fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK Studiengang Flugzeugbau

> Berliner Tor 5 D - 20099 Hamburg

> in Zusammenarbeit mit:

DaimlerChrysler
Aerospace
Airbus
Kreetslag 10
21129 Hamburg

Diplomarbeit
- Flugzeugbau -

Bewertung von Rumpfquerschnitten großer Passagierflugzeuge

Verfasser: Axel Siewert

Abgabedatum: 14.01.2000

Industrieller Betreuer: Dipl.-Ing. Bernd Rössner

Prüfer: Dr.-Ing. Dieter Scholz, MSME
 Prüfer: Prof. Dr. H. Flüh

Fahrzeugtechnik

Kurzreferat

Die größten Verkehrsflugzeuge der nächsten Generation werden mit bis zu 1000 Passagieren in technologisches Neuland vorstoßen.

Einen möglichen Vertreter dieser neuen Flugzeuggeneration stellt das A3XX Familienkonzept von Airbus Industrie dar. Bei der A3XX-100 Version sollen bis zu 850 Passagiere auf zwei Decks transportiert werden.

Dieses Konzept ist der Ausgangspunkt dieser Diplomarbeit. Ziel ist es gewesen mit einfachen Mitteln treffende Aussagen über festgelegte Eigenschaften eines (groben) Rumpfentwurfes machen zu können. Dabei geht es um die Bestimmung von Masse-, Geometrie- und Aerodynamikeigenschaften anhand bestimmter Eingangsparameter. Die Eingangsparameter bestehen im wesentlichen aus der Verteilung der Sitze in einem Rumpfquerschnitt und der Art der auf dem Frachtdeck verwendeten Container. Dabei müssen die Bauvorschriften (in der Form von JAR's und FAR's) der JAA und FAA beachtet werden.

Ein immer wichtiger werdender Faktor ist das Bedürfnis der Passagiere nach bestimmten Komfortmerkmalen. Sind in einem Großraumflugzeug 10 Sitze in einer Reihe angeordnet aber nur zwei Gänge vorhanden, dann müssen einige Passagiere immer zwei Mitflieger von ihren Plätzen "verscheuchen" um den Gang zu erreichen. Ein zusätzlicher Gang könnte hier für Abhilfe sorgen und außerdem das Gefühl der Enge schwinden lassen. Auch der Bordservice würde erleichtert. Dieser zusätzliche Komfort erfordert Raum in der Kabine und verändert so den Querschnitt in Bezug auf den Basisentwurf. Jetzt gilt es diese Veränderung der Rumpfkontur durch ein geeignetes Verfahren in Zahlen zu fassen. Elementare Kennwerte der Rumpfgeometrie (z.B. Länge, Breite, Querschnittsfläche, ... ,) und der Rumpfstrukturmasse sind zu berechnen.

Diese Ausarbeitung hat mit Sachverhalten aus dem Flugzeugentwurf und der Strukturkonstruktion sowie dem Einsatz der Finiten Element Methode ein Berechnungsverfahren angedacht, daß dieses mit nur wenigen Eingangsparametern vermag.

fachhochschule hamburg

FACHBEREICH FAHRZEUGTECHNIK

Studiengang Flugzeugbau

Bewertung von Rumpfquerschnitten großer Passagierflugzeuge

Diplomarbeit nach § 21 der Prüfungsordnung.

Hintergrund

Zur Auslegung eines Verkehrsflugzeuges gehören die Konfiguration und Gestaltung der Passagierkabine sowie des Frachtraumes. Anordnung und Auslegung der Ausstattungskomponenten in der Passagierkabine und im Frachtraum haben unmittelbaren Einfluß auf die Transportkapazität. Die Zweckmäßigkeit dieser Festlegungen entscheidet über den wirtschaftlichen Einsatz und Erfolg eines Flugzeuges.

Aufgabe

Es sollen über geometrische Ähnlichkeitsgesetze hinausgehende Zusammenhänge und Erfahrungswerte gefunden werden, mit dem Ziel eine nutzlastspezifische Betrachtung eines Flugzeugrumpfes - insbesondere des Rumpfquerschnittes durchführen zu können. Die Arbeit soll sich an der Entwicklung eines Großraumflugzeuges wie der des Megaliners orientieren (zwei Passagierdecks). Die wesentlichen Eingangsgrößen sind hierbei in der Anzahl bzw. Aufteilung der Sitze auf beide Decks und der Art der verwendeten Container im Rumpfquerschnitt zu sehen. Ziel ist es, durch eine geeignete Gestaltung des Rumpfes zu einem gewichtsoptimierten Gesamtentwurf zu gelangen.

Diese Arbeit soll u.a. untersuchen:

- Zusammenhang zwischen Sitzreihenkonfiguration und Rumpflänge,
- Zusammenhang zwischen Rumpflänge und Höhe des Fahrwerks sowie der Leitwerksgröße,
- Zusammenhang zwischen Flugzeugmasse und Rumpfparametern unter Berücksichtigung des Einflusses der Rumpfauslegung auf das Fahrwerk und das Höhenleitwerk.

Die Ergebnisse sollen in einem Bericht dokumentiert werden. Bei der Erstellung des Berichtes sind die entsprechenden DIN- Normen zu beachten.

Erklärung

Datum	Unterschrift
Werken entnommene S	Stellen sind unter Angabe der Quellen kenntlich gemacht.
	und Hilfsmittel benutzt habe. Wörtlich oder dem Sinn nach aus anderer
,	
ich versichere, das ich	n diese Diplomarbeit onne fremde Hille selbstandig verfabt und nur di

Inhalt

Verzeich	nnis der Bilder	10
Verzeich	nnis der Tabellen	15
Liste de	r Symbole	17
Liste de	r Abkürzungen	19
1	Einleitung	20
1.1	Motivation	20
1.2	Aufbau und Ziel der Arbeit	21
1.3	Literaturübersicht	22
2	Betrachtung der Nutzlast eines Verkehrsflugzeuges	23
2.1	Grundsätzliches	
2.2	Definition der Nutzlast im Rahmen dieser Arbeit	25
2.2.1	Passagiere	25
2.2.2	Fracht und Container	25
3	Rumpfgeometrie	27
3.1	Bestimmung des Querschnittes	27
3.2	Annahmen für das Frachtdeck	28
3.2.1	Container 1 (LD3)	28
3.2.2	Container 2 (M1)	29
3.3	Unterbringung von Passagieren und Fracht in einer sogenannten "Nutzlastbox"	"30
3.4	Möglichkeiten zur Unterbringung der Nutzlastbox in einer Rumpfkontur	31
3.4.1	Gruppe 1, Kreisform	31
3.4.2	Gruppe 2, Ellipsenkontur	31
3.4.3	Gruppe 3, Beliebige Querschnitte	32
3.5	Bestimmung der Rumpflänge	32
3.6	Bestimmung der Rumpfoberfläche	37
4	FEM- Rechnung	38
4.1	Grundsätzliches	38
4.2	Ziel der FEM- Rechnung	38
4.3	Bildung eines Rechenmodells	
4.4	Durchführung und Art der Berechnung	
4.4.1	Gruppe 1, 18 abreast Sitzanordnung	
4.4.2	Gruppe 2, 14 abreast Sitzanordnung	43
4.4.3	Gruppe 3, 20 abreast Sitzanordnung	44

