fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau

> Berliner Tor 5 D - 20099 Hamburg

Theoretische Arbeit
- Flugzeugbau -

Anpassung von Statistik-Gleichungen des Flugzeugentwurfs an neue Flugzeugtypen

- Flächenbelastung, maximale Start- und Landemasse, Rumpfgeometrie -

Verfasser: André Sommer

Abgabedatum: 11.11.99

Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME

Fahrzeugtechnik

Kurzreferat

Die Nutzung von Statistikgleichungen im Flugzeugentwurf ist von tragender Bedeutung, die immer dann greift, wenn keine Möglichkeit besteht analytische Gleichungen anzuwenden.

Flugzeugentwurf bedeutet: Optimierung von Entwurfzielen als iterativer Prozeß unter Beachtung der Anforderungen und Randbedingungen.

Durch Neuentwicklungen kommt es zu Parameteränderungen und somit auch zur Anpassung bisher existierender Dimensionierungsvorgaben. An dieser Stelle wird exemplarisch die Flächenbelastung, maximale Start- und Landemasse und Rumpfgeometrie betrachtet.

Die Vorgehensweise (Flugzeugparameter zu vergleichen und bei Bedarf anzupassen) wird mit Hilfe der linearen Regression durchgeführt.

Es werden Flugzeugtypen von Boeing (B757, B767, B747, B777, B737) und Airbus (A300-600R bis A340-300) ab dem Baujahr 1981 verwendet. Die Flugzeugparameter sind entweder aus den Standardwerken entnommen oder wurden vom Hersteller geliefert.

Als Ergebnis ist festzuhalten, daß die bisherigen, verwendeten Angaben in der Literatur zutreffend sind, also bestätigt werden und keine wesentlichen Änderungen aufzuzeigen sind.

fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK

Studiengang Flugzeugbau

Anpassung von Statistik-Gleichungen des Flugzeugentwurfs an neue Flugzeugtypen

- Flächenbelastung, maximale Start- und Landemasse, Rumpfgeometrie –

Theoretische Arbeit nach § 11 (3) Ziffer 6 der Prüfungsordnung

Hintergrund

Der Flugzeugentwurf "lebt" von den Erfahrungen, die beim Entwurf von Flugzeugen weltweit gesammelt wurden. Grund: 1.) Die Zusammenhänge lassen sich (bei vertretbarem Aufwand) oft nicht "exakt" beschreiben. 2.) Das Vorgehen im Flugzeugentwurf ist durch "Synthese" statt durch "Analyse" geprägt. Statistik-Gleichungen werden im Flugzeugentwurf daher immer dann angewandt, wenn analytische Gleichungen nicht zur Verfügung stehen.

Aufgabe

Aus der Literatur bekannte statistische Zusammenhänge des Flugzeugentwurfs sollen überprüft und gegebenenfalls unter Einbeziehung von Entwurfsdaten neuer Flugzeuge auf den heutigen Stand gebracht werden.

Es sollen für folgende Parameter statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs gefunden werden:

- Flächenbelastung (m_{MTO}/S_W) ,
- \bullet Verhältnis aus maximaler Landemasse und maximaler Startmasse $\left(m_{\rm ML}/m_{\rm MTO}\right)$,
- charakteristische geometrische Parameter des Bug- und Heckbereichs von im Mittelteil zylindrisch geformten Rümpfen.

Bei der Auswertung der statistischen Zusammenhänge sollen die mathematischen Methoden der Statistik herangezogen werden.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN-Normen zu beachten.

Inhalt

		Seite
Verzeio	chnis der Bilder	6
Verzeio	chnis der Tabellen	7
Liste de	er Symbole, der Abkürzungen und Indizes	8
1	Einleitung	9
2	Flächenbelastung	10
2.1	Bisherige statistische Zusammenhänge	10
2.2	Ermittlung der neuen statistischen Zusammenhänge	
2.3	Vergleich der bisherigen und neuen Zusammenhänge	14
2.4	Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs	17
3	Verhältnis aus maximaler Landemasse und maximaler Startmasse	21
3.1	Bisherige statistische Zusammenhänge	21
3.2	Ermittlung der neuen statistischen Zusammenhänge	23
3.3	Vergleich der bisherigen und neuen Zusammenhänge	26
3.4	Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs	27
4	Geometrische Parameter des Bug- und Heckbereichs	38
4.1	Bisherige statistische Zusammenhänge	38
4.2	Ermittlung der neuen statistischen Zusammenhänge	39
4.3	Vergleich der bisherigen und neuen Zusammenhänge	40
4.4	Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs	41
5	Zusammenfassung	45
Literat	turverzeichnis	46
Anhan	g A Flugzeugkenndaten	47

Verzeichnis der Bilder

Bild 2.1	Flächenbelastung als Funktion der Startmasse	11
Bild 2.2	Flächenbelastung über Betriebsleermasse	17
Bild 2.3	Flächenbelastung über Auftriebsbeiwert	18
Bild 2.4	Flächenbelastung über Pfeilung.	19
Bild 2.5	Flächenbelastung über Reichweite	20
Bild 3.1	Quantitative Abhängigkeit des Massenverhältnisses von der Reichweite	21
Bild 3.2	Massenverhältnis über Reichweite	25
Bild 3.3	Massenverhältnis über Betriebsleermasse	29
Bild 3.4	Massenverhältnis über Startschub	32
Bild 3.5	Massenverhältnis über Pfeilung	34
Bild 3.6	Massenverhältnis über Flügelfläche	37
Bild 4.1	Maße von Bug- und Hecksektion	38
Bild 4.2	Rumpfbug über Betriebsleermasse	41
Bild 4.3	Rumpfdurchmesser über Betriebsleermasse	
Bild 4.4	Rumpfheck über Betriebsleermasse	43
Bild 4.5	Kabine im Heck über Betriebsleermasse	44

Verzeichnis der Tabellen

Tabelle 2.1	Flächenbelastung	12
Tabelle 2.2	Original Flächenbelastung	12
Tabelle 2.3	Mittelwert der Flächenbelastung	13
Tabelle 2.4	Faktor kl nach Berechnungsmethode Scholz 98.	13
Tabelle 2.5	Verhältnis m _{ML} /S _W nach Berechnungsmethode Scholz 98	14
Tabelle 2.6	Relative Abweichung bezogen auf m _{ML} /S _W	14
Tabelle 2.7	Relative Abweichung bezogen auf m _{ML} /S _W	15
Tabelle 2.8	Mittelwertvergleich der Flächenbelastung	16
Tabelle 2.9	Wertevergleich der Flächenbelastung	16
Tabelle 3.1	Statistische Mittelwerte für Transportflugzeuge nach Loftin 80	21
Tabelle 3.2	Statistische Mittelwerte für Transportflugzeuge nach Roskam I	22
Tabelle 3.3	Reichweitenklassifizierung der Strecken	22
Tabelle 3.4	Reichweite und Massenverhältnis ausgewählter Flugzeuge	23
Tabelle 3.5	Vergleich des Massenverhältnisses	26
Tabelle 3.6	Vergleich statistischer Mittelwerte für Transportflugzeuge	26
Tabelle 3.7	Vergleich zwischen Loftin 80 und Schmitt 98	26
Tabelle 3.8	Betriebsleermasse und Massenverhältnis ausgewählter Flugzeuge	27
Tabelle 3.9	Startschub Brassey's und Massenverhältnis ausgewählter Flugzeuge	30
Tabelle 3.10	Pfeilung und Massenverhältnis ausgewählter Flugzeuge	32
Tabelle 3.11	Flügelfläche und Massenverhältnis ausgewählter Flugzeuge	35
Tabelle 4.1	Maße von Flugzeugsektionen	38
Tabelle 4.2	Rumpfheck	39
Tabelle 4.3	Maße von der Bug- und Hecksektion nach original Flugzeugtypen	39
Tabelle 4.4	Verhältniswerte der Sektionen	40
Tabelle 4.5	Mittelwerte der Rumpfsektion	40
Tabelle 4.6	Mittelwertvergleich der Schlankheitsgrade	40
Tabelle 4.7	Vergleich des Verhältnisses Länge Heck/Rumpfdurchmesser	41
Tabelle A.1	Parameter der Flugzeugtvoen von Airbus und Boeing	47

Liste der Symbole und der Abkürzungen

A AuftriebsbeiwertB Betriebsleermasse

C Startschub D,P Pfeilung E Flügelfläche F Flächenbelas

FFlächenbelastungMMassenverhältnis

R Reichweite

r,k Korrelationskoeffizient

Mm Megameter

NM Seemeile (nautical mile) 1NM = 1.852km

Σ Summe

LB Länge RumpfbugLH Länge RumpfheckLK Länge Kabine im Heck

DE Effektiver Rumpfdurchmesser kl Faktor, statistisch ermittelt

Indizes

MTO Maximale StartmasseOE BetriebsleermasseML Maximale Landemasse

W Flügelfläche

L,max L Auftriebsbeiwert bei maximaler Landeklappenstellung

LFL Sicherheitslandestrecke

Bug Länge RumpfbugHeck Länge RumpfheckKabE Länge Kabine im Heck

Eff Effektiver Rumpfdurchmesser

F Länge Rumpfheck

f Effektiver RumpfdurchmesserMax A/C Länge des Gesamtflugzeuges

Cock Länge Cockpit

1 Einleitung

In dieser Arbeit wird auf die in der Entwicklung vorkommenden, statistischen Anwendungen eingegangen, wie zum Beispiel Regressionsanalyse und Korrelationsanalyse. Schwerpunkt ist dabei das zugehörige Thema im Flugzeugentwurf, das der Aufgabenstellung zu entnehmen ist. Weitere Gesichtspunkte, die beim Entwurf ebenso wichtig erscheinen, wie anfallende Kosten, Service, Wartung, Technologie und Attraktivität eines neuen Flugzeugtyps - die Interessen der Kunden - werden hier nicht behandelt.

Bekanntlich können Unternehmen, die sich auf den Flugzeugentwurf spezialisiert haben, nur bestehen, wenn die Wahl der Werkzeuge für den Entwurf entsprechend angewendet wird. In diesem Fall: Analytische Gleichung (Berechnung) oder Statistikgleichungen. Die subjektive Einschätzung des Entwicklungsprozesses, kann die Berechnung nicht liefern. Dadurch wird die Vorhersage im Stadium der Projektphase nicht erfüllt. Dies ist aber entscheidend, um einen zeitlichen Vorsprung in der Weiterentwicklung vor der Konkurrenz zu erlangen.

