP	$ m V_{IAS}$	UTC	t	Нр	le B.
2	1	140 km/h				2010
ALA	2	140 km/h				
다다	3	150 km/h				llblatt Flug
Z w F	4	150 km/h				
田口	2	160 km/h				
o z u	9	160 km/h				
0	7	170 km/h				
)	∞	170 km/h				

Anhang C

Diagramme

Diagramme zur Ermittlung der "Ausreißer"

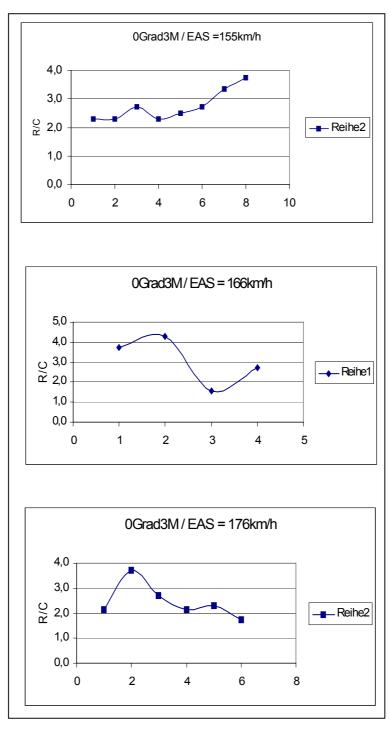


Bild C.1 "Ausreißer" –Ermittlung 0 Grad / 3M

95

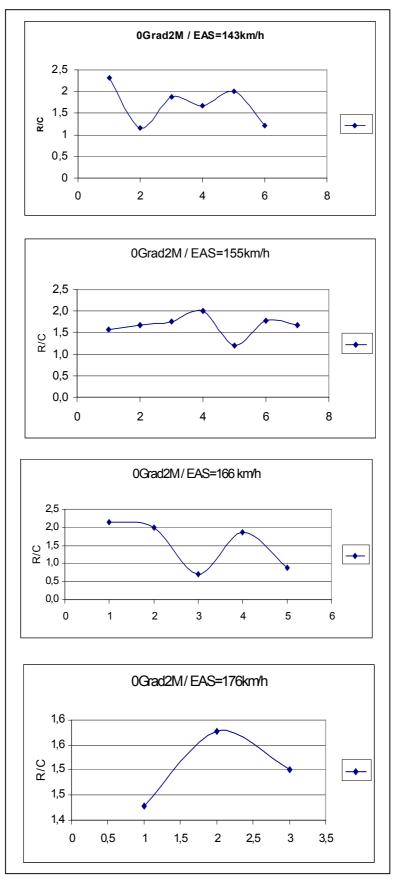


Bild C.2 "Ausreißer" –Ermittlung 0 Grad / 2M