4.5	Ergebnis und Darstellung der FEM- Rechnung	45
4.5.1	Gruppe 1, 18 abreast Sitzanordnung	45
4.5.2	Gruppe 2, 14 abreast Sitzanordnung	47
4.5.3	Gruppe 3, 20 abreast Sitzanordnung	49
4.5.4	Gesamtdarstellung des Zuwachsfaktors	51
4.5.5	Fazit des ersten Teiles der FEM- Rechnung	52
4.6	Beispiele für nicht elliptische oder kreisförmige Rumpfquerschnitte	53
4.6.1	Fazit des zweiten Teiles der FEM- Rechnung	55
5	Berechnung von Strukturmassen	56
5.1	Grundsätzliches zur Struktur	56
5.1.1	Betrachtete Bestandteile an der Flugzeugzelle	57
5.2	Fußboden des Oberdecks	58
5.2.1	Gängige Bauprinzipien bei Airbusflugzeugen	58
5.2.2	Querträgermasse	59
5.2.2.1	Masse der Längsträger	59
5.2.2.2	Masse der Bodenplatten	60
5.2.2.3	Masse des Querträgers	60
5.2.2.4	Alternatives Verfahren nach Torenbeek	
5.3	Rumpfhaut	64
5.3.1	Grundsätzliches zur Rumpfhäutung	64
5.3.2	Massenberechnung der Haut	65
5.4	Spante	67
5.4.1	Grundsätzliches zum Spant	67
5.4.2	Bestimmung der Biegemomente	68
5.4.3	Berechnung der Spantgeometrie	70
5.4.4	Abschlußbetrachtung zur Spantberechnung	71
5.5	Clip	72
5.5.1	Grundsätzliches zum Clip	72
5.5.2	Masse des Clip	72
5.6	Stringer	73
5.6.1	Grundsätzliches zum Stringer	73
5.6.2	Masse der Stringer	73
5.7	Leitwerke	74
5.7.1	Grundsätzliches zu Leitwerken	74
5.7.2	Berechnung der Leitwerksmasse	75
5.7.3	Abschließende Betrachtung zur Leitwerksberechnung	77
5.8	Fahrwerke	78
5.8.1	Grundsätzliches zu Fahrwerken	78
5.8.2	Berechnung der Fahrwerksmasse	78

5.9	Berechnung der gesamten Strukturmasse des Rumpfes	81
5.10	Maximum Take Off Weight	82
5.10.1	Grundsätzliches zum MTOW	82
5.10.2	Berechnung des MTOW	82
5.10.3	Zusammenfassung der Ergebnisse	84
6	Aerodynamik	86
6.1	Grundsätzliches	86
6.2	Berechnung des Widerstandes	86
7	Bewertung von Rumpfquerschnitten	91
7.1	Grundsätzliches	91
7.2	Gruppe 1, 18 abreast Sitzanordnung	92
7.2.1	Rumpflänge, -oberfläche und Querschnittsfläche	92
7.2.2	Strukturmassen, MTOW, Seitenleitwerk und Fahrwerk	94
7.2.3	Widerstand des Rumpfes	96
7.2.4	Ausnutzungsgrad der vorhandenen Querschnittsfläche	97
7.3	Gruppe 2, 14 abreast Sitzanordnung	99
7.3.1	Rumpflänge, -oberfläche und Querschnittsfläche	99
7.3.2	Strukturmassen, MTOW, Seitenleitwerk und Fahrwerk	100
7.3.3	Widerstand des Rumpfes	102
7.3.4	Ausnutzungsgrad der vorhandenen Querschnittsfläche	103
7.4	Gruppe 3, 20 abreast Sitzanordnung	104
7.4.1	Rumpflänge, -oberfläche und Querschnittsfläche	104
7.4.2	Strukturmassen, MTOW, Seitenleitwerk und Fahrwerk	106
7.4.3	Widerstand des Rumpfes	108
7.4.4	Ausnutzungsgrad der vorhandenen Querschnittsfläche	109
7.5	Zusammenfassende Bewertung aller drei Querschnittsgruppen	111
7.5.1	Widerstand des Rumpfes	111
7.5.2	Ausnutzungsgrad der vorhandenen Querschnittsfläche	112
7.5.3	MTOW	113
7.6	Beispiele für nicht kreis- oder ellipsenförmige Rumpfquerschnitte	114
7.6.1	Grundsätzliches	114
7.6.2	Untersuchte Kreissegmentquerschnitte	114
7.6.3	Strukturmassen	116
7.6.4	Masse von Leitwerk, Fahrwerk und der Rumpfstruktur	117
7.6.5	Widerstand des Rumpfes	118
7.6.6	Ausnutzungsgrad der Querschnittsfläche	119
7.7	Zusammenfassung des Kapitel 7	120

8	Vergleich der hier entwickelten Arbeitsmethode mit Gleichungen	des Flug-
	zeugentwurfes	121
8.1	Grundsätzliches	121
8.2	Vorstellung der einzelnen Verfahren	122
8.2.1	Statistikgleichung D 8.7 (1) nach Marckwardt	122
8.2.2	Statistikgleichung D 8.7 (2) nach Marckwardt	122
8.2.3	Statistikgleichung D 8.7 (3) nach Marckwardt	123
8.2.4	GD- Methode	
8.2.5	Rumpfmasse nach Torenbeek	124
8.2.6	Verfahren nach Schneider	125
8.2.7	Verfahren nach Boeing'69	125
8.2.8	Methode nach Burt- Phillips	126
8.2.9	Modifiziertes Verfahren nach dieser Diplomarbeit	126
8.3	Abschließende Beurteilung der Verfahren	127
9	Zusammenfassung und Ausblick	128
Litera	nturverzeichnis	130
Anha	ng A1 Excel- Programm MAP'99	132
A1.1	Grundsätzliches zu MAP'99	132
A1.2	Möglichkeiten und Grenzen von MAP'99	132
A1.3	Beispiel 1	135
A1.4	Beispiel 2	145

Verzeichnis der Bilder

Bild 1.1	Schon im frühen Flugzeugentwurf muß geprüft werden, ob das Rumpfkonzept	
	geeignet ist oder nicht [RODSCHER ZWO]	20
Bild 2.1	Raumaufteilung in der A3XX [Airbus Briefing 3.99]	23
Bild 2.2	Komfort in den Anfängen des Luftverkehrs. Spielkartenzimmer an Bord einer	
	Handley Page HP 42 [Braunburg '91]	23
Bild 2.3	Nutzung des Unterflurbereiches für die Passagiere [Airbus]	24
Bild 2.4	Luftfahrtcontainer M1 [Cathay Pacific]	25
Bild 2.5	Passagiere auf dem Weg zu ihrem Airbusflug (natürlich!) [Clip Art]	25
Bild 2.6	Standardcontainer LD3 [Cathay Pacific]	25
Bild 2.7	Luftfahrtcontainer M1 [Cathay Pacific]	26
Bild 2.8	Übliche Frachtcontainer und Paletten [Cathay Pacific]	26
Bild 3.1	Breite von Sitzen und Gängen [Boeing]	27
Bild 3.2	Elementare Maße beim Kabinenlayout [Skript FE Scholz'98]	28
Bild 3.3	Standardcontainer LD3 [Cathay Pacific]	28
Bild 3.4	Annahme der LD3 Kontur als Rechteck	29
Bild 3.5	Luftfahrtcontainer M1 [Cathay Pacific]	29
Bild 3.6	Darstellung der Nutzlastbox	30
Bild 3.7	Kreiskontur des Rumpfes	31
Bild 3.8	Elliptischer Rumpfquerschnitt	31
Bild 3.9	Darstellung des Ausnutzungsgrades	31
Bild 3.10	Beliebiger Querschnitt	32
Bild 3.11	Längenmaße am Rumpf der A3XX [Airbus]	34
Bild 3.12	Faktor k_{cabin} über die Passagieranzahl aufgetragen	34
Bild 3.13	Faktor k_{cabin} über den Schlankheitsgrad des Rumpfes aufgetragen	35
Bild 4.1	Bildung eines Rechenmodelles	39
Bild 4.2	Einleitung von Lasten in die Struktur in einem Querschnitt	40
Bild 4.3	18 abreast Sitzanordnung [Airbus]	41
Bild 4.4	Seitenverhältnis	42
Bild 4.5	14 abreast Sitzanordnung [Airbus]	43
Bild 4.6	20 abreast Sitzanordnung	44
Bild 4.7	Zuwachsfaktoren des Biegemomentes bei Gruppe 1	45
Bild 4.8	Biegemomentverlauf Kontur 1	46
Bild 4.9	Biegemomentverlauf Kontur 2	46
Bild 4.10	Biegemomentverlauf Kontur 3	46
Bild 4.11	Biegemomentverlauf Kontur 4	46
Bild 4.12	Biegemomentverlauf Kontur 5	46
Bild 4.13	Zuwachsfaktoren des Biegemomentes bei Gruppe 2	47
Bild 4.14	Biegemomentverlauf Kontur 1	48