Abhilfe an dieser Stelle schafft die Korrelationsanalyse. Diese Vorgehensweise mit Statistiken und den Erfahrungen aus der Vergangenheit erlaubt ein Urteil, mit dem es gelingt in die Definitionsphase überzugehen. Bei allen Überlegungen steht die Wirtschaftlichkeit der zivilen Flugzeuge im Vordergrund, die durch Parameter wie zum Beispiel Leistungen, Massen, Eigenschaften bestimmt werden. Deshalb wird bei der Dimensionierung auf Zusammenwirken aller Einflüsse geachtet, die sich aus den hier nicht speziell erwähnten Anforderungen ergeben. Folglich werden Abhängigkeiten zu den vorhandenen Flugzeugen festgestellt, neue Ideen gesucht und diese in den Regressionsanalysen eingearbeitet. Es ist verständlich, daß bei diesen Abhängigkeitsparameter wechseln Untersuchungen die immer müssen neue Belastungsarten, Werkstoffwahl, Bauweisen und Fertigungen zuzulassen - das verharren auf der Stelle wird damit ausgeschlossen.

Die vorliegende Arbeit ist wie folgt aufgebaut:

Zunächst werden die bekannten statistischen Zusammenhänge dargestellt. Im Anschluß daran werden die neuen erläutert. Somit ist ein unmittelbarer Vergleich möglich, bei dem eventuelle Abhängigkeiten aufgezeigt werden. Die untersuchten Flugzeugtypen sind in den drei bearbeiteten Kapiteln in Tabellenform zu finden. Auffallend ist, daß alle hier verwendeten Flugzeuge, aus dem zivilen Verkehrsflugzeugbau stammend, im hohen Unterschallbereich fliegen und sich daraus der Wegfall der Geschwindigkeitkomponente ergibt.

2 Flächenbelastung

Dieser Parameter ist heute, wie auch in der Vergangenheit, einer der wichtigsten im Flugzeugentwurf. Bei der Betrachtung der Flugleistungen, Dimensionierung und speziell bei Manövern wird auf die Flächenbelastung zurückgegriffen.

2.1 Bisherige statistische Zusammenhänge

Grundlage, nach Skript Scholz 1998:

$$\frac{m_{MTO}}{S_W} = \frac{\frac{m_{ML}}{S_W}}{\frac{m_{ML}}{m_{MTO}}}$$

$$\frac{m_{ML}}{S_W} = kl \cdot \mathbf{S} \cdot c_{L,\max,L} \cdot s_{LFL}$$
; mit: kl = 0.107 $\frac{kg}{m^3}$ und $\sigma = 1$, da sich die Berechnung auf die

Standardatmosphäre bezieht. Auftriebsbeiwert und Sicherheitslandestrecke sind Vorgabegrößen vom Flugzeughersteller.

$$\frac{m_{ML}}{m_{MTO}}$$
 - Werte mit Tabelle 3.1, nach **Loftin 1980**

Es besteht weiterhin die Möglichkeit die Flächenbelastung nach Raymer 1989 anzunehmen:

Flächenbelastung für Strahlverkehrsflugzeuge nach **Raymer 1989**:
$$\frac{m_{MTO}}{S_w} = 586 \frac{kg}{m^2}$$

Des weiteren hat **Torenbeek 1988** die Flächenbelastung als Funktion der Startmasse untersucht, welches aus Bild 2.1 auf Seite 11 zu entnehmen ist.

Die zugehörigen Werte der Flächenbelastung sind in Tabelle 2.1 auf Seite 12 je Flugzeugtyp aufgelistet.

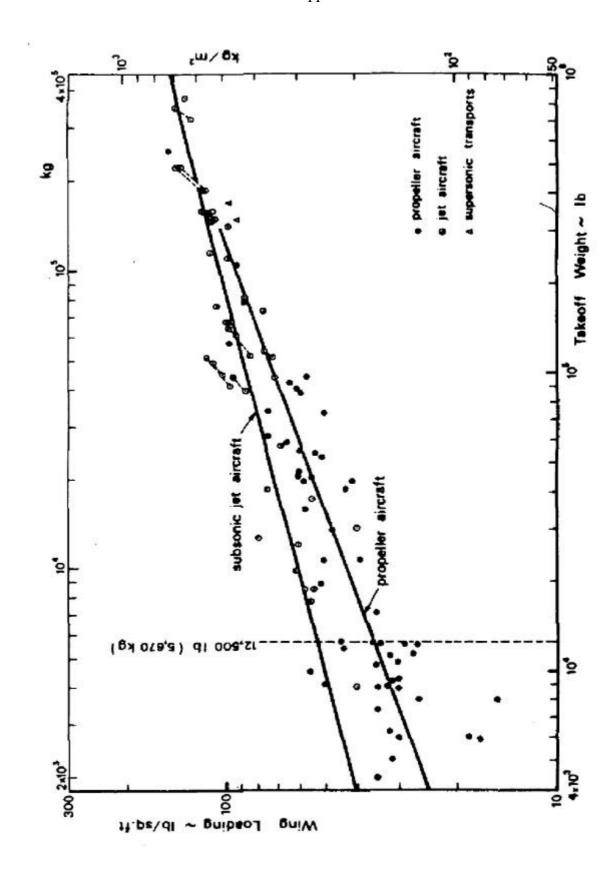


Bild 2.1 Flächenbelastung als Funktion der Startmasse nach [Torenbeek 1988]

Tabelle 2.1 Flächenbelastung¹

l abelle 2.1	Flachenbelastung	
Flugzeugtyp		$\frac{m_{MTO}}{T}$
		S_{W}
		$\frac{kg}{m^2}$
		m^2
B737-700		480
B757-200		550
B767-300		590
B777-300		660
B747-400		710
A300-600R		590
A310-300		580
A318-100		450
A319-200		470
A320-200		480
A321-100		490
A321-200		500
A330-200		620
A330-300		610
A340-200		630
A340-300		650

Werte aus Bild 2.1 entnommen, mit dem Vorgabewert der original Startmasse

2.2 Ermittlung der neuen statistischen Zusammenhänge

Die Auswahl der Transportflugzeuge beschränkt sich in Abschnitt 2.2 auf die 11 ausgewählten moderneren Airbustypen. An dieser Stelle wird darauf hingewiesen, das die Boeingtypen mit aufgelistet werden. Hinweis ist notwendig, da die Boeing-Corporation die fehlenden Parameter wie Sicherheitslandstrecke und Auftriebsbeiwert nicht zur Verfügung gestellt hat, die zur Berechnung von kl mit von Bedeutung sind. Dem entsprechend sind die Modelle der Boeing-Palette nur in Tabelle 2.2 und 2.3 verwendbar.

Tabelle 2.2 Original Flächenbelastung

Flugzeugtyp	S _W m ²	m _{MTO} kg	$rac{m_{MTO}}{S_{_W}}$	
			$\frac{kg}{m^2}$	
B737-700	125,5	70000	558	
B757-200	183,4	115700	631	
B767-300	287,2	186900	651	
B777-300	444,5	299400	674	
B747-400	548,8	397000	723	
A300-600R	260,0	171700	660	
A310-300	219,0	164900	753	
A318-100	122,4	61500	503	
A319-200	122,4	73500	601	
A320-200	122,4	77000	629	
A321-100	126,0	85000	675	
A321-200	126,0	89000	706	
A330-200	361,6	230000	636	
A330-300	361,6	217000	600	
A340-200	361,6	257000	711	
A340-300	361,6	271000	749	

Der folgenden Tabelle sind die Mittelwerte der Flächenbelastung zu entnehmen:

Tabelle 2.3 Mittelwert der Flächenbelastung

Flugzeugkategorie	$\frac{m_{\scriptscriptstyle MTO}}{S_{\scriptscriptstyle W}}$
	$\frac{kg}{m^2}$
Die ausgewählten Flugzeugtypen, Airbus Die Flugzeugtypen, Airbus und Boeing	657 653

Bestimmung des Faktors kl mit den Daten nach Tabelle A1:

$$kl = \frac{m_{\mathit{ML}}}{c_{\mathit{L}, \max, \mathit{L}} \cdot s_{\mathit{LFL}} \cdot S_{\mathit{W}}}$$

 Tabelle 2.4
 Faktor kl nach Berechnungsmethode [Scholz 1998]

Тур	S_W	$C_{L,max,L}$	\mathcal{S}_{LFL}	m_{ML}	kl
A300-600R	260	2,68	1524	140000	0,132
A310-300	219	2,65	1494	124000	0,143
A318-100	122,4	2,49	1326	56000	0,139
A319-200	122,4	2,49	1417	61000	0,141
A320-200	122,4	2,49	1494	64500	0,142
A321-100	126	2,87	1554	74500	0,133
A321-200	126	2,87	1570	75500	0,133
A330-200	361,6	2,47	1722	180000	0,117
A330-300	361,6	2,47	1707	179000	0,117
A340-200	361,6	2,54	1844	182000	0,107
A340-300	361,6	2,54	1920	190000	0,108

Mittelwert kl = 0,118 nur mit Airbus-Werten. Bezogen auf die Airbusflotte kann der neue Mittelwert in dem Kapitel 5 des Skriptes nach **Scholz 1998** verwendet werden. Dies wird im Abschnitt 2.3 verdeutlicht.

Bestimmung von
$$\frac{m_{ML}}{S_w}$$
:

$$\frac{m_{\mathit{ML}}}{S_{\mathit{W}}} = kl \cdot \mathbf{S} \cdot c_{\mathit{L}, \max, \mathit{L}} \cdot s_{\mathit{LFL}}$$

Tabelle 2.5 Verhältnis $\frac{m_{\scriptscriptstyle ML}}{S_{\scriptscriptstyle W}}$ nach Berechnungsgrundlage [Scholz 1998]

	~ W			
Тур	S _{LFL}	C _{L,max,L}	$\frac{m_{ML}}{S_W}$ kl = 0.107 $\frac{kg}{m^3}$, $\frac{kg}{m^2}$	$rac{m_{ML}}{S_W}$ mit A1- Werten, $rac{kg}{m^2}$
A300-600R	1524	2,68	437	538
A310-300	1494	2,65	424	566
A318-100	1326	2,49	353	458
A319-200	1417	2,49	378	498
A320-200	1494	2,49	398	527
A321-100	1554	2,87	477	591
A321-200	1570	2,87	482	599
A330-200	1722	2,47	455	498
A330-300	1707	2,47	451	495
A340-200	1844	2,54	501	503
A340-300	1920	2,54	522	525

Das Verhältnis von maximaler Landemasse und Flügelfläche $\frac{m_{ML}}{S_W}$ wird in Spalte 4 mit dem bisher bekannten kl berechnet, aus dem Skript **Scholz 1998**. Spalte 5 zeigt das Verhältnis $\frac{m_{ML}}{S_W}$ durch die tatsächlich, bekannten Werte.