96

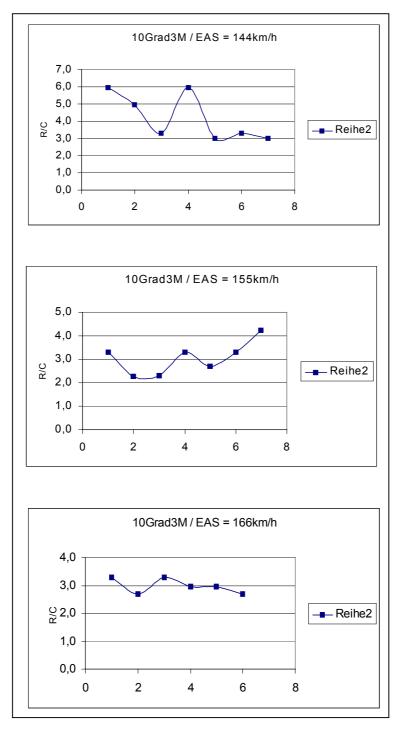


Bild C.3 "Ausreißer" -Ermittlung 10 Grad / 3M

97

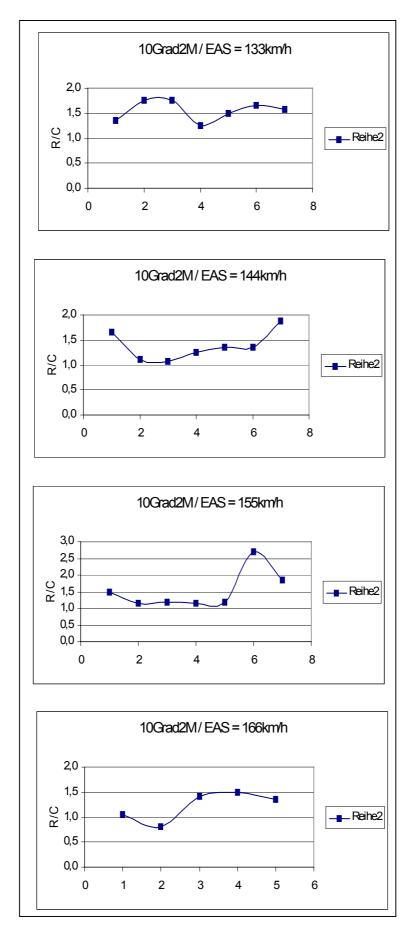


Bild C.4 "Ausreißer" 10 Grad / 2M

Anhang D

Zeichnungen

D.1 Anbau-Zeichnung der Zusatzstaurohre

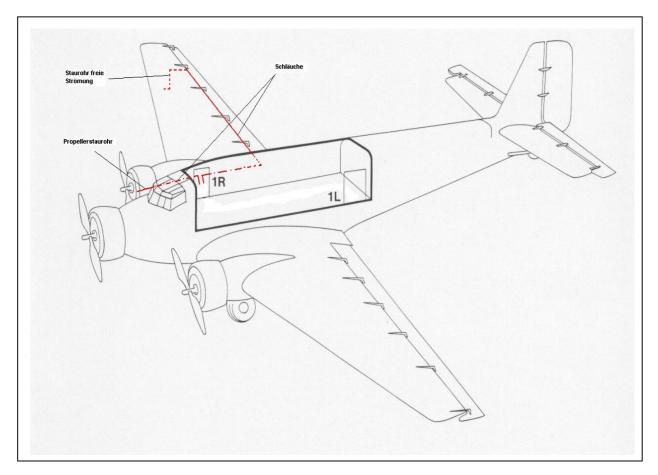


Bild D.1 Anbau-Zeichnung Staurohre

D.2 CATIA-Zeichnung Propellerstaurohr

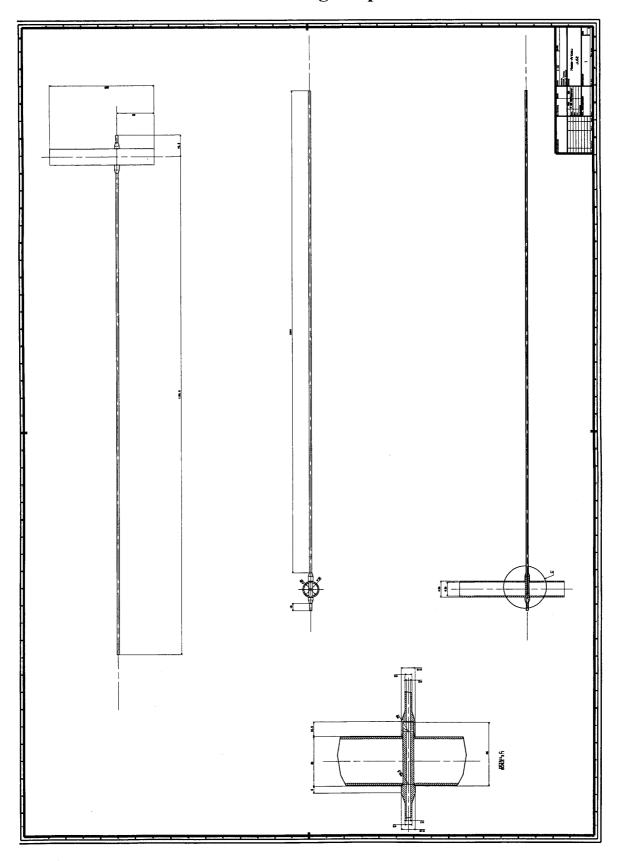