Bild 4.15	Biegemomentverlauf Kontur 2	48
Bild 4.16	Biegemomentverlauf Kontur 3	48
Bild 4.17	Biegemomentverlauf Kontur 4	48
Bild 4.18	Zuwachsfaktoren des Biegemomentes bei Gruppe 3	49
Bild 4.19	Biegemomentverlauf Kontur 1	50
Bild 4.20	Biegemomentverlauf Kontur 2	50
Bild 4.21	Biegemomentverlauf Kontur 3	50
Bild 4.22	Biegemomentverlauf Kontur 4	50
Bild 4.23	Gesamtdarstellung der Zuwachsfaktoren aller Gruppen	51
Bild 4.24	Zuwachsfaktoren des Biegemomentes bei nicht elliptischen oder kreisförmigen	ı
	Querschnitten	53
Bild 4.25	Biegemomentverlauf Kontur 1	54
Bild 4.26	Biegemomentverlauf Kontur 2	
Bild 4.27	Biegemomentverlauf Kontur 3	
Bild 4.28	Biegemomentverlauf Kontur 4	
Bild 4.29	Biegemomentverlauf Kontur 5	55
Bild 5.1	Baugruppen an der A310 [Plath]	56
Bild 5.2	Strukturbauteile an einem Rumpfquerschnitt des A3XX [Airbus]	57
Bild 5.3	Konstruktionsprizipien bei Fußbodenrosten von Airbusflugzeugen [Airbus]	
Bild 5.4	Verwendete Längsträgerprofile bei Airbusflugzeugen	59
Bild 5.5	A3XX Quer- und Längsträgerprofile beim Oberdeck [Airbus]	
Bild 5.6	Derzeit gebräuchliche Querträgerprofile [Airbus]	60
Bild 5.7	Lasten auf den Querträger des Oberdecks	
Bild 5.8	Parameter bei der Querträgerberechnung	
Bild 5.9	Belastungen die in die Rumpfhaut eingeleitet werden	64
Bild 5.10	Bei Druckbelüftung ist die Kreisform am besten geeignet [SAWE]	65
Bild 5.11	Strukturkomponenten Haut, Stringer und Spant in einem Längsschnitt	65
Bild 5.12	Kreisquerschnitt	66
Bild 5.13	Elliptischer Querschnitt	
Bild 5.14	Segmentquerschnitt	66
Bild 5.15	Verschiedene Arten von Spanten; Krafteinleitungs- und Systemspante	
	[Airbus und Bruhn]	
Bild 5.16	Rechenmodell für die SKO- Rechnung	68
Bild 5.17	Koordinatensysteme und Kraftgrößen [Skript SKO Flüh'98]	
Bild 5.18	Zerlegung der Kräfte in ihre Anteile	
Bild 5.19	Radial angreifende Kräfte [Flüh'98]	
Bild 5.20	Tangential angreifende Kräfte [Flüh'98]	
Bild 5.21	Aufsummierter Biegemomentverlauf in einem Kreisringspant	69
Bild 5.22	Geometrie des Spantes	
Bild 5.23	Clip als Verbindung zwischen Spant und Haut [Airbus]	72

Bild 5.24	Innere Rumpfstruktur anhand einer A310 [Plath]	73
Bild 5.25	Aufbau eines Normalleitwerkes am Beispiel einer Boeing 747 [Lufthansa]	74
Bild 5.26	Seitenleitwerksmassen	75
Bild 5.27	Höhenleitwerksmassen	
Bild 5.28	Tandem- Fahrwerk der A340 [Flug Revue]	78
Bild 5.29	Auftragung der Fahrwerksmasse über das MTOW	
Bild 5.30	Auftragung der Fahrwerksmasse über das MTOW	80
Bild 5.31	Berechnung der gesamten Strukturmasse des Rumpfes	81
Bild 5.32	Zulässiges MTOW ist knapp erreicht	82
Bild 5.33	Rumpfmasse über MTOW (Verfahren 1)	83
Bild 5.34	Rumpfmasse über MTOW (Verfahren 2)	83
Bild 5.35	Rumpfmasse über Rumpfmassenanteil (Verfahren 3)	84
Bild 5.36	Zusammenfassung für die Fahrwerksberechnung	85
Bild 6.1	Auftriebsverteilung am A3XX [AERO]	86
Bild 6.2	Triebwerk des A3XX [Airbus]	89
Bild 6.3	Sehr große Triebwerke können zu neuartigen Problemen führen	
	[Rodscher Zwo]	90
Bild 7.1	18 abreast Sitzanordnung [Airbus]	92
Bild 7.2	Rumpflänge über das Seitenverhältnis (Gruppe 1)	92
Bild 7.3	Querschnittsfläche über Seitenverhältnis (Gruppe 1)	93
Bild 7.4	Rumpfoberfläche über Seitenverhältnis (Gruppe 1)	93
Bild 7.5	Haut, Stringer, Spant [Airbus]	
Bild 7.6	Strukturmassen mit LD3- Container (Gruppe 1)	
Bild 7.7	Strukturmassen mit M1- Container (Gruppe 1)	
Bild 7.8	MTOW über das Seitenverhältnis (Gruppe 1)	95
Bild 7.9	Fahrwerksmasse über Seitenverhältnis (Gruppe 1)	95
Bild 7.10	Hauptfahrwerk einer B747	96
Bild 7.11	Leitwerk einer B747	96
Bild 7.12	Leitwerks- und Fahrwerksmasse (Gruppe 1)	96
Bild 7.13	Widerstand über Seitenverhältnis (Gruppe 1)	
Bild 7.14	Widerstand über Rumpfoberfläche (Gruppe 1)	
Bild 7.15	Ausnutzung der einzelnen Decks (Gruppe 1)	97
Bild 7.16	Gesamtausnutzung der Querschnittsfläche (Gruppe 1)	98
Bild 7.17	Differenzierter Ausnutzungsgrad (Gruppe 1)	
Bild 7.18	14 abreast Sitzanordnung [Airbus]	
Bild 7.19	Rumpflängen über das Seitenverhältnis (Gruppe 2)	
Bild 7.20	Querschnittsfläche über Seitenverhältnis (Gruppe 2)	
Bild 7.21	Rumpfoberfläche über Seitenverhältnis (Gruppe 2)	
Bild 7.22	Haut, Stringer ,Spant [Airbus]	
Bild 7.23	Strukturmassen über Seitenverhältnis (Gruppe 2)	101

Bild 7.24	MTOW über das Seitenverhältnis (Gruppe 2)	.101
Bild 7.25	Fahrwerks- und Leitwerksmasse (Gruppe 2)	.102
Bild 7.26	Widerstand über Seitenverhältnis (Gruppe 2)	.102
Bild 7.27	Widerstand über Rumpf- oberfläche (Gruppe 2)	.102
Bild 7.28	Ausnutzung der einzelnen Decks (Gruppe 2)	.103
Bild 7.29	Gesamausnutzung der Querschnittsfläche (Gruppe 2)	.103
Bild 7.30	Differenzierter Ausnutzungsgrad (Gruppe 2)	.103
Bild 7.31	20 abreast Sitzanordnung	.104
Bild 7.32	Rumpflänge über das Seitenverhältnis (Gruppe 3)	.104
Bild 7.33	Querschnittsfläche über Seitenverhältnis (Gruppe 3)	.105
Bild 7.34	Rumpfoberfläche über Seitenverhältnis (Gruppe 3)	.105
Bild 7.35	Haut, Stringer, Spant [Airbus]	.106
Bild 7.36	Strukturmassen mit LD3- Containern (Gruppe 3)	.106
Bild 7.37	Strukturmassen mit M1- Containern (Gruppe 3)	.106
Bild 7.38	MTOW über das Seitenverhältnis (Gruppe 3)	.107
Bild 7.39	Fahrwerksmasse über Seitenverhältnis (Gruppe 3)	.107
Bild 7.40	Leitwerks- und Fahrwerksmasse (Gruppe 3)	.108
Bild 7.41	Widerstand über Seitenverhältnis (Gruppe 3)	.108
Bild 7.42	Widerstand über Rumpfoberfläche (Gruppe 3)	.109
Bild 7.43	Ausnutzung der einzelnen Decks (Gruppe 3)	.109
Bild 7.44	Gesamtausnutzung der Querschnittsfläche (Gruppe 3)	.110
Bild 7.45	Differenzierter Ausnutzungsgrad (Gruppe 3)	.110
Bild 7.46	Rumpfwiderstand über das Seitenverhältnis für alle drei Querschnittsgruppen	.111
Bild 7.47	Ausnutzungsgrad der Gesamtfläche über Seitenverhältnis für alle drei Gruppen	.112
Bild 7.48	MTOW über das Seitenverhältnis für alle drei Gruppen	.113
Bild 7.49	Elliptischer Querschnitt der als Referenz dient	.114
Bild 7.50	Segmentquerschnitt (14LD3a)	.114
Bild 7.51	Segmentquerschnitt (18LD3a)	.115
Bild 7.52	Segmentquerschnitt (18M1a)	.115
Bild 7.53	Segmentquerschnitt (20LD3a)	.115
Bild 7.54	Segmentquerschnitt (20M1a)	.116
Bild 7.55	Strukturmassen der Segmentquerschnitte	.116
Bild 7.56	Leitwerks-, Fahrwerks- und Rumpfstrukturmasse der Segmentquerschnitte	
Bild 7.57	Gesamtwiderstand und Rumpfwiderstand der Segmentquerschnitte	.118
Bild 7.58	Differenzierte Ausnutzungsgrade der Querschnittsflächen	
Bild 8.1	Airbus A340 [Airbus]	
Bild 8.2	Airbus A3XX [Airbus]	
Bild 8.3	Abweichungen der einzelnen Rechenverfahren	.127
Bild 8.4	Bei den Berechnungen ergeben sich Unterschiede, die mit der Rumpfform zusa	
	menhängen [Airbus]	.127