2.3 Vergleich zwischen den bisherigen und neuen statistischen Zusammenhängen

Tabelle 2.6 Relative Abweichung bezogen auf $\frac{m_{ML}}{S_w}$, mit kl = 0.107 $\frac{kg}{m^3}$:

Тур	$\frac{m_{ML}}{S_W}$, kl = 0.107 $\frac{kg}{m^3}$,	$\frac{m_{\scriptscriptstyle ML}}{S_{\scriptscriptstyle W}}$, direkt ermittelt,	Relative Abweichung %
	$\frac{kg}{m^2}$	$\frac{kg}{m^2}$	
A300-600R	437	538	23.1
A310-300	424	566	33.5
A318-100	353	458	29.7
A319-200	378	498	31.8
A320-200	398	527	32.4
A321-100	477	591	23.9
A321-200	482	599	24.3
A330-200	455	498	9.5
A330-300	451	495	9.8
A340-200	501	503	0.4
A340-300	522	525	0.6

Die Werte der originalen weichen im Bereich A300 bis A321 um die 28% im Mittel von den werten mit kl = $0.107 \frac{kg}{m^3}$ ab. Auffällig sind die Ergebnisse von A340 (beide Versionen) und A330 (beide Versionen). Hier zeigt sich ein minimaler Unterschied. An dieser Stelle ist es möglich zur weiteren Dimensionierung die Werte aus der Ermittlung der Flächenbelastung nach [Scholz 1998] zu verwenden.

Tabelle 2.7 Relative Abweichung bezogen auf $\frac{m_{ML}}{S_w}$, kl = 0.118 $\frac{kg}{m^3}$:

		~ _W	
Тур	$\frac{m_{ML}}{S_W}, \text{kl} = 0.118 \ \frac{kg}{m^3},$	$rac{m_{\scriptscriptstyle ML}}{S_{\scriptscriptstyle W}}$, direkt ermittelt,	Relative Abweichung %
	$\frac{kg}{m^2}$	$\frac{kg}{m^2}$	
A300-600R	482	538	11.6
A310-300	467	566	21.2
A318-100	390	458	17.4
A319-200	416	498	19.7
A320-200	439	527	20.0
A321-100	526	591	12.3
A321-200	532	599	12.6
A330-200	502	498	0.8
A330-300	498	495	0.6
A340-200	553	503	9.0
A340-300	575	525	8.7

Mit dem neuen Mittelwert kl = $0.118~\frac{kg}{m^3}$, wie in Abschnitt 2. 2 ermittelt, ist es die Annäherung an die originalen Werteparameter durchschnittlich bis gut. Die Werte der originalen weichen im Bereich A300 bis A321 um die 16% im Mittel von den Werten mit kl = $0.118~\frac{kg}{m^3}$ ab. Auffällig sind die Ergebnisse von A340 (beide Versionen) und A330 (beide Versionen). Hier zeigt sich ein minimaler Unterschied. Folglich trifft dieser Mittelwert im Vergleich mit dem aus Tabelle 2.6 besser "mit weniger Abweichung, das wirkliche Verhältnis $\frac{m_{ML}}{S_w}$, welches als positiv gewertet werden kann.

 Tabelle 2.8
 Mittelwertvergleich der Flächenbelastung

Verkehrsflugzeuge	Nach Raymer	Originale Werte	Abweichung
	m_{MTO}	m_{MTO}	%
	S_{W}	$S_{\scriptscriptstyle W}$	
	kg	kg	
	$\frac{kg}{m^2}$	$\overline{m^2}$	
Flächenbelastung	586	653	11,4

Aus Tabelle 2.8 ist zu erkennen, daß eine 11%ige relative Abweichung vorliegt. **Raymer 89** setzt also eine niedrigere Flächenbelastung zur Dimensionierung an.

Tabelle 2.9 Wertevergleich der Flächenbelastung

Tabelle 2.9	Wertevergleich	der Flachenbelast	ung	
Flugzeugtyp	Nach 7	Torenbeek	Original Werte	Abweichung
				%
B737-700	480		558	16
B757-200	550		631	14,7
B767-300	590		651	10,3
B777-300	660		674	2,1
B747-400	710		723	1,8
A300-600R	590		660	11,9
A310-300	580		753	29,8
A318-100	450		503	11,8
A319-200	470		601	27,9
A320-200	480		629	31,0
A321-100	490		675	37,8
A321-200	500		706	41,2
A330-200	620		636	2,6
A330-300	610		600	1,6
A340-200	630		711	12,9
A340-300	650		749	15,2

Auffallend beim Wertevergleich der Flächenbelastung nach Tabelle 2.9 ist die teilweise, genaue Übereinstimmung der Werte, wie zu erkennen bei der B777, B747 und A330 beide Versionen. Auf der anderen Seite ist bei den Mittelstreckenflugzeugen im Mittel eine 34%ige relative Abweichung zu erkennen. Anzumerken ist hier, die Gefahr der Ablesefehler aus dem Bild 2.1 Flächenbelastung. Die Werte werden von den logarithmischen Achsen abgelesen.

Fazit: Zur Dimensionierung wird auch hier eine niedrigere Flächenbelastung angenommen

2.4 Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs

Gewählt: Flächenbelastung bezogen auf die Betriebsleermasse:

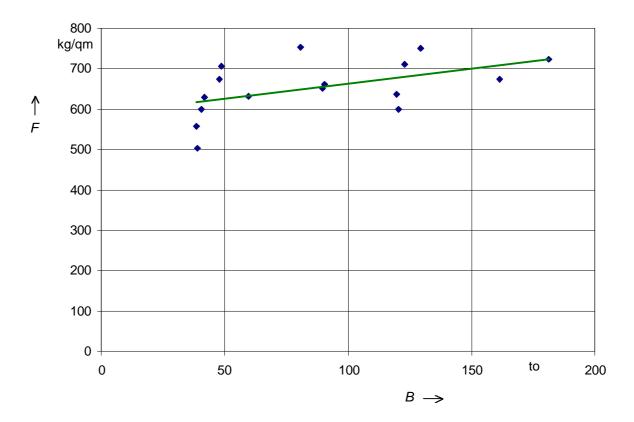


Bild 2.2 Flächenbelastung über Betriebsleermasse

$$F \qquad \frac{m_{MTO}}{S_w} \text{ in } \frac{kg}{m^2}$$

B Betriebsleermasse in Tonnen

Regressionsgerade:

$$\frac{m_{\tiny MTO}}{S_{\tiny W}} = 0.756 \cdot Betriebsleer masse + 586.96$$

Korrelationkoeffiezient:

$$k = 0.514$$

Die Wertung des Korrelationskoeffizienten läßt eine 51,4%ige, mittelstarke Abhängigkeit erkennen.

Gewählt: Flächenbelastung bezogen auf den Auftriebsbeiwert:

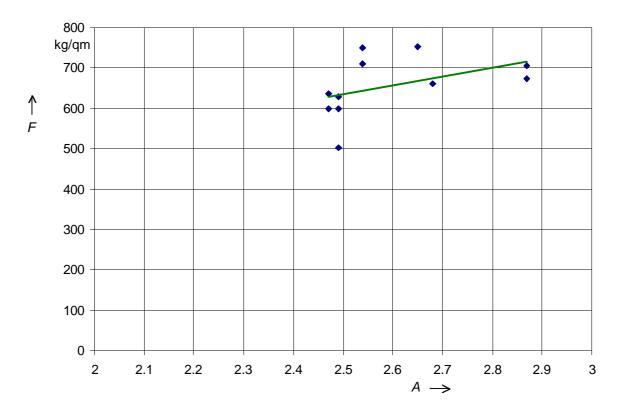


Bild 2.3 Flächenbelastung über Auftriebsbeiwert bei maximaler Landeklappenstellung

$$F \qquad \frac{m_{MTO}}{S_W} \text{ in } \frac{kg}{m^2}$$

$$A \qquad c_{L, \text{ max, Lg}}$$

Regressionsgerade:

$$\frac{m_{\tiny MTO}}{S_{\tiny W}} = 218.95 \cdot Auftriebsbeiwert + 88.132$$

Korrelationkoeffiezient:

$$k = 0.45$$

Die Wertung des Korrelationskoeffizienten läßt eine 45.0% ige, schwache Abhängigkeit erkennen.

Gewählt: Flächenbelastung bezogen auf die Pfeilung:

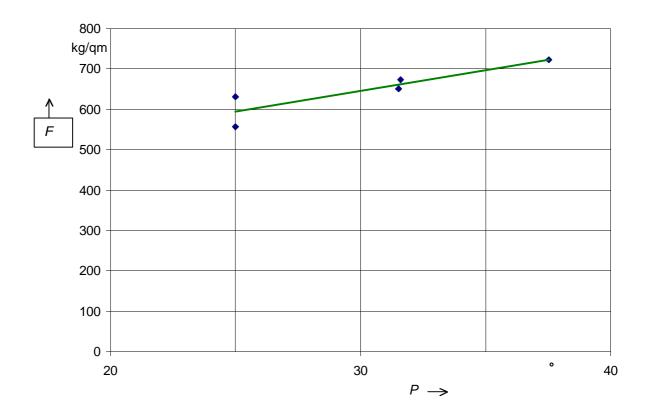


Bild 2.4 Flächenbelastung über Pfeilung

$$F \qquad \frac{m_{MTO}}{S_W} \text{ in } \frac{kg}{m^2}$$

P Pfeilung in °

Regressionsgerade:

$$\frac{m_{MTO}}{S_{w}} = 10.342 \cdot Pfeilung + 335.78$$

Korrelationkoeffiezient:

k = 0.896

Die Wertung des Korrelationskoeffizienten läßt eine 89.6% ige, starke Abhängigkeit erkennen.

Gewählt: Flächenbelastung bezogen auf die Reichweite:

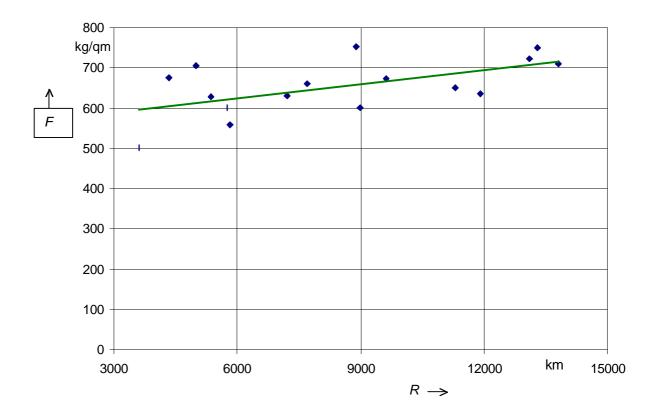


Bild 2.5 Flächenbelastung über Reichweite

$$F = \frac{m_{MTO}}{S_w} \text{ in } \frac{kg}{m^2}$$

R Reichweite in km

Regressionsgerade:

$$\frac{m_{\scriptscriptstyle MTO}}{S_{\scriptscriptstyle W}} = 0.011651 \cdot \text{Re}\,ichweite + 554.87$$

Korrelationkoeffiezient:

k = 0.580

Die Wertung des Korrelationskoeffizienten läßt eine 58.0% ige, mittelstarke Abhängigkeit erkennen.

Überraschend ist das Ergebnis der Pfeilung (Abhängigkeit beträgt 89.6%). Dieses ist nicht im voraus zu erkennen. Ob dieser Parameter in Zukunft intensiv für $\frac{m_{MTO}}{S_W}$ zu verwenden ist, bleibt unbestimmt.