Bild D.2 Propellerstaurohr

D.3 CATIA-Zeichnung Propellerstaurohr Anbau

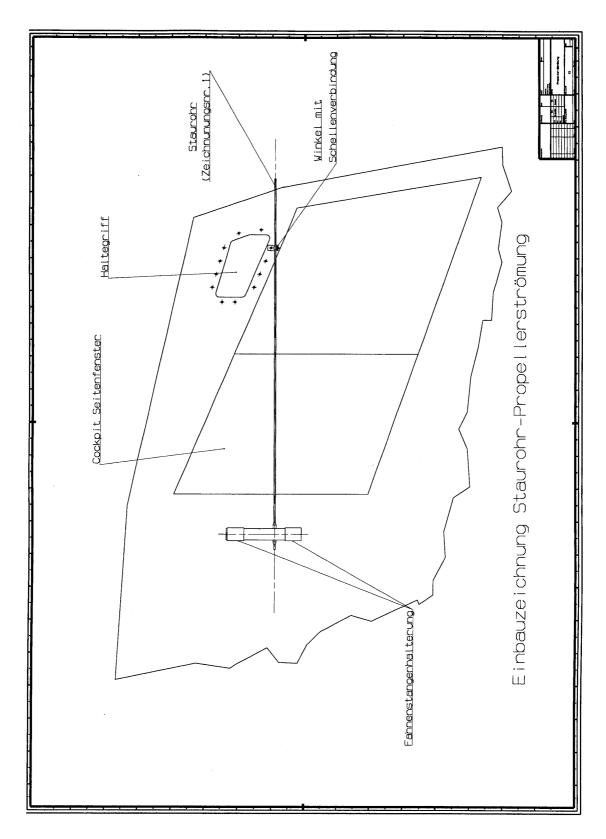


Bild D.3 Propellerstaurohr Anbau

D.4 CATIA-Zeichnung Staurohr freie Strömung

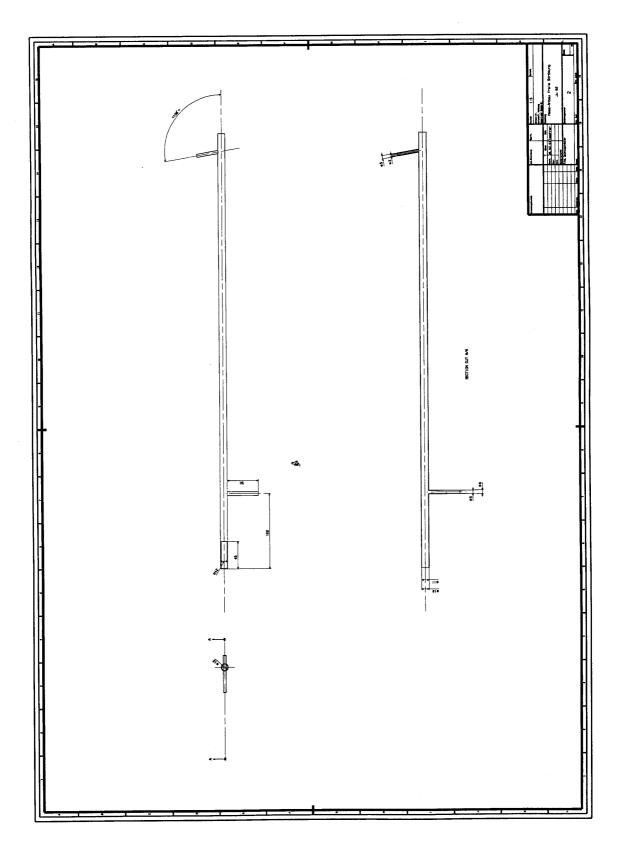


Bild D.4 Staurohr freie Strömung

D.5 CATIA-Zeichnung Staurohr freie Strömung Anbau

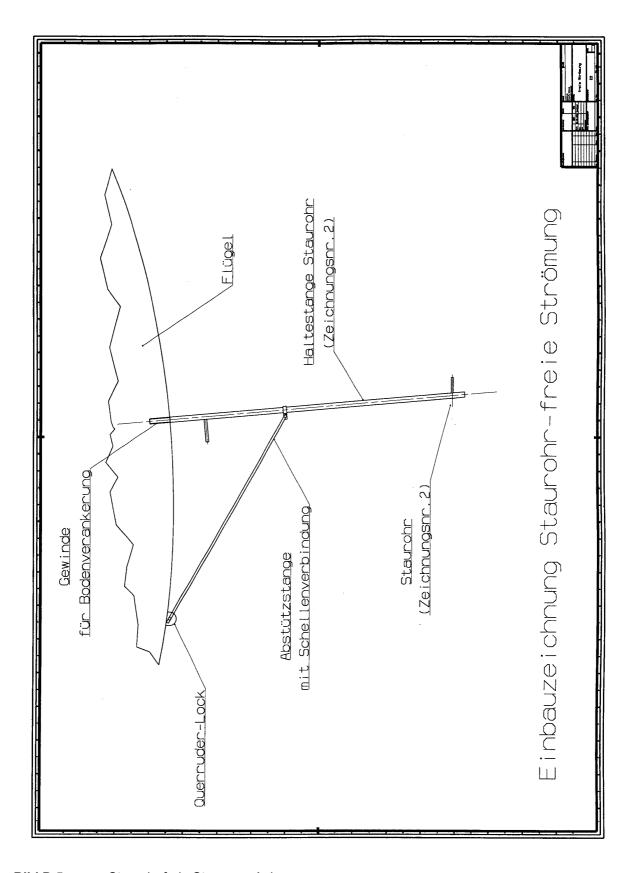


Bild D.5 Staurohr freie Strömung Anbau