Bild A1.0	Gesamtübersicht der Seite "Haut, Stringer, Spant"	133
Bild A1.1	Kombinationsfeld	134
Bild A1.2	1.Schritt, Festlegung der Parameter	134
Bild A1.3	Der Excel Solver	135
Bild A1.4	Kontrolle der Rechnung ob die Nutzlastbox vollständig um-	
	schlossen wird	135
Bild A1.5	Schritt 2, Berechnung der Ellipsenkontur	135
Bild A1.6	Für die Segmentquerschnitte ist die Eingabe der Konturpunkte erforder-	
	lich (als Radius). Die Eingabe erfolgt in Metern	136
Bild A1.7	Bei einem beliebigen Querschnitt müssen die Punkte als Radius einge-	
	geben werden	136
Bild A1.8	Hier kann überprüft werden ob die Nutzlastbox vollständig um-	
	schlossen wird	136
Bild A1.9	Kennwerte des Oberdecks. Die grau unterlegten Felder werden	
	normalerweise nicht verändert	137
Bild A1.10	Option für die Länge des Querträgers und Art des zu berechnenden	
	Querschnittes	137
Bild A1.11	Festlegung von Grenzen bei der Querträgergeometrie	137
Bild A1.12	Die Werte müssen von Hand eingetragen werden	137
Bild A1.13	Beim Clipgewicht gibt es zwei Verfahren. Es stehen für die Clipmasse	
	und die Stringerteilung Alternativen zur Verfügung	138
Bild A1.14	Mögliche Spantteilungen	138
Bild A1.15	Grenzen für die Spantgeometrie	138
Bild A1.16	Mögliche Zielsetzungen	139
Bild A1.17	Wahl von Optionen als Vorbereitung für die Spantberechnung	139
Bild A1.18	Damit startet die Iteration mit dem oberen Grenzwert	140
Bild A1.19	Übertragen der Ergebnisse von Hautstärke und Spantmasse	140
Bild A1.20	Zuwachsfaktor der Belastung durch das Biegemoment für den	
	Ellipsenquerschnitt	140
Bild A1.21	Verschiedene Verfahren zur Bestimmung der Stringermasse	141
Bild A1.22	Leitwerks- und Fahrwerksmasse, MTOW	141
Bild A1.23	Annahmen für die aerodynamische Beurteilung des Entwurfes	142
Bild A1.24	Ausdruck des Ausgabeblattes für Beispiel 1 (A3XX-100)	143
Bild A1.25	Ausdruck des Ausgabeblattes mit den Informationen über die gewählten	
	Optionen für Beispiel 1 (A3XX-100)	144
Bild A1.26	1.Schritt, Festlegung der Parameter	145
Bild A1.27	Der Rumpfdurchmesser kann durch diese Option an bekannte Daten	
	angepaßt werden	146
Bild A1.28	Die Spantteilung wird für den A340 auf 21 Zoll gesetzt	146
Bild A1.29	Folgende Grenzen für die Spantgeometrie werden festgelegt	146

Bild A1.30	Vorbereitungen zur Spantberechnung	147
Bild A1.31	Übertragung der Ergebnisse in die entsprechenden Felder	147
Bild A1.32	Verschiedene Verfahren zur Bestimmung der Stringermasse	147
Bild A1.33	Bestimmung der Leitwerks- und Fahrwerksmasse sowie des MTOW	148
Bild A1.34	Annahmen für die aerodynamische Beurteilung des Entwurfes	149
Bild A1.35	Ausdruck des Ausgabeblattes für Beispiel 1 (A340-300)	150
Bild A1.36	Ausdruck des Ausgabeblattes mit den Informationen über die gewählte	en
	Optionen für Beispiel 1 (A340-300)	151
Verzeich	nis der Tabellen	
Tabelle 3.1	Daten von Airbusflugzeugen	33
Tabelle 3.2	Überprüfung der Formel nach Torenbeek	37
Tabelle 4.1	Berechnete Rumpfquerschnitte der Gruppe 1	41
Tabelle 4.2	Berechnete Rumpfquerschnitte der Gruppe 2	43
Tabelle 4.3	Berechnete Rumpfquerschnitte der Gruppe 3	44
Tabelle 5.1	SLW- Massen von Airbusflugzeugen	75
Tabelle 5.2	HLW- Masse von Airbusflugzeugen	75
Tabelle 5.3	Faktoren zur Berechnung der Fahrwerksmasse nach Torenbeek	79
Tabelle 5.4	Fahrwerksmassen	79
Tabelle 5.5	Fahrwerksmassen	80
Tabelle 5.6	Rumpfmassen (1)	83
Tabelle 5.7	Rumpfmasse (2, 3)	83
Tabelle 7.1	Rumpfquerschnitte (Gruppe 1)	92
Tabelle 7.2	Rumpflängen (Gruppe 1)	92
Tabelle 7.3	Rumpfflächen (Gruppe 1)	93
Tabelle 7.4	Massen von Strukturkomponenten (Gruppe 1)	94
Tabelle 7.5	MTOW (Gruppe 1)	95
Tabelle 7.6	Fahrwerk und Leitwerk (Gruppe 1)	95
Tabelle 7.7	Luftwiderstand (Gruppe 1)	96
Tabelle 7.8	Ausnutzungsgrade für die einzelnen Teilflächen des Querschnittes	
	(Gruppe 1)	97
Tabelle 7.9	Rumpfquerschnitte (Gruppe 2)	99
Tabelle 7.10	Rumpflängen (Gruppe 2)	99
Tabelle 7.11	Rumpfflächen (Gruppe 2)	100
Tabelle 7.12	Massen von Strukturkomponenten (Gruppe 2)	100
Tabelle 7.13	MTOW (Gruppe 2)	101
Tabelle 7.14	Fahrwerk, Leitwerk (Gruppe 2)	102
Tabelle 7.15	Luftwiderstand (Gruppe 2)	102

Tabelle 7.16	Ausnutzungsgrade für die einzelnen Teilflächen des Querschnittes	
	(Gruppe 2)	103
Tabelle 7.17	Rumpfquerschnitt (Gruppe 3)	104
Tabelle 7.18	Rumpflängen (Gruppe 3)	104
Tabelle 7.19	Rumpfflächen (Gruppe 3)	105
Tabelle 7.20	Massen von Strukturkomponenten (Gruppe 3)	106
Tabelle 7.21	MTOW (Gruppe 3)	107
Tabelle 7.22	Fahrwerk und Leitwerk (Gruppe 3)	107
Tabelle 7.23	Luftwiderstand (Gruppe 3)	108
Tabelle 7.24	Ausnutzungsgrade für die einzelnen Teilflächen des Querschnittes	
	(Gruppe 3)	109
Tabelle 7.25	Strukturmassen der Segmentquerschnitte	116
Tabelle 7.26	Leitwerks-, Fahrwerks- und Rumpf-strukturmasse der Segment-	
	querschnitte	117
Tabelle 7.27	Widerstand des Rumpfes und des Gesamtflugzeuges für alle Segme	nt-
	querschnitte	118
Tabelle 7.28	Differenzierte Ausnutzungsgrade der Querschnittsflächen für alle Se	egment-
	querschnitte	119
Tabelle 8.1	Rumpfmasse A340	127
Tabelle 8.2	Rumpfmasse A3XX	127