3 Verhältnis aus maximaler Landemasse und maximaler Startmasse

Dieser Parameter wird zur Gewichtsbetrachtung zu Rate gezogen, um eine Aussage zur Nutzlast zu machen. In diesem Fall hat der Anteil des Kraftstoffs über eine bestimmte Reichweite die tragende Rolle. Hierauf baut die Kosten-Nutzen-Analyse auf, die bei der Beurteilung von Neuentwicklungen entscheidet.

In diesem Kapitel wird nachvollziehbar die komplette Berechnung zur Korrelations- und Regressionsanalyse nach **Hundt 1982** angewendet.

3.1 Bisherige statistische Zusammenhänge

Grundlage bei **Loftin 1980** ist die Reichweite, wie in der folgenden Tabelle zu erkennen:

 Tabelle 3.1
 Statistische Mittelwerte für Transportflugzeuge [Loftin 1980]

Reichweitenklassifikation	Reichweite NM	Reichweite Km	$\frac{m_{ML}}{m_{MTO}}$
Kurzstrecke	bis 2000	bis 3700	0,91
Mittelstrecke	2000 bis 3000	3700 bis 5600	0,82
Langstrecke	mehr als 3000	mehr 5600	0,73

Abhängigkeitparameter ist die Reichweite. Aus der Tabelle 3.1 ist zu entnehmen, daß drei Unterteilungen der Werte bezüglich des $\frac{m_{ML}}{m_{MTO}}$ - Verhältnisses gemacht werden. Dieses

Verhältnis sinkt mit zunehmender Reichweite, da die maximale Landemasse durch die größere Menge an verbrauchtem Kraftstoff kleiner wird, wie das folgende Bild grafisch verdeutlicht.

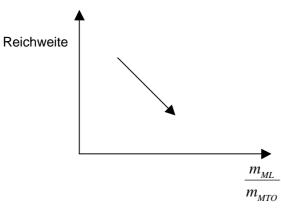


Bild 3.1 Quantitative Abhängigkeit des Massenverhältnisses von der Reichweite

Anders ist der Vorgang zur Dimensionierung nach **RoskamI**, wie in der folgenden Tabelle zu erkennen:

Tabelle 3.2 Statistische Mittelwerte für Transportflugzeuge [Roskam I]

Flugzeugtyp	$\underline{m_{\scriptscriptstyle ML}}$	_
	$m_{{\scriptscriptstyle MTO}}$	
Transportflugzeuge	0.84	

Abhängigkeitparameter ist der Flugzeugtyp. Hier ist das zu wählende Verhältnis ohne weitere Informationen zum Flugzeugtypen angegeben. Eine spezielle Unterteilung wäre angebracht.

Tabelle 3.3 Reichweitenklassifizierung der Strecken

Klassifizierung	Тур	Reichweite ¹ Km	$rac{m_{ML}}{m_{MTO}}$	
Kurzstrecke	A318-100 A320-200 A321-100 A321-200	<i>x</i> ≤ 5556	0,868	
Mittelstrecke	B737-700 B757-200 B777-300	$5556 < x \le 10186$	0,816	
Langstrecke	A300-600R A310-300 A319-200 A330-300 B767-300 B747-400 A330-200 A340-200 A340-300	10186 < x	0,738	

Die Einteilung ist nach Schmitt 98 gewählt

Als Vorlage dieser Tabelle 3.3 dient die Reichweitenklassifizierung nach **Schmitt 98**. Es werden an dieser Stelle schon die original Werte der Massenverhältnisse gewählt, um diese mit **Loftin 80** unter Abschnitt 3.3 vergleichen zu können.

3.2 Ermittlung der neuen statistischen Zusammenhänge

Grundlage, nach Skript Scholz 1998, es werden original Daten aus Tabelle A1 verwendet:

 Tabelle 3.4
 Reichweite und Massenverhältnis ausgewählter Flugzeuge

Typnummer	Тур	Reichweite Mm	$rac{m_{\scriptscriptstyle ML}}{m_{\scriptscriptstyle MTO}}$	
1	B737-700	5,83	0,869	
2	B757-200	7,22	0.824	
3	B767-300	11,30	0,777	
4	B777-300	9,63	0,794	
5	B747-400	13,1	0,720	
6	A300-600R	7,69	0,815	
7	A310-300	8,89	0,752	
8	A318-100	3,61	0,911	
9	A319-200	5,74	0,830	
10	A320-200	5,37	0,838	
11	A321-100	4,35	0,876	
12	A321-200	5,00	0,848	
13	A330-200	11,9	0,783	
14	A330-300	8,98	0,825	
15	A340-200	13,8	0,708	
16	A340-300	13,3	0,701	

Nachfolgend erfolgt die Berechnung der Regressionsgeraden und des Korrelationskoeffizienten bezugnehmend auf die Tabelle 3.4, die Übersicht läßt keine Einheiten zu:

$$S_R = \sum_{i=1}^{N=16} R_i = (5830 + 7220 + 11300 + 9630 + 13100 + 7690 + 8890 + 3610 + 5740 + 5370 + 4350 + 5000 + 11900 + 8980 + 13800 + 13300)$$

$$= 135710$$

$$S_{R^2} = \sum_{i=1}^{N=16} R_i^2 = (5830^2 + 7220^2 + 11300^2 + 9630^2 + 13100^2 + 7690^2 + 8890^2 + 3610^2 + 5740^2 + 5370^2 + 4350^2 + 5000^2 + 11900^2 + 8980^2 + 13800^2 + 13300^2)$$

$$= 1324641900$$

$$S_M = \sum_{i=1}^{N=16} M_i = (0.869 + 0.824 + 0.777 + 0.794 + 0.720 + 0.815 + 0.752 + 0.911 + 0.830 + 0.838 + 0.876 + 0.848 + 0.783 + 0.825 + 0.708 + 0.701)$$

$$= 12.871$$

$$S_{M^{2}} = \sum_{i=1}^{N-16} M_{i}^{2} = (0.869^{2} + 0.824^{2} + 0.777^{2} + 0.794^{2} + 0.720^{2} + 0.815^{2} + 0.752^{2} + 0.911^{2} + 0.830^{2} + 0.838^{2} + 0.876^{2} + 0.848^{2} + 0.783^{2} + 0.825^{2} + 0.708^{2} + 0.701^{2})$$

$$= 10.41036$$

$$\begin{split} S_{RM} &= \sum_{i=1}^{N=16} R_i \cdot M_i = (5830 \cdot 0,869 + 7220 \cdot 0,824 + 11300 \cdot 0,777 + 9630 \cdot 0,794 \\ &\quad + 13100 \cdot 0,720 + 7690 \cdot 0,815 + 8890 \cdot 0,752 + 3610 \cdot 0,911 + 5740 \cdot 0,830 \\ &\quad + 5370 \cdot 0,838 + 4350 \cdot 0,876 + 5000 \cdot 0,848 + 11900 \cdot 0,783 + 8980 \cdot 0,825 \\ &\quad + 13800 \cdot 0,708 + 13300 \cdot 0,701) \\ &\quad = 106249,97 \end{split}$$

$$S_{R\overline{R}} = S_{R^2} - \frac{S_R^2}{16} = 1324641900 - \frac{135710^2}{16} = \underline{173566643,8}$$

$$S_{M\overline{M}} = S_{M^2} - \frac{S_M^2}{16} = 10,41036 - \frac{12,871^2}{16} = \underline{0,056439938}$$

$$S_{1M} = S_{RM} - \left[\frac{(S_R \cdot S_M)}{16} \right] = 106249,97 - \left[\frac{(135710 \cdot 12,871)}{16} \right] = \underline{-2920,243125}$$

$$b = \frac{S_{1M}}{S_{R\overline{R}}} = \frac{-2920,243125}{173566643,8} = \frac{-0,000016825}{173566643,8}$$

$$\overline{R} = \frac{S_R}{16} = \frac{135710}{16} = \underline{8481,875}$$

$$\overline{M} = \frac{S_M}{16} = \frac{12,871}{16} = \frac{0,8044375}{16}$$

$$a = \overline{M} - b \cdot \overline{R} = 0,8044375 - (-0,000016825) \cdot 8481,875 = 0,947145047$$

Regressionsgerade:

$$\frac{m_{ML}}{m_{MTO}} = a + b \cdot R_i = 0.947145047 + (-0.000016825) \cdot Reichweite_i$$

Gewählt: Massenverhältnis bezogen auf die Reichweite:

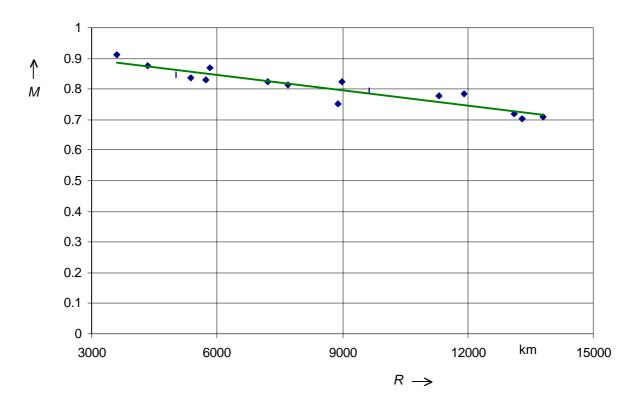


Bild 3.2 Massenverhältnis über Reichweite

$$M = \frac{m_{ML}}{m_{MTO}}$$
 $R = Reichweite$

Korrelationskoeffizient:

$$r = \sqrt{\frac{{S_{1M}}^2}{{S_{R\overline{R}} \cdot S_{M\overline{M}}}}} = \sqrt{\frac{{{{(-2920,243125)}^2}}}{{173566643,8 \cdot 0,056439938}}} = \underline{{0,933}}$$

Die Wertung des Korrelationskoeffizienten läßt eine 93,3% ige, starke Abhängigkeit erkennen.

3.3 Vergleich der bisherigen und der neuen Zusammenhänge

In der folgenden Tabelle wird das Verhältnis $\frac{m_{_{ML}}}{m_{_{MTO}}}$ klassifiziert in Kurz-, Mittel- und Langstrecke:

Tabelle 3.5 Vergleich des Massenverhältnisses

Klassifizierung	Тур	Reichweite ¹ km	m_{ML} 2	$m_{\scriptscriptstyle ML}$
		KIII	$m_{\scriptscriptstyle MTO}$	$m_{\scriptscriptstyle MTO}$
Kurzstrecke	A318-100	$x \le 3700$	0.91	0,911
Mittelstrecke	A320-200	$3700 < x \le 5600$	0,82	0,854
	A321-100 A321-200			
Langstrecke	B737-700	5600 < x	0,73	0,783
	B757-200 B767-300 B777-300 B747-400 A300-600R A310-300 A319-200 A330-200 A330-300 A340-200 A340-300			

¹ Einteilung nach **Loftin 80**

Mit den Vorgabewerten von **Loftin 1980** ist eine Dimensionierung möglich, die unterhalb der original Werten liegt, aber so auf der sicheren Seite.