D.6 CATIA-Zeichnung Profil Ju52

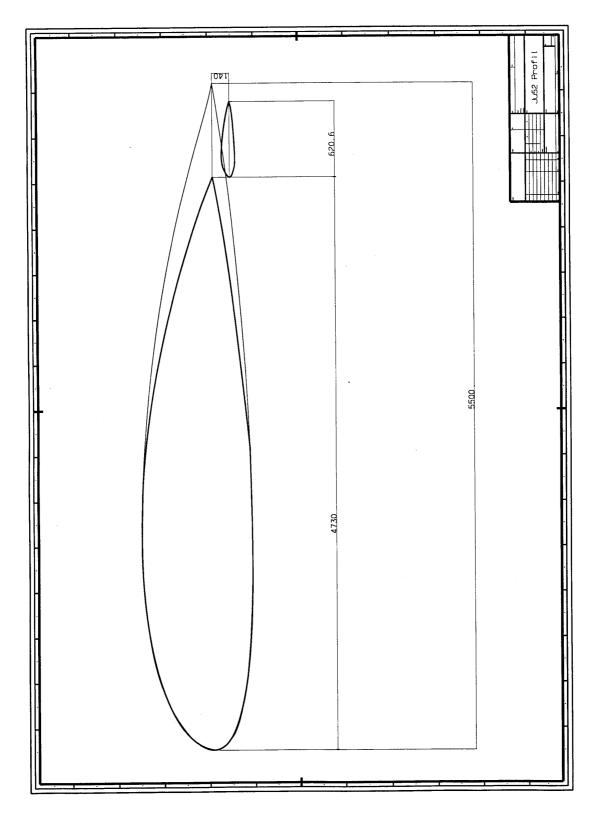


Bild D.6 Profil Ju52

Anhang E

Bilder

Bild E.1 Profilvermessung mit Sehne

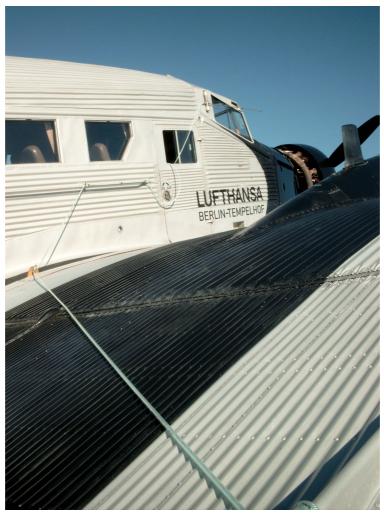


Bild E.2 Schlauchverlegung

Bild E.3 Doppelflügel mit Querruder und Landeklappe

Bild E.4 Doppelflügel mit Staurohr freie Strömung

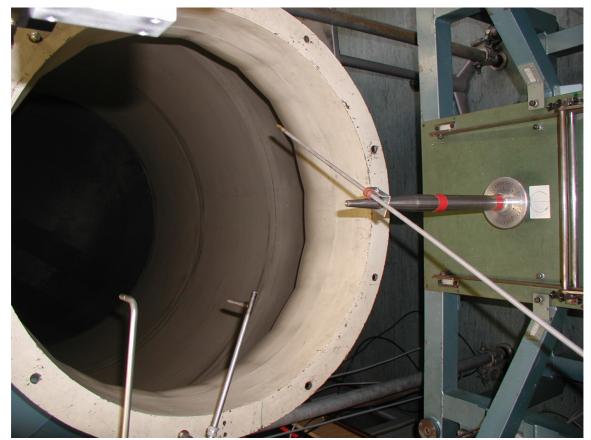


Bild E.5 Windkanalaufbau mit Skala

Bild E.6 U-Rohr