Liste der Symbole

A_C Fläche des Rumpfquerschnittes

a Kleiner Halbmesser

A Streckung (aspect ratio)

 A_{Floor} Bodenfläche

b Breite

b Großer Halbmesser

 b_m Mittragende Breite der Haut

b Spannweite

 b_{Rumpf} Breite des Rumpfes

 C_{SLW} Leitwerksvolumenbeiwert (Seitenleitwerk)

 c_{MAC} Mittlere aerodynamische Flügeltiefe

 C_{HIW} Leitwerksvolumenbeiwert (Höhenleitwerk)

 $c_{D,0_{*/C}}$ Widerstandsbeiwert bezogen auf das gesamte Flugzeug (Reiseflug)

 $c_{\scriptscriptstyle D.0_{\scriptscriptstyle \text{Pummf}}}$ Widerstandsbeiwert bezogen auf den Rumpf beim Anstellwinkel 0°

D_{cr} Widerstandskraft während des Reisefluges

 $d_{\it effektiv}$ Effektiver Durchmesser des Rumpfes (bei nicht kreisförmigen Querschnitten)

e Eulerzahl aber auch Gütefaktor für die Aerodynamik

F Kraft

g Erdbeschleunigung

h Höhe

 h_{Rumpf} Höhe des Rumpfes

*I*_x Flächenmoment

 $k_{\scriptscriptstyle \it fl}$ Faktor nach Torenbeek zur Fußbodenberechnung

 $k_{\it Cabin}$ Längenfaktor für die Passagierkabine

 k_{Tech} Technologiefaktor

 l_{SLW} Hebelarm des Seitenleitwerks

 l_{total} Gesamtlänge des Flugzeuges

 l_{HLW} Hebelarm des Höhenleitwerks

*l*_{Cabin} Länge der Passagierkabine

 $l_{\textit{Ouerträger}}$ Länge des Fußbodenquerträgers

 $(L/D)_{max}$ Maximale Gleitzahl (Reiseflug)

 l_{Rumpf} Rumpflänge

*M*_b Biegemoment

 m_{SLW} Masse des Seitenleitwerks

 m_{Pax} Masse eines Passagiers

 M_{MO} Maximale operationelle Machzahl

 m_{mto} Maximales Startgewicht

 $m_{Floorpanels}$ Masse der Bodenplatten

 $m_{Seattrack}$ Masse der Sitzschienen

 m_{HLW} Masse des Höhenleitwerks

 n_{aisles} Anzahl der Gänge

 n_{sa} Anzahl der nebeneinander liegenden Sitze (seat abreast)

 n_{Pax} Anzahl der Passagiere

 n_z Lastvielfaches in z- Richtung

 $n_{Container}$ Anzahl der Container nebeneinander

 n_{Punkte} Anzahl der Kraftangriffspunkte

 Δp Differenzdruck

P_{fl} Flächenlast aufgrund des Gewichtes der Passagiere

 $q_{\it Pax}$ Linienlast durch das Gewicht der Passagiere

R² Bestimmtheitsmaß

R Gaskonstante

r Radius

Re Reynoldszahl

S_N Benetzte Fläche der Triebwerksgondeln (Nacelle)

 s_{erf} Erforderliche Hautstärke

S Fläche, Oberfläche

S_w Flügelfläche

SV Seitenverhältnis

 S_{Rumpf} Benetzte Oberfläche des Rumpfes

T_{cr} Erforderliche Schubkraft während des Reisefluges

T Temperatur in Kelvin U_{Rumpf} Umfang des Rumpfes

v_{cr} Reisegeschwindigkeit

 $v_{\it Dive}$ Sturzfluggeschwindigkeit

V Volumen

 W_{erf} Erforderliches Widerstandsmoment

 W_{fl} Masse des Bodens

 W_{TO} Startgewicht

Griechische Symbole

n Kinematische Viskosität

 \boldsymbol{s}_{zul} Zulässige Spannung

 r_{AL} Materialdichte von Aluminium

 I_{Rumpf} Schlankheitsgrad des Rumpfes

k Isentropenexponent

 $\boldsymbol{j}_{\scriptscriptstyle H}$ Pfeilung des Höhenleitwerks

 \mathbf{j}_{V} Pfeilung des Seitenleitwerks

Liste der Abkürzungen

AI Airbus Industrie

CAD Computer Aided Design

FAA Federal Aviation Administration
FAR Federal Aviation Regulations

FEM Finite Element Methode

GD General **D**ynamics

JAA Joint Aviation Authorities

JAR Joint Aviation Requirements

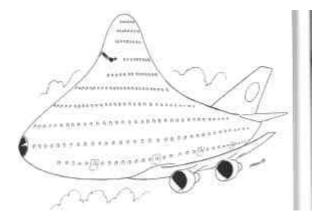
MAP'99 Massenabschätzungsprogramm

MTOW Maximum Take Off Weight

SKO Strukturkonstruktion
ULD Unit Load Device

1 Einleitung

1.1 Motivation


Bei der Auslegung und Konstruktion eines Verkehrsflugzeuges müssen Betriebssicherheit, Passagierkomfort, Servicefreundlichkeit und Wirtschaftlichkeit als oberste Ziele miteinander in Einklang gebracht werden. Dies schließt die Einhaltung der behördlichen Vorgaben wie Bauvorschriften (JAR's und FAR's) und den Umweltschutz ein.

Passagierkomfort und Servicefreundlichkeit beinhalten u.a. Merkmale wie angemessene Kopfund Beinfreiheit, Ganganzahl und -breiten sowie Art und Größe der Container für Fracht und Gepäck.

Diese Faktoren beeinflussen den Flugzeugentwurf von Anfang an. An dieser Stelle ist es wichtig über ein Verfahren zu verfügen, das schon im frühen Entwurfsstadium treffende Aussagen über die Masse der Struktur, die aerodynamischen Eigenschaften und über die mögliche Ausnutzung des Rumpfquerschnittes durch die Nutzlast, machen kann.

Mit Kenntnis dieser Parameter läßt sich entscheiden, ob ein Entwurf für die vorgesehene Transportaufgabe geeignet ist oder nicht. Da zu diesem frühen Zeitpunkt erst wenige Daten bekannt oder verfügbar sind, muß das angewendete Verfahren mit nur wenigen Parametern auskommen.

In dieser Ausarbeitung sind Rümpfe in der Größenordnung des A3XX in dieser Art und Weise betrachtet worden. Dabei sind die Sachverhalte der Strukturkonstruktion, des Flugzeugentwurfes und der Aerodynamik berücksichtigt worden.

Bild 1.1:Schon im frühen Flugzeugentwurf muß geprüft werden, ob das Rumpfkonzept geeignet ist oder nicht

1.2 Aufbau und Ziel der Diplomarbeit

Der Hauptteil dieser Arbeit teilt sich auf in zwei Teile. Im ersten Teil werden die Grundlagen für die Bewertung der Rumpfquerschnitte geschaffen und die entsprechenden Zusammenhänge hergeleitet. Dieser Teil endet mit Abschnitt 6.

Im zweiten Teil wird die eigentliche Bewertung der Rumpfkonturen vorgenommen. Das im ersten Teil hergeleitete Verfahren wird hier angewendet.

Im Anhang wird das EXCEL- Programm MAP'99 vorgestellt.