Bei der direkten Gegenüberstellung vom Mittelwert nach **Roskam I** ist eine 4%ige, relative Abweichung festzustellen:

 Tabelle 3.6
 Vergleich statistischer Mittelwerte für Transportflugzeuge

Flugzeugtyp	$\frac{m_{\!\scriptscriptstyle ML}}{m_{\!\scriptscriptstyle MTO}}$ nach Roskam I	$\frac{m_{ML}}{m_{MTO}}$
Transportflugzeuge	0.84	0,804

An dieser Stelle ist der Vorgabewert von **Roskam I** ein akzeptabler. Eine Unterteilung der Flugzeugtypen ist aber übersichtlicher, wie es **Loftin 1980** und **Schmitt 1998** bevorzugen.

Tabelle 3.7 Vergleich zwischen [Loftin 80] und [Schmitt 98]

Klassifizierung	$\frac{m_{\scriptscriptstyle ML}}{m_{\scriptscriptstyle MTO}}$, nach Loftin	$\frac{m_{_{ML}}}{m_{_{MTO}}}$, nach Schmitt	Abweichung %
Kurzstrecke	0,91	0,868	5
Mittelstrecke	0,82	0,816	0,5
Langstrecke	0,73	0,738	0,1

² Ermittelte Werte nach **Loftin 80**

Nur in der Kurzstrecke Tabelle 3.7 weicht der Wert von **Schmitt 98** von dem Wert nach **Loftin 80** ab. Dies zeigt keine entscheidende Änderung des Vorgabewertes trotz anderer Streckeneinteilung.

3.4 Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs

Gewählt: Massenverhältnis bezogen auf die Betriebsleermasse:

 Tabelle 3.8
 Betriebsleermasse und Massenverhältnis ausgewählter Flugzeuge

Tabelle 3.6 Detilebsieermasse und Massenvernattilis ausgewahlter Flugzeuge				
Numerierung	Flugzeug	m_{OE}	$\underline{m_{\scriptscriptstyle ML}}$	
		to	$m_{\scriptscriptstyle MTO}$	
1	B737-700	38,6	0,869	
2	B757-200	59,5	0.824	
3	B767-300	89,8	0,777	
4	B777-300	161,5	0,794	
5	B747-400	181,4	0,720	
6	A300-600R	90,3	0,815	
7	A310-300	80,8	0,752	
8	A318-100	39,0	0,911	
9	A319-200	40,4	0,830	
10	A320-200	41,8	0,838	
11	A321-100	47,9	0,876	
12	A321-200	48,7	0,848	
13	A330-200	119,5	0,783	
14	A330-300	120,6	0,825	
15	A340-200	123,1	0,708	
16	A340-300	129,3	0,701	

Nachfolgend erfolgt die Berechnung der Regressionsgeraden und des Korrelationskoeffizienten bezugnehmend auf die Tabelle 3.8, die Übersicht läßt keine Einheiten zu:

$$S_B = \sum_{i=1}^{N=16} B_i = (38.6 + 59.5 + 89.5 + 161.5 + 181.5 + 90.3 + 80.8 + 39.0 + 40.4 + 41.8 + 47.9 + 48.7 + 119.5 + 120.6 + 123.1 + 129.3)$$

$$= 1412.2$$

$$S_{B^2} = \sum_{i=1}^{N=16} B_i^2 = (38,6^2 + 59,5^2 + 89,8^2 + 161,5^2 + 181,4^2 + 90,3^2 + 80,8 + 39,0^2 + 40,4^2 + 41,8^2 + 47,9^2 + 48,7^2 + 119,5^2 + 120,6^2 + 123,1^2 + 129,3^2)$$

$$= 157028,4$$

$$S_{M^{2}} = \sum_{i=1}^{N=16} M_{i}^{2} = (0.869^{2} + 0.824^{2} + 0.777^{2} + 0.794^{2} + 0.720^{2} + 0.815^{2} + 0.752^{2} + 0.911^{2} + 0.830^{2} + 0.838^{2} + 0.876^{2} + 0.848^{2} + 0.783^{2} + 0.825^{2} + 0.708^{2} + 0.701^{2})$$

$$= 10.41036$$

$$\begin{split} S_{BM} &= \sum_{i=1}^{N=16} B_i \cdot M_i = (38,6 \cdot 0,869 + 59,5 \cdot 0,824 + 89,8 \cdot 0,777 + 161,5 \cdot 0,794 \\ &\quad + 181,4 \cdot 0,720 + 90,3 \cdot 0,815 + 80,8 \cdot 0,752 + 39,0 \cdot 0,911 + 40,4 \cdot 0,830 \\ &\quad + 41,8 \cdot 0,838 + 47,9 \cdot 0,876 + 48,7 \cdot 0,848 + 119,5 \cdot 0,783 + 120,6 \cdot 0,825 \\ &\quad + 123,1 \cdot 0,708 + 129,3 \cdot 0,701) \\ &\quad = 1103,7461 \end{split}$$

$$S_{B\overline{B}} = S_{B^2} - \frac{S_B^2}{16} = 157028, 4 - \frac{1412, 2^2}{16} = \underline{32384,0975}$$

$$S_{M\overline{M}} = S_{M^2} - \frac{S_M^2}{16} = 10,41036 - \frac{12,871^2}{16} = \underline{0,056439938}$$

$$S_{1M} = S_{BM} - \left[\frac{(S_B \cdot S_M)}{16} \right] = 1103,7461 - \left[\frac{(1412, 2 \cdot 12,871)}{16} \right] = \frac{-32,2805375}{16}$$

$$b = \frac{S_{1M}}{S_{R\overline{R}}} = \frac{-32,2805375}{32384,0975} = \frac{-0,000996802}{-0,000996802}$$

$$\overline{B} = \frac{S_B}{16} = \frac{1412,2}{16} = \frac{88,2625}{16}$$

$$\overline{M} = \frac{S_M}{16} = \frac{12,871}{16} = \frac{0,8044375}{16}$$

$$a = \overline{M} - b \cdot \overline{B} = 0,8044375 - (-0,000996802) \cdot 88,2625 = 0,892417748$$

Regressionsgerade:

$$\frac{m_{ML}}{m_{MTO}} = a + b \cdot B_i = 0,892417748 + (-0,000996802) \cdot Betriebsleer masse_i$$

Korrelationskoeffizient:

$$r = \sqrt{\frac{S_{1M}^{2}}{S_{R\overline{R}} \cdot S_{M\overline{M}}}} = \sqrt{\frac{(-32,2805375)^{2}}{32384,0975 \cdot 0,056439938}} = \underline{0,7551}$$

Die Wertung des Korrelationskoeffizienten läßt eine 75,51% ige, starke Abhängigkeit erkennen.

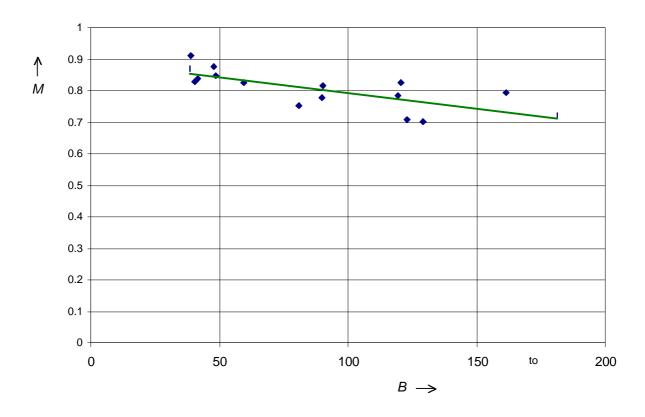


Bild 3.3 Massenverhältnis über Betriebsleermasse

 $M \qquad \frac{m_{\scriptscriptstyle ML}}{m_{\scriptscriptstyle MTO}}$

B Betriebsleermasse

Gewählt: Massenverhältnis bezogen auf den Triebwerksschub:

Tabelle 3.9	Startschub [I	Brassey`s 9	991 u	nd Massenverhält	nis ausgewählter	· Flugzeuge

Numerierung	Flugzeug	Triebwerkstyp	Anzahl	Startschub kN	$m_{\scriptscriptstyle ML}$
					$m_{{}_{MTO}}$
1	B737-700	CFM 56-3	1	104,53	0,869
2	B757-200	PW2037	1	170,14	0,824
3	B767-300	CF6-80C2	1	233,53	0,777
4	B777-300	GE90-B4	1	388,77	0,794
5	B747-400	RB211-524G	1	258,07	0,720

Nachfolgend erfolgt die Berechnung der Regressionsgeraden und des Korrelationskoeffizienten bezugnehmend auf die Tabelle 3.9, die Übersicht läßt keine Einheiten zu:

$$S_C = \sum_{i=1}^{N=5} C_i = (104,53 + 170,14 + 233,53 + 388,77 + 258,07)$$

= 1155,04

$$S_{C^2} = \sum_{i=1}^{N=5} C_i^2 = (104,53^2 + 170,14^2 + 233,53^2 + 388,77^2 + 258,07^2)$$

= 312152,6392

$$S_M = \sum_{i=1}^{N=5} M_i = (0.869 + 0.824 + 0.777 + 0.794 + 0.720)$$

= 3.984

$$S_{M^{2}} = \sum_{i=1}^{N=5} M_{i}^{2} = (0.869^{2} + 0.824^{2} + 0.777^{2} + 0.794^{2} + 0.720^{2})$$

= 3.186702

$$\begin{split} S_{CM} &= \sum_{i=1}^{N=5} C_i \cdot M_i = (104,53 \cdot 0,869 + 170,14 \cdot 0,824 + 233,53 \cdot 0,777 + 388,77 \cdot 0,794 \\ &\quad + 258,07 \cdot 0,720) \\ &= 906,97852 \end{split}$$

$$S_{C\overline{C}} = S_{C^2} - \frac{S_C^2}{5} = 312152,6392 - \frac{1155,04^2}{5} = \underline{45329,15888}$$

$$S_{M\overline{M}} = S_{M^2} - \frac{S_M^2}{5} = 3,186702 - \frac{3,984^2}{5} = \underline{0,0122508}$$

$$S_{1M} = S_{CM} - \left[\frac{(S_C \cdot S_M)}{5} \right] = 906,97852 - \left[\frac{(1155,04 \cdot 3,984)}{5} \right] = \underline{-13,357352}$$

$$b = \frac{S_{1M}}{S_{C\overline{C}}} = \frac{-13,357352}{45329,15888} = \frac{-0,000294675}{-0,000294675}$$

$$\overline{C} = \frac{S_C}{5} = \frac{1155,04}{5} = \underline{231,008}$$

$$\overline{M} = \frac{S_M}{5} = \frac{3,984}{5} = 0,7968$$

$$a = \overline{M} - b \cdot \overline{C} = 0,7968 - (-0,000294675) \cdot 231,008 = 0,8648723$$

Regressionsgerade:

$$\frac{m_{ML}}{m_{MTO}} = a + b \cdot C_i = 0,8648723 + (-0,000294675) \cdot Startschub_i$$

Korrelationskoeffizient:

$$r = \sqrt{\frac{{S_{1M}}^2}{S_{C\overline{C}} \cdot S_{M\overline{M}}}} = \sqrt{\frac{(-13,357352)^2}{45329,15888 \cdot 0,0122508}} = \underline{0,5668}$$

Die Wertung des Korrelationskoeffizienten läßt eine 56,68% ige mittelstarke Abhängigkeit erkennen.

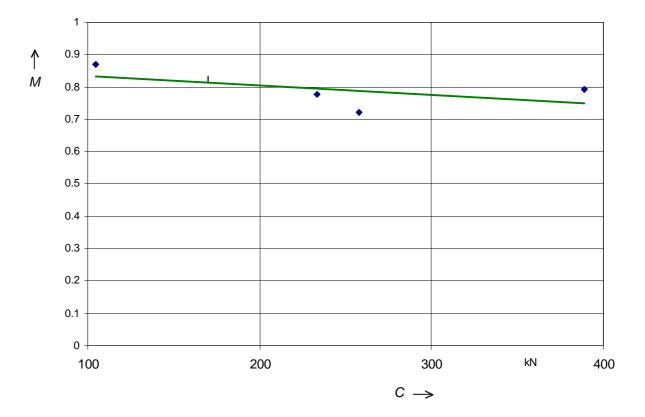


Bild 3.4 Massenverhältnis über Startschub

 $M = rac{m_{ML}}{m_{MTO}}$ C Startschub

Gewählt: Massenverhältnis bezogen auf die Pfeilung:

Tabelle 3.10 Pfeilung und Massenverhältnis ausgewählter Flugzeuge

Numerierung	Flugzeug	Pfeilung o	$m_{\scriptscriptstyle ML}$	
			m_{MTO}	
1	B737-700	25,0	0,869	
2	B757-200	25,0	0,824	
3	B767-300	31,5	0,777	
4	B777-300	31,6	0,794	
5	B747-400	37,5	0,720	
6	A300-600R	28,0	0,815	

Nachfolgend erfolgt die Berechnung der Regressionsgeraden und des Korrelationskoeffizienten bezugnehmend auf die Tabelle 3.10, die Übersicht läßt keine Einheiten zu:

$$S_D = \sum_{i=1}^{N=6} D_i = (25.0 + 25.0 + 31.5 + 31.6 + 37.5 + 28.0)$$

= 178.6

$$S_{D^2} = \sum_{i=1}^{N=6} D_i^2 = (25,0^2 + 25,0^2 + 31,5^2 + 31,6^2 + 37,5^2 + 28,0^2)$$

= $5431,06$

$$S_M = \sum_{i=1}^{N=6} M_i = (0.869 + 0.824 + 0.777 + 0.794 + 0.720 + 0.815)$$
$$= 4.799$$

$$S_{M^{2}} = \sum_{i=1}^{N=6} M_{i}^{2} = (0.869^{2} + 0.824^{2} + 0.777^{2} + 0.794^{2} + 0.720^{2} + 0.815^{2})$$

= 3.850927

$$\begin{split} S_{DM} &= \sum_{i=1}^{N=6} D_i \cdot M_i = (25,0 \cdot 0,869 + 25,0 \cdot 0,824 + 31,5 \cdot 0,777 + 31,6 \cdot 0,794 \\ &\quad + 37,5 \cdot 0,720 + 28,0 \cdot 0,815) \\ &= 141,709 \end{split}$$

$$S_{D\overline{D}} = S_{D^2} - \frac{S_D^2}{6} = 5431,06 - \frac{178,6^2}{6} = \underline{114,73}$$

$$S_{M\overline{M}} = S_{M^2} - \frac{S_M^2}{6} = 3,850927 - \frac{4,799^2}{6} = 0,012526833$$

$$S_{1M} = S_{DM} - \left[\frac{(S_D \cdot S_M)}{6} \right] = 141,709 - \left[\frac{(178,6 \cdot 4,799)}{6} \right] = -1,1412\overline{3}$$

$$b = \frac{S_{1M}}{S_{D\overline{D}}} = \frac{-1,1412\overline{3}}{114,7\overline{3}} = -0,009946833$$

$$\overline{D} = \frac{S_D}{6} = \frac{178.6}{6} = \frac{29.7\overline{6}}{6}$$

$$\overline{M} = \frac{S_M}{6} = \frac{4,799}{6} = 0,7998\overline{3}$$

$$a = \overline{M} - b \cdot \overline{D} = 0,7998\overline{3} - (-0,009946833) \cdot 29,7\overline{6} = 1,0959174$$

Regressionsgerade:

$$\frac{m_{ML}}{m_{MTO}} = a + b \cdot D_i = 1,0959174 + (-0,009946833) \cdot Pfeilung_i$$

Korrelationskoeffizient:

$$r = \sqrt{\frac{{S_{1M}}^2}{{S_{D\overline{D}} \cdot S_{M\overline{M}}}}} = \sqrt{\frac{(-1,1412\overline{3})^2}{114,7\overline{3} \cdot 0,012526833}} = \underline{0,952}$$

Die Wertung des Korrelationskoeffizienten läßt eine 95,2% ige indirekt lineare Abhängigkeit erkennen.

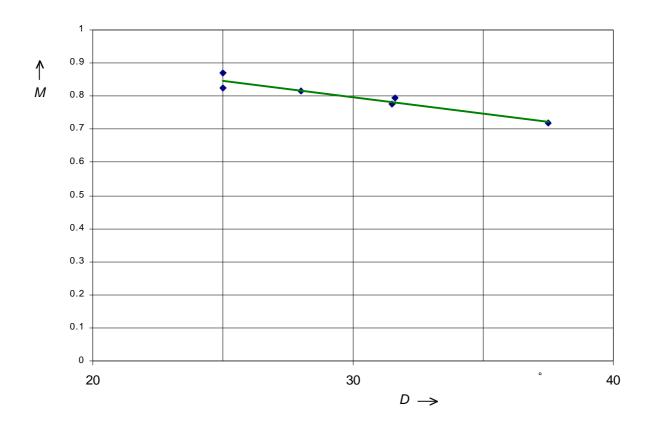


Bild 3.5 Massenverhältnis über Pfeilung

$$\begin{array}{cc} M & \frac{m}{m_{MTO}} \\ \text{D} & \text{Pfeilung} \end{array}$$

Gewählt: Massenverhältnis bezogen auf die Flügelfläche:

Tabelle 3.11	Flügelfläche und	Massenverhältnis	ausgewählter Flugzeuge
--------------	------------------	------------------	------------------------

Numerierung	Flugzeug	Flügelfläche m²	$m_{\scriptscriptstyle ML}$
			m_{MTO}
1	B737-700	125,5	0,869
2	B757-200	183,4	0.824
3	B767-300	287,2	0,777
4	B777-300	444,5	0,794
5	B747-400	548,8	0,720
6	A300-600R	260,0	0,815
7	A310-300	219,0	0,752
8	A318-100	122,4	0,911
9	A319-200	122,4	0,830
10	A320-200	122,4	0,838
11	A321-100	126,0	0,876
12	A321-200	126,0	0,848
13	A330-200	361,6	0,783
14	A330-300	361,6	0,825
15	A340-200	361,6	0,708
_16	A340-300	361,6	0,701

Nachfolgend erfolgt die Berechnung der Regressionsgeraden und des Korrelationskoeffizienten bezugnehmend auf die Tabelle 3.11, die Übersicht läßt keine Einheiten zu:

$$S = \begin{bmatrix} 16 \\ 2 \\ = 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \\ + \end{bmatrix} + \begin{bmatrix} 2 \\$$

$$S_M = \sum_{i=1}^{N=16} M_i = (0.869 + 0.824 + 0.777 + 0.794 + 0.720 + 0.815 + 0.752 + 0.911 + 0.830 + 0.838 + 0.876 + 0.848 + 0.783 + 0.825 + 0.708 + 0.701)$$

$$= 12.871$$

$$S_{M^{2}} = \sum_{i=1}^{N=16} M_{i}^{2} = (0.869^{2} + 0.824^{2} + 0.777^{2} + 0.794^{2} + 0.720^{2} + 0.815^{2} + 0.752^{2} + 0.911^{2} + 0.830^{2} + 0.838^{2} + 0.876^{2} + 0.848^{2} + 0.783^{2} + 0.825^{2} + 0.708^{2} + 0.701^{2})$$

$$= 10.41036$$

$$\begin{split} S_{EM} &= \sum_{=}^{N=16} E \cdot M_i = (125, 5 \cdot 0, 869 + 183, 4 \cdot 0, 824 + 287, 2 \cdot 0, 777 + 444, 5 \cdot 0, 794 \\ &\quad + 548, 5 \cdot 0, 720 + 260, 0 \cdot 0, 815 + 219, 0 \cdot 0, 752 + 122, 4 \cdot 0, 911 + 122, 4 \cdot 0, 830 \\ &\quad + 122, 4 \cdot 0, 838 + 126, 0 \cdot 0, 876 + 126, 0 \cdot 0, 848 + 361, 6 \cdot 0, 783 + 361, 6 \cdot 0, 825 \\ &\quad + 361, 6 \cdot 0, 708 + 361, 6 \cdot 0, 701) \\ &= 3231, 8\overline{3} \end{split}$$

$$S_{E\overline{E}} = S_{E^2} - \frac{S_E^2}{16} = 1331048,5 - \frac{4134,0^2}{16} = \underline{262926,25}$$

$$S_{M\overline{M}} = S_{M^2} - \frac{S_M^2}{16} = 10,41036 - \frac{12,871^2}{16} = \underline{0,056444938}$$

$$S_{1M} = S_{EM} - \left[\frac{(S_E \cdot S_M)}{16} \right] = 3231,8\overline{3} - \left[\frac{(4134,0 \cdot 12,871)}{16} \right] = -93,711292$$

$$b = \frac{S_{1M}}{S_{EE}} = \frac{-93,711292}{262926,25} = \frac{-0,000356417}{262926,25}$$

$$\overline{E} = \frac{S_E}{16} = \frac{4134,0}{16} = \underline{258,375}$$

$$\overline{M} = \frac{S_M}{16} = \frac{12,871}{16} = \frac{0,8044375}{16}$$

$$a = \overline{M} - b \cdot \overline{E} = 0,8044375 - (-0,000356417) \cdot 258,375 = 0,8965267$$

Regressionsgerade:

$$\frac{m_{ML}}{m_{MTO}} = a + b \cdot E_i = 0,8965267 + (-0,000356417) \cdot Flügelfläche_i$$

Korrelationskoeffizient:

$$r = \sqrt{\frac{{S_{1M}}^2}{{S_{E\overline{E}} \cdot S_{M\overline{M}}}}} = \sqrt{\frac{(-93,711292)^2}{262926,25 \cdot 0,056444938}} = \underline{0,769}$$

Die Wertung des Korrelationskoeffizienten läßt eine 76,9% ige starke Abhängigkeit erkennen.