Der Hauptteil der Arbeit enthält folgende Ausführungen zum Thema:

- **Abschnitt 2** führt Betrachtungen zu der Nutzlast von Verkehrsflugzeugen durch und enthält Definitionen und stellt allgemeine Sachverhalte in diesem Zusammenhang dar,
- **Abschnitt 3** beschäftigt sich mit der Rumpfgeometrie, die von der Art und Verteilung der Nutzlast abhängt und leitet elementare Kennwerte der Rumpfgeometrie her,
- **Abschnitt 4** behandelt die ausgeführten FEM- Rechnungen die eine Basis für die Belastungsermittlung und Massenberechnung darstellen,
- **Abschnitt 5** enthält Herleitungen zur Massenberechnung von einzelnen Strukturbauteilen, des Leitwerkes und des Fahrwerkes sowie die Bestimmung des MTOW's,
- **Abschnitt 6** leitet den Widerstand des Rumpfes her und beschäftigt sich auch mit der Gleitzahl und der erforderlichen Triebwerksleistung des Flugzeuges,
- **Abschnitt 7** bewertet eine Vielzahl von Rumpfquerschnitten nach den beschriebenen Kriterien und stellt sie zusammenfassend dar,
- **Abschnitt 8** führt einen Vergleich des hier entwickelten Verfahrens mit anderen gebräuchlichen Gleichungen des Flugzeugentwurfes durch und stellt die Unterschiede abschließend dar,
- **Abschnitt 9** faßt die Ergebnisse dieser Diplomarbeit zusammen,
- **Anhang A 1** stellt das entwickelte Programm MAP'99 vor und führt 2 Beispielrechnungen durch.

Ziel dieser Arbeit ist es eine nutzlastspezifische Betrachtung eines Flugzeugrumpfes - insbesondere des Rumpfquerschnittes durchführen zu können. Es gilt über ein geeignetes Verfahren zu einem gewichtsoptimiertem Gesamtentwurf zu gelangen.

1.3 Literaturübersicht

Ein sehr bekanntes Werk auf dem Gebiet des Flugzeugentwurfes ist das von Torenbeek'88 verfaßte Buch "Synthesis of Subsonic Airplane Design". Es gibt hier kaum ein Themengebiet, das nicht angesprochen und in verständlicher Form dargestellt wird. Es sind zudem etliche Flugzeugdaten enthalten (insbesondere Gewichtsangaben), die für die Aufstellung eigener Statistiken sehr hilfreich sind. Dieses Werk spielt eine zentrale Rolle in dieser Diplomarbeit.

Eine weitere interessante Quelle stellt das Buch "Airplane Design" von Roskam dar. Hier werden, insbesondere für die Berechnung der Rumpfmasse, umfangreiche Formeln zur Verfügung gestellt. Auch in diesem Buch sind detaillierte Informationen über die Massen von Strukturbauteilen in Form zahlreicher Tabellen vorhanden.

Inhalte des Studienganges Flugzeugbau an der Fachhochschule Hamburg fließen durch zahlreiche Vorlesungsskripte mit ein. Hierbei sind besonders die Skripte der Fächer Flugzeugentwurf nach Scholz'98 bzw. Marckwardt'97 und Strukturkonstruktion nach Flüh'98 bzw. Garnatz'96 zu nennen.

Weitere Informationen sind Airbusinternen Schriften und dem Intra- bzw. Internet entnommen worden.

2 Betrachtung der Nutzlast eines Verkehrsflugzeuges

2.1 Grundsätzliches

Die Nutzlast ziviler Flugzeuge setzt sich aus Passagieren, deren Gepäck und Fracht zusammen. Die Passagiere werden zweckmäßigerweise in der Kabine untergebracht, die Fracht wird im Frachtraum unterhalb der Passagierkabine(n) verstaut. Das Handgepäck der Passagiere wird mit in die Kabine genommen und in Gepäckfächern oberhalb der Sitzplätze verstaut. Große Gepäckstücke kommen im Frachtraum unter.

Auf Langstreckenflügen wird etwa 30 bis 40% des Frachtraumes für das Gepäck der Passagiere benötigt. Der Rest steht dann dem Transport von Gütern zur Verfügung. Auf dem Frachtdeck kommen Container zum Einsatz, auf die im Folgenden noch eingegangen wird.

Bei der Unterbringung der Passagiere muß darauf geachtet werden, daß das Kabinenlayout auf die Bedürfnisse dieser sensiblen "Fracht" zugeschnitten wird. In diesem Rahmen müssen viele Anforderungen erfüllt werden. Diese lassen sich in zwei Hauptgruppen unterteilen:

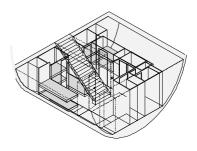
Bild 2.1: Raumaufteilung in der A3XX

- Zwingend notwendige Leistungen die für die Passagiere lebensnotwendig sind (z.B. Druckbelüftung, Klima, Sicherheitseinrichtungen...). Diese Leistungen werden durch Luftfahrtvorschriften der FAA und JAA festgelegt (sogenannte FAR's und JAR's).
- Optionale Eigenschaften, die über den reinen Transportvorgang hinaus die äußeren Bedingungen für das Reisen angenehm und bequem gestalten.

In Bezug auf diesen zweiten Punkt stellt sich heraus, daß die Komfortansprüche der Passagiere nicht geringer werden, sondern stetig an Bedeutung gewinnen. Dies ist auch aus wirtschaftlichen Gesichtspunkten für die Fluggesellschaften interessant.

Bei der Gestaltung des Transportmittels Flugzeug muß es möglich sein, in einer hochdichten Bestuhlung ein Maximum an Passagieren zu transportieren. Andererseits soll es aber auch möglich sein, den Passagieren ein Höchstmaß an Komfort zukommen zu lassen. In jedem Fall soll die Ausnutzung der (Rumpf-) Querschnittsflä-

Bild 2.2: Komfort in den Anfängen des Luftverkehrs. Spielkartenzimmer an Bord einer Handley Page HP42


che möglichst hoch sein, damit nur wenig Volumen durch Nichtnutzung verloren geht.

Schon der frühe Entwurf muß sich also mit dieser Thematik befassen, um im späteren Betrieb ein Höchstmaß an Flexibilität zu gewährleisten.

Bei der Gestaltung des Frachtraumes sollten auch die Nutzungsmöglichkeiten für Passagiere in Erwägung gezogen werden. Diese zusätzlichen Möglichkeiten werden z.T. heute schon genutzt. Um der Raumnot auf den Passagierdecks entgegenzuwirken ist es möglich Teile der Serviceeinrichtungen in den Unterflurbereich zu verlegen. Dies können Küchen, Toiletten oder andere spezielle Einrichtungen für Passagiere und Crew sein, wie z.B. Bars, Betten, Schlafkabinen bis hin zum Kindergarten.

Diese Einrichtungen werden vorzugsweise in Containern untergebracht um ein hohes Maß an Flexibilität zu erhalten. In allen diesen Einrichtungen wird aus Komfortgründen vorausgesetzt, daß Stehhöhe vorhanden ist. Machen diese Ansprüche es notwendig die Bodenstruktur nachträglich zu verändern, so ist das mit zusätzlichem Strukturgewicht verbunden und somit nachteilig.

Auf dem Frachtsektor ist es interessant solche Container im Unterflurbereich verladen zu können, die auch im sonstigen Lastverkehr üblich sind. Ein Beispiel hierfür ist der Eurocontainer M1. Der Frachtumschlag kann beschleunigt werden, wenn ein Umladen der Fracht in Luftfahrtcontainer der jetzt üblichen Bauart entfällt. Die Benutzung dieser neuen Container setzt allerdings voraus, daß auf dem Frachtdeck eine Höhe von etwa 2,60m vorhanden ist.

Bild 2.3: Nutzung des Unterflurbereiches für die Passagiere

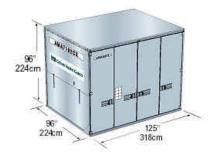


Bild 2.4: Luftfahrtcontainer M1

2.2 Definition der Nutzlast im Rahmen dieser Arbeit

Bei der Definition der Nutzlast werden für diese Diplomarbeit folgende, für die Nutzlast geltende, Vereinbarungen getroffen. Sollten sich hier Änderungen ergeben, so lassen sich diese im erstellten EXCEL- Programm MAP'99 leicht umsetzen.

2.2.1 Passagiere

Die in dieser Arbeit wichtigsten Größen im Zusammenhang mit dem Passagier sind Anzahl und Gewicht (des Passagiers). Hier ist das Gewicht mit 100kg angenommen worden. Dieses setzt sich aus 79,4kg nur für den Passagier (nach Roskam I) und einem Zusatzgewicht von 20,6kg für Sitz und Handgepäck zusammen.

Bild 2.5: Passagiere auf dem Weg zu ihrem Airbusflug (natürlich!)