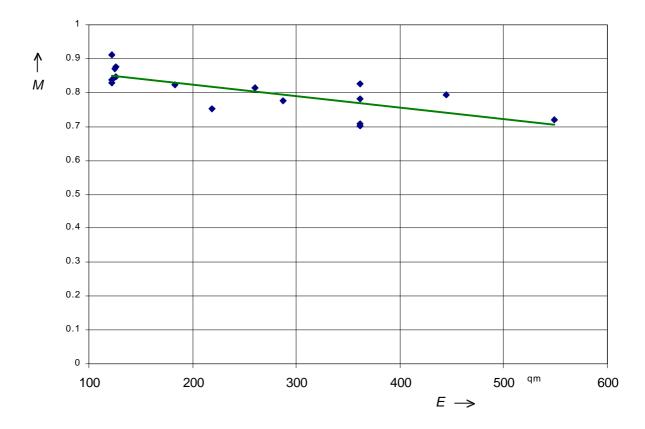


Bild 3.6 Massenverhältnis über Flügelfläche

$$\begin{array}{ll} M & \quad \frac{m_{\rm ML}}{m_{\rm MTO}} \\ {\rm E} & \quad {\rm Flügelfläche} \end{array}$$

Der Parameter Startschub läßt keine wesentliche Abhängigkeit (56.7%) erkennen. Verwendbare Ergebnisse liefert die Pfeilung in erster Linie (95.2%), gefolgt von der Betriebsleermasse (75.5%) und Flügelfläche (76.9%).

4 Geometrische Parameter des Bug- und Heckbereichs

Bei der Gestaltung des Bugbereichs wird auf den optimalen Verlauf der Struktur (strömungsgünstig) geachtet. Ferner wird die Cockpitdimensionierung gewählt, die ausreichend Raum für Ausstattung und Mannschaft bietet, aber immer unter dem Gesichtspunkt möglichst viel Systemnutzlast unterzubringen.

Die Länge des Hecks wird kurz gewählt, um die Betriebsleermasse nicht zu erhöhen. Hierbei ist der Strömungsverlauf nicht zu vernachlässigen in Bezug auf den Widerstand.

Zusätzlich muß auf Heckabmessungen, im speziellen Winkel, Druckschottposition (Ende der Nutzlastunterbringung) geachtet werden.

In diesem Kapitel wird auf die Maße der Bug~ und Hecksektionen nach **Schmitt 1998** und **Scholz 1998** eingegangen und mit den originalen Abmessungen verglichen.

4.1 Bisherige statistische Zusammenhänge

Die Länge von Cockpit, Rumpfbug, Kabine im Heck und Rumpfheck sind als Funktion des Rumpfdurchmessers nach **Schmitt 1998** wie folgt festgehalten:

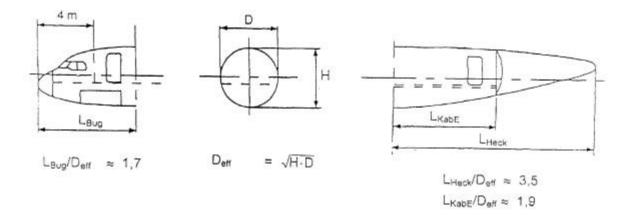


Bild 4.1 Maße von Bug- und Hecksektion nach [Schmitt 98]

Tabelle 4.1 Maße von Flugzeugsektionen¹

I abelle 4.1 Iviais	se von i lugzeugser	MOHEH		
Bezeichnung	Rumpfbug	Rumpfheck	Kabine im Heck	Cockpit
Transportflugzeuge	$\frac{L_{Bug}}{D_{eff}} \approx 1.7$	$\frac{L_{Heck}}{D_{eff}} \approx 3.5$	$\frac{L_{KabE}}{D_{eff}} \approx 1.9$	4m

Maße festgelegt durch Schmitt 98

mit: $D_{eff} = \sqrt{H \cdot D}$

Als Hintergrund dienten die originalen Abmessungen der Transportflugzeuge, ohne weitere Angaben des Autors zum Flugzeugtyp im speziellen.

Das Rumpfheck ist nach **Roskam II** wie folgt angegeben:

Tabelle 4.2 Rumpfheck¹

Klassifizierung	$rac{l_{fc}}{d_f}$
Transportflugzeuge	2.6 - 4

Maß nach Roskam II

4.2 Ermittlung der neuen statistischen Zusammenhänge

In der folgenden Tabelle 4.3 werden die Daten zur Übersicht aufgezeigt.

Tabelle 4.3 Maße von der Bug- und Hecksektion nach original Flugzeugtyp

Тур	L _{cock}	L_{BUG}	L _{HECK}	L_{KabE}	D_{eff}	L _{max, A/c}
	m	m	M	m	m	m
B737-700	2,18	8,9	12,5	7,4	3,76	23,2
B757-200	2,37	6,8	15	7,7	3,76	46,9
B767-300	2,69	8,2	16	6,6	5,03	53,7
B777-300	2,52	10,9	18,9	7	6,2	73,1
B747-400	3,04	13,5	25,7	14,7	6,5	68,7
A300-600R	2,56	9,5	20,5	12,5	5,64	53,3
A310-300	2,56	9,5	20,5	12,5	5,64	45,9
A318-100	2,36	6,4	13,7	7,2	3,95	31,5
A319-200	2,36	6,4	13,7	7,2	3,95	43,8
A320-200	2,36	6,4	13,7	7,2	3,95	37,6
A321-100	2,36	6,4	13,7	7,2	3,95	44,5
A321-200	2,36	6,4	13,7	7,2	3,95	44,5
A330-200	2,56	9,4	20,5	12,5	5,64	57,5
A330-300	2,56	9,4	20,5	12,5	5,64	62,8
A340-200	2,56	9,4	20,5	12,5	5,64	58,6
A340-300	2,56	9,4	20,5	12,5	5,64	62,8

Zusätzlich werden die Verhältniswerte benötigt, wie in der folgenden Tabelle 4.4:

Tabelle 4.4	Verhältniswerte	dar Saktionen
Tabelle 4.4	vernanniswene	der Sektionen

Тур	L_{BUG}	$L_{{\scriptscriptstyle HECK}}$	$L_{\it KabE}$
	$D_{\it eff}$	$D_{\it eff}$	$D_{e\!f\!f}$
B737-700	2,37	3,32	1,97
B757-200	1,81	3,99	2,05
B767-300	1,63	3,18	1,31
B777-300	1,76	3,05	1,13
B747-400	2,08	3,95	2,26
A300-600R	1,68	3,63	2,22
A310-300	1,68	3,63	2,22
A318-100	1,62	3,47	1,82
A319-200	1,62	3,47	1,82
A320-200	1,62	3,47	1,82
A321-100	1,62	3,47	1,82
A321-200	1,62	3,47	1,82
A330-200	1,67	3,62	2,21
A330-300	1,67	3,62	2,21
A340-200	1,67	3,62	2,21
A340-300	1,67	3,62	2,21

Es ist jetzt notwendig die Mittelwerte der Verhältnisse in der folgenden Tabelle 4.5 aufzuzeigen:

 Tabelle 4.5
 Mittelwerte der Rumpfsektionen

Klassifizierung	$rac{L_{BUG}}{D_{e\!f\!f}}$	$rac{L_{ extit{HECK}}}{D_{ extit{eff}}}$	$rac{L_{\mathit{KabE}}}{D_{\mathit{eff}}}$
Transportflugzeuge	1.74	3.54	1.94

4.3 Vergleich zwischen den bisherigen und den neuen statistischen Zusammenhänge

 Tabelle 4.6
 Mittelwertvergleich der Schlankheitsgrade

Tabolio III	igiolori doi Gornaminolog	1440
Klassifizierung	$rac{l_{fc}}{d_f}$ 1	$rac{L_{ extit{HECK}}}{D_{ extit{eff}}}$
Transportflugzeuge	2.6 - 4	3.54

¹ Wert nach Roskam II

Hier zeigt sich, das der Mittelwertbereich von **Roskam II** den originalen Wert mit einschließt. Es ist aber ein großer Streubereich, der genauer zu wählen ist mit einer exakteren Typenbezeichnung. Eine speziellere Gliederung der Transportflugzeuge wäre optimal.

Tabelle 4.7 Vergleich des Verhältnisses Länge Heck/Rumpfdurchmesser

Klassifizierung	$rac{L_{ extit{HECK}}}{D_{ extit{eff}}}$, nach Schmitt	$rac{L_{{\scriptscriptstyle HECK}}}{D_{{\scriptscriptstyle eff}}}$, original Wert	Relative Abweichung %
Transportflugzeuge	$\frac{L_{BUG}}{D_{eff}}$	$\frac{1}{2} \frac{1}{2} \frac{1}$	1.14
	$egin{array}{c} 1.7 \ L_{KabE} \ D_{e\!f\!f} \ \end{array}$	$egin{array}{c} 1.74 \ L_{KabE} \ D_{e\!f\!f} \ \end{array}$	2.35

Es ist klar zu erkennen, das die Abweichungen keine Relevanz aufzeigen und die Dimensionierungsvorgaben nach **Schmitt 98** optimal getroffen sind.

4.4 Statistische Zusammenhänge mit anderen Parametern des Flugzeugentwurfs

Gewählt: Rumpfbug bezogen auf die Betriebsleermasse:

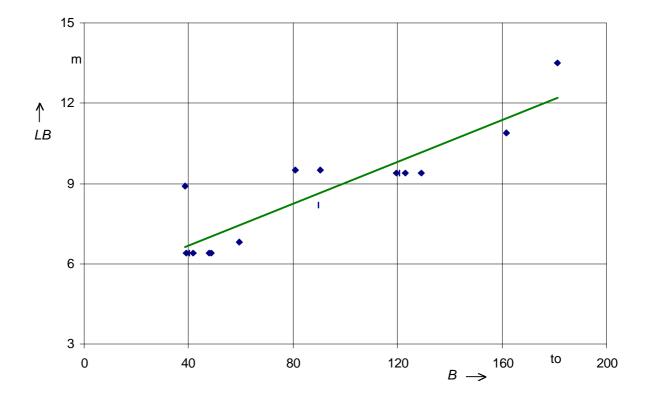


Bild 4.2 Rumpfbug über Betriebsleermasse

LB RumpfbugB Betriebsleermasse

Regressionsgerade:

 $L_{\scriptscriptstyle Bug} = 0.0389 \cdot Betriebsleer masse + 5.124$

Korrelationkoeffiezient:

k = 0.895

Die Wertung des Korrelationskoeffizienten läßt eine 89.5% ige, starke Abhängigkeit erkennen.

Gewählt: Rumpfdurchmesser bezogen auf die Betriebsleermasse:

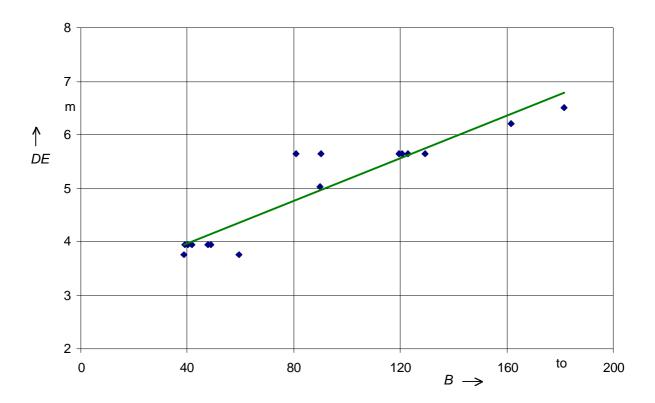


Bild 4.3 Rumpfdurchmesser über Betriebsleermasse

DE Rumpfdurchmesser B Betriebsleermasse

Regressionsgerade:

 $D_{\it eff} = 0.0199 \cdot Betriebsleer masse + 3.169$

Korrelationkoeffiezient:

k = 0.937

Die Wertung des Korrelationskoeffizienten läßt eine 93.7% ige, starke Abhängigkeit erkennen. Gewählt: Rumpfheck bezogen auf die Betriebsleermasse:

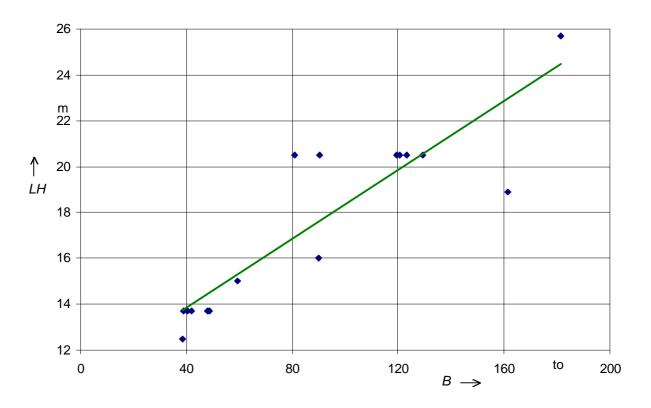


Bild 4.4 Rumpfheck über Betriebsleermasse

LH RumpfheckB Betriebsleermasse

Regressionsgerade:

 $L_{{\scriptscriptstyle Heck}} = 0.0752 \cdot Betriebsleer masse + 10.837$

Korrelationkoeffiezient:

k = 0.895

Die Wertung des Korrelationskoeffizienten läßt eine 89.5% ige, starke Abhängigkeit erkennen.

Gewählt: Kabine im Heck bezogen auf die Betriebsleermasse:

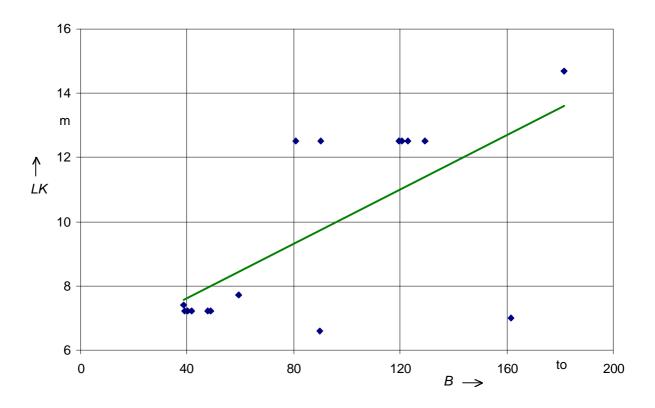


Bild 4.5 Kabine im Heck über Betriebsleermasse

LK Kabine im Heck B Betriebsleermasse

Regressionsgerade:

 $L_{{\it KabE}} = 0.0423 \cdot Betriebsleer masse + 5.92$

Korrelationkoeffiezient:

k = 0.669

Die Wertung des Korrelationskoeffizienten läßt eine 66.9% ige, mittelstarke Abhängigkeit erkennen.

Verwendbare Ergebnisse liefert der Rumpfdurchmesser in erster Linie (93.7%), gefolgt von Rumpfbug und Rumpfheck (89.5%).

5 Zusammenfassung

Mit geringen Änderungen sind die erhaltenen Ergebnisse für den Flugzeugentwurf anwendbar.

Im einzelnen ist bei der Flächenbelastung nur im Hinblick auf die Pfeilung eine starke Abhängigkeit gefunden worden. Zusätzlich zeigt der Faktor kl, der im Skript **Scholz 98** verwendet wird, eine geringe Änderung von etwa 10% bei aktuellen Flugzeugtypen.

Bei dem Verhältnis von maximaler Landemasse zur maximalen Startmasse ist eine starke Abhängigkeit zur Reichweite und Betriebsleermasse gefunden worden. Bezogen auf die Pfeilung läßt sich eine direkte Abhängigkeit aufzeigen. Beim Startschub findet sich eher eine mittelstarke Abhängigkeit.

Die Abmaße im Rumpfbug, -heck und Rumpfdurchmesser zeigen eine starke Abhängigkeit im Hinblick auf die Betriebsleermasse, wobei bei der Kabine im Heck nur eine mittelstarke Abhängigkeit zu erkennen ist.

Anzumerken ist die gute Bestätigung dieser Entwurfsparameter nach **Schmitt 98** beim Vergleich mit den aktuellen originalen Parametern.

Literaturverzeichnis

Brassey's 1999 TAYLOR, M.L: Airforce Insignia Illustrations: World Aircraft &

Systems Directory, London, Taylor Ltd & Brassey's Ltd (UK), 1999

Dasa 1999 FLUGZEUGHERSTELLER: Parameter, Hamburg Finkenwerder,

1999

Hundt 1982 HUNDT, E.: Schülerduden: Die Mathematik, Mannheim, Biblio-

graphisches Institut, 1982

Loftin 1980 LOFTIN, L. K.: Subsonic Aircraft: Evolution and the Matching of

size to Performance. NASA Reference Publication 1060, 1980

Raymer 1989 RAYMER, D.P: Aircraft Design: A Conceptual Approach. AIAA

Education Series, Washington D.C.: AIAA, 1989

Scholz 1998 SCHOLZ, D.: Skript zur Vorlesung: Flugzeugentwurf. Fachhochschule

Hamburg, Fachbereich Fahrzeugtechnik, 1998

Schmitt 1998 SCHMITT, D: Luftfahrttechnik, Flugzeugentwurf, Technische

Universität München, Lehrstuhl für Luftfahrttechnik, Skript zur

Vorlesung, 1988

Torenbeek 1989 TORENBEEK, E: Synthesis of Subsonic Airplane Design. Delft

University Press, Niederlande: 1988

Anhang A

Flugzeug bezugsdaten

Tabelle A1 Parameter der Flugzeugtypen Airbus:

Tabelle A1 Para	meter der Fl	ugzeugtyper	i Airdus:			
Flugzeugtyp	A300-	A310-300	A318-100	A319-200	A320-200	A321-100
	600R					
Weights						
MOE (t)	90,3	80,8	39	40,4	41,8	47,9
MTOW (t)	171,9	164,9	61,5	73,5	77	85
MLW (t)	140,0	124	156	61	64,5	74,5
Performance						
Range (NM)	4150	4800	1950	3100	2900	2350
S _{LFL} (ft)	5000	4900	4350	4650	4900	5100
Principal						
Dimension						
Wing span (m)	44,8	43,6	33,9	33,9	33,9	33,9
Max. length (m)	53,3	45,9	31,5	43,8	37,6	44,5
Fuselage diam. (m)	5,64	5,64	3,95	3,95	3,95	3,95
Wings						
Area (qm)	260	219	122,4	122,4	122,4	126
Sweep back (°)	28					
C _{L, max., Lg}	2,68	2,65	2,49	2,49	2,49	2,87
Non Cylindrical						
Segment						
Cockpit length (m)	2,56	2,56	2,36	2,36	2,36	2,36
Nose length (m)	9,5	9,5	6,4	6,4	6,4	6,4
Tail length (m)	20,5	20,5	13,7	13,7	13,7	13,7
Tail cabin length	12,5	12,5	7,2	7,2	7,2	7,2
(m)						
Thrust (one engine)	258	238	99,8	106,6	117,9	133,5
(kN)						
Npax	266	220	110	124	150	185
n _{SA}	8	8	6	6	6	6

Tabelle A1 Parameter der Flugzeugtypen Airbus:						
Flugzeugtyp	A321-200	A330-200	A330-300	A340-200	A340-300	
Weights						
MOE (t)	48,7	119,5	120,6	123,1	129,3	
MTOW (t)	89	230	217	257	271	
MLW (t)	75,5	180	179	182	190	
Performance						
Range (NM)	2700	6450	4850	7450	7200	
S _{LFL} (ft)	5150	5650	5600	6050	6300	
Principal						
Dimension						
Wing span (m)	33,9	60,3	60,3	60,3	60,3	
Max. length (m)	44,5	57,5	62,3	58,6	62,8	
Fuselage diam. (m)	3,95	5,64	5,64	5,64	5,64	
Wings						
Area (qm)	126	361,6	361,6	361,6	361,6	
Sweep back (°)						
C _{L, max., Lg}	2,87	2,47	2,47	2,54	2,54	
Non Cylindrical						
Segment						
Cockpit length (m)	2,36	2,56	2,56	2,56	2,56	
Nose length (m)	6,4	9,4	9,4	9,4	9,4	
Tail length (m)	13,7	20,5	20,5	20,5	20,5	
Tail cabin length	7,2	12,5	12,5	12,5	12,5	
(m)						
Thrust (one engine)	146,3	300,3	320,3	141,7	151,2	
(kN)						
Npax	197	293	335	293	335	
n _{SA}	6	8	8	8	8	

 Tabelle A1
 Parameter der Flugzeugtypen Boeing:

Tabelle A1 Parameter der Flugzeugtypen Boeing:							
Flugzeugtyp	B737-700	B757-200	B767-300	B777-300	B747-400		
Weights							
MOE (t)	38,6	59,5	89,8	161,5	181,4		
MTOW (t)	70	115,7	186,9	299,4	397		
MLW (t)	60,8	95,3	145,2	237,7	286		
Performance							
Range (NM)	3150	3900	6100	5200	7100		
S _{LFL} (ft)	4600	5070	5200	6100	7500		
Principal							
Dimension							
Wing span (m)	34,3	38,2	47,6	60,9	64,4		
Max. length (m)	23,2	46,9	53,7	73,1	68,7		
Fuselage diam. (m)	3,76	3,76	5,03	6,2	6,5		
Wings							
Area (qm)	125,5	183,4	287,2	444,5	548,8		
Sweep back (°)	25	25	31,5	31,6	37,5		
C _{L, max., Lg}							
Non Cylindrical							
Segment							
Cockpit length (m)	2,18	2,37	2,69	2,52	3,04		
Nose length (m)	8,9	6,8	8,2	10,9	13,5		
Tail length (m)	12,5	15	16	18,9	25,7		
Tail cabin length	7,4	7,7	6,6	7	14,7		
(m)							
Thrust (one engine)	88,97	170,1	233,5	435,93	258		
(kN)							
Npax	139	194	224	375	420		
n _{SA}	6	6	7	8	10		