2.2.2 Fracht und Container

Bei den im Luftverkehr verwendeten Unit Load Device Containern handelt es sich um Container zur Frachtraumbeladung mit genormten Abmaßen, die für einzelne Flugzeugtypen entwickelte werden. In dieser Arbeit werden zwei Containertypen näher betrachtet und in dem erstellten EXCEL- Programm auch berücksichtigt.

Container 1 (LD3)

Der LD3- Container ist zusammen mit dem größeren LD1- Container der für die Gepäckbeförderung wohl am meisten verwendete Transportbehälter.

Es handelt sich hierbei um einen aus Leichtmetall gefertigten Standardcontainer mit einem Volumen von 3,8 m^3 und einem Eigengewicht von 80kg. Die maximale Zuladung beträgt 1508kg. Die Form entspricht durch die abgeschrägte Seite der Kontur der Laderäume. Zur Anwendung kommt dieser Container in Airbus Flugzeugen (*Wide Bodie Familie*), Boeing 747, 777 sowie MD11 oder kleineren Vollfrachtern.

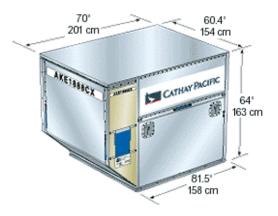


Bild 2.6: Standardcontainer LD3

Container 2 (M1)

Die Größe oder vielmehr die Höhe des M1 Containers beschränkt sein Einsatzgebiet auf große Vollfrachter z.B. des Typ 747F, da kein anderes ziviles Flugzeugmuster auf dem <u>Frachtdeck</u> den nötigen Platz bietet. Der Container hat ein Volumen von 17,58 m^3 und ein Eigengewicht von 360kg. Die maximale Zuladung des M1 Containers beträgt 6804kg.

Sonst übliche Container- und Palettentypen sollen in dieser Arbeit nicht weiter betrachtet werden. Der Vollständigkeit halber werden sie deshalb in diesem Schaubild zusammengefaßt.

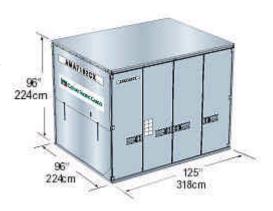


Bild 2.7: Luftfahrtcontainer M1

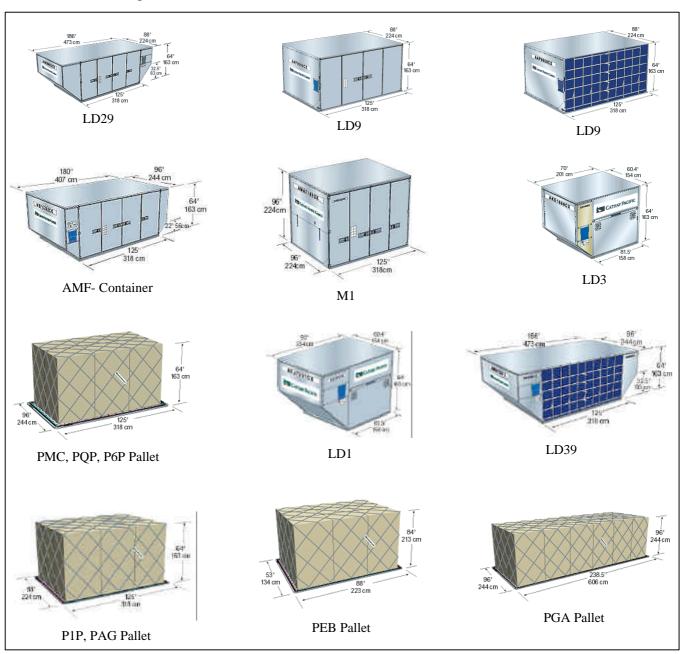


Bild 2.8: Übliche Frachtcontainer und Paletten [Quelle Cathay Pacific]

3 Rumpfgeometrie

3.1 Bestimmung des Querschnittes

Die Bestimmung und Berechnung des Rumpfquerschnittes setzt voraus, daß bestimmte Eckdaten bekannt und verfügbar sind:

- Anzahl der Passagiere nebeneinander auf den jeweiligen Passagierdecks, n_{sa}
- Anzahl der Gänge auf den jeweiligen Decks, n_{aisles}
- Breite eines Sitzes
- Breite eines Ganges
- Mindestwerte oder Komfortanforderungen bezüglich Höhe in Gängen, unter den Gepäckfächern und Freiräume für die Passagiere auf den Außensitzen des Oberdecks.
- Abmessungen der Container auf dem Frachtdeck

In dem erstellten EXCEL- Programm MAP'99 ist es möglich, die Anzahl der Sitze nebeneinander von einer 6 bis 10 abreast Sitzanordnung zu variieren. Um auch Flugzeugmuster der bestehenden *Wide Body* und *Single Aisle Familien* zu berücksichtigen ist es möglich, die Anzahl der Sitze auf einem Deck auf 0 zu setzen. Für die *Single Aisle Familie* sind weitere Annahmen möglich.

Für die Breite von Sitzen und Gängen werden folgende Annahmen getroffen:

- Die Breite eines Sitzes beträgt einer in **Economy** Class Bestuhlung 21 Zoll. Dies Airbusentspricht dem Standard. [Ouelle: TLAR A3XX 29.05.97]
- Die Breite der Gänge soll 20
 Zoll nicht unterschreiten.
 Dieses Maß ist auch Airbus-Standard. [Quelle: TLAR A3XX 29.05.97]

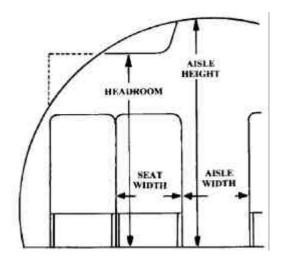


Bild 3.1: Breite von Sitzen und Gängen

Die weiteren Anforderungen für Freiräume der außen auf dem Upper Deck sitzenden Passagiere werden mit folgenden Werten festgelegt:

Die Mindesthöhe in den Gängen beträgt 2,10m. Um auch Reserven für Änderungen der Bodenstruktur und der Gestaltung des Linings zu haben, wird die Deckshöhe mit 2,50 m angenommen. Dieser Wert gilt für beide Decks und kann in dem erstellten Programm verändert werden.

Die Höhe unter den seitlichen Gepäckfächern wird mit 65 Zoll oder 1,70m angenommen. Um den Komfort zu erhöhen wird gefordert, daß auch über dem Außensitz die volle Kopffreiheit gegeben ist. Diese Angaben sind aus dem TLAR A3XX 29.05.97 übernommen worden.

Bild 3.2: Elementare Maße beim Kabinenlayout

3.2 Annahmen für das Frachtdeck

Um die notwendigen Flächen bzw. Räume für das Frachtdeck bestimmen zu können, werden für die zwei betrachteten Containertypen folgende Annahmen getroffen.

3.2.1 Container 1 (LD3)

Für den LD3 Container, der eingangs bereits beschrieben worden ist, wird vereinfachend eine Rechteckkontur angenommen. Im Querschnitt hat dieses angenommene Rechteck eine Breite von 70 Zoll, was der Breite des Containers auf der Oberseite entspricht. Die Höhe bleibt mit 64 Zoll unverändert.

Um diesen Container unterbringen zu können wird eine Frachtraumhöhe von 1,90m angesetzt. Dies ist nötig, da zu der reinen Containerhöhe von 1,63m noch die Roller Tracks, auf denen die Container geführt und befestigt

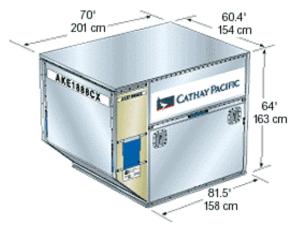
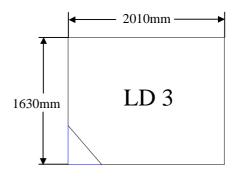



Bild 3.3: Standardcontainer LD3

werden und vorgeschriebene Freiräume an der Oberseite des Containers kommen, die zusätzlichen Raum erfordern. Der Raum, der zwischen Container und der Bodenstruktur des Passagierdecks vorhanden sein sollte, beträgt etwa 2 Zoll (Schmitt 98).

Bei der Unterbringung der Container im Frachtraum werden verschiedene Varianten betrachtet, wie z.B. zwei Container nebeneinander quer zur Flugrichtung, drei Container nebeneinander wobei der mittlere längs zur Flugrichtung verladen wird und drei Container die alle quer zur Flugrichtung stehen.

Bild 3.4: Annahme der LD3 Kontur als Rechteck

3.2.2 Container 2 (M1)

Für den M1 Container sind keine weiteren Annahmen notwendig, da er eine Rechteckkontur hat, die leicht in der Rechnung berücksichtigt werden kann.

Dieser Container kann sowohl in Längsrichtung als auch in Querrichtung verladen werden. Durch die Höhe von 96 Zoll ist es bisher nicht möglich gewesen, diesen Container im Unterflurbereich von zivilen Verkehrsflugzeugen unterzubringen. Bei dem Entwurf eines Flugzeuges der Größenordnung A3XX wäre die erforderliche Frachtraumhöhe von 2,60 m denkbar und möglich.

Anstelle der hier gewählten Container können auch Paletten oder andere (kleinere) Container verladen werden

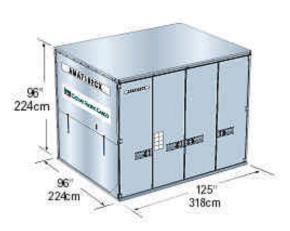


Bild 3.5: Luftfahrtcontainer M1

3.3 Unterbringung von Passagieren und Fracht in einer sogenannten "Nutzlastbox"

Um eine weitgehend selbständige Berechnung zu ermöglichen, wird die oben beschriebene Nutzlast in einer sogenannten "Nutzlastbox" untergebracht. Die Abmessungen dieser Box werden über folgende Zusammenhänge definiert:

$$Breite_{UpperDeck} = n_{sa,UpperDeck} \cdot 21Zoll + n_{aisles,UpperDeck} \cdot 20Zoll$$

$$Breite_{MainDeck} = n_{sa,MainDeck} \cdot 21Zoll + n_{aisles,MainDeck} \cdot 20Zoll$$

$$Breite_{LowerDeck} = n_{Container} \cdot Breite_{Container}$$

$$H\ddot{o}he_{UpperDeck} = 2,50m$$
, nach Annahme

$$H\ddot{o}he_{MainDeck} = 2,50m$$
, nach Annahme

$$H\ddot{o}he_{LowerDeck} = 1,90m$$
 für den LD3 Container

$$H\ddot{o}he_{LowerDeck} = 2,60m$$
 für den M1 Container

$$H\ddot{o}he_{Gesamt} = H\ddot{o}he_{UpperDeck} + H\ddot{o}he_{MainDeck} + H\ddot{o}he_{LowerDeck}$$

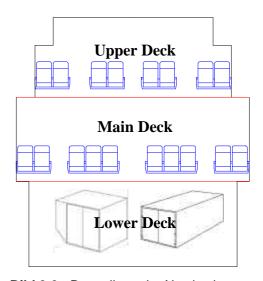


Bild 3.6: Darstellung der Nutzlastbox

Die "Ecke" auf dem Oberdeck ergibt sich aus der Forderung nach Kopffreiheit über dem Außensitz. Wie bereits erwähnt, beträgt hier die Höhe über dem Boden des Oberdecks 1,70m. Die Breite dieser Abstufung ("Ecke") entspricht der Breite des Außensitzes. Das Zusammenfassen der Nutzlast zu dieser Box erleichtert die Umsetzung in dem erstellten EXCEL- Programm MAP'99 und ist Grundlage aller Berechnungen in diesem Zusammenhang.

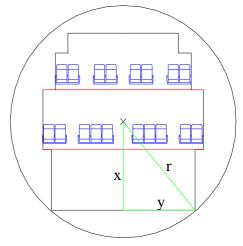
3.4 Möglichkeiten zur Unterbringung der Nutzlastbox in einer Rumpfkontur

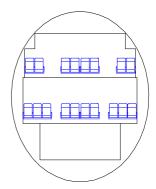
Um die in ihren Ausmaßen festgelegte Nutzlastbox werden im nächsten Schritt verschiedene Rumpfkonturen generiert. Diese lassen sich in drei Gruppen unterteilen.

3.4.1 Gruppe 1, Kreisform

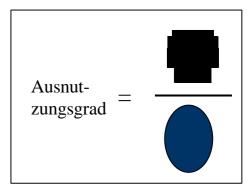
Die einfachste Art des Querschnittes stellt der Kreisquerschnitt dar. Der Radius des Kreises wird durch den vom Mittelpunkt am weitesten entfernten Punkt der Boxkontur bestimmt. Über den Pythagoras ist der Radius leicht zu bestimmen.

$$r = \sqrt{x^2 + y^2}$$




Bild 3.7: Kreiskontur des Rumpfes

3.4.2 Gruppe 2, Ellipsenkontur


Wesentlich komplizierter wird es bei einer Ellipsenkontur. In das EXCEL- Programm wird die Ellipsenkontur mit Hilfe bekannter Gleichungen integriert.

In dieser Arbeit wird bei der Beschreibung und Identifizierung der Ellipsenkontur im wesentlichen der Ausnutzungsgrad verwendet. Dieser ist definiert als Quotient von benötigter Fläche (Nutzlastbox) zu vorhandener bzw. angebotener Fläche (Ellipse).

Ein EXCEL- Programm (SOLVER) berechnet nach Definition des Ausnutzungsgrades die Ellipsenabmessungen. Es fällt auf, daß gerade "hohe" Ellipsen mit einem geringen Seitenverhältnis einen hohen Ausnutzungsgrad haben. Geht das Seitenverhältnis gegen 1 (Kreiskontur) wird der Ausnutzungsgrad niedrig.

Bild 3.8: Elliptischer Rumpfquerschnitt

Bild 3.9: Darstellung des Ausnutzungsgrades

3.4.3 Gruppe 3, Beliebige Querschnitte

Ein nochmals erhöhter Arbeitsaufwand ist nötig, wenn es darum geht, beliebig gestaltete Querschnittsformen zu beurteilen. Es ist in diesem Fall nicht mehr möglich auf Gleichungen zurückzugreifen, mit denen die Segmentkontur komplett beschrieben werden kann.

Um für diese Querschnitte z.B. den Biegemomentverlauf im Spant zu ermitteln, ist es nötig eine FEM-Rechnung zu machen (siehe Kapitel 4 FEM- Rechnung).

Die Querschnitte dieser Gruppe 3 werden über ein CAD- Programm (in diesem Fall AutoCAD R14) erstellt, da es zum einen nötig ist, das FEM- Programm mit Geometriedaten zu füttern und zum anderen die Geometrie über Konturpunkte in die EXCEL- Berechnung einzugeben.

Die Bearbeitung dieser Querschnitte erfordert durch die FEM- Berechnung und der Aufbereitung der Ergebnisse viel Zeit.

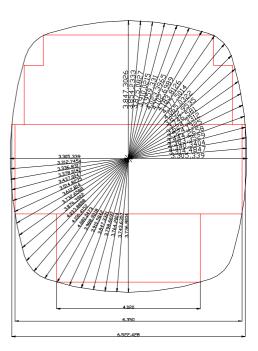


Bild 3.10: Beliebiger Querschnitt

3.5 Bestimmung der Rumpflänge

Um von der Querschnittsgeometrie auf die Rumpflänge schließen zu können, wird auf folgende Gleichungen (nach Scholz '98) zurückgegriffen:

$$l_{cabin} = k_{cabin} \cdot \frac{n_{Pax}}{n_{sa}} \tag{3.1}$$

$$l_f = 1.6 \cdot d_{effektiv} + l_{cabin} + 4m \tag{3.2}$$

Der Faktor k_{cabin} in dieser Formel kann zwischen 1,0m und 1,1m variieren. Dies hängt von der Nutzung (Langstrecke oder Kurzstrecke, Linie oder Charter) und dem Halter des Flugzeuges ab. Dies bedeutet, daß die Kabinenlänge um 10% schwanken kann. Da der Faktor k_{cabin} nur an vage Anhalte geknüpft ist, wird ein Zusammenhang gesucht, der eine größere Genauigkeit bei der Bestimmung der Rumpflänge ermöglicht.

Zu diesem Zweck werden die Daten der Airbusflugzeuge in einer Tabelle zusammengefaßt. Noch nicht gebaute Flugzeuge, wie die A3XX, A318 und die Derivate der A340 sind hier ebenfalls berücksichtigt.

Tabelle 3.1: Daten von Airbusflugzeugen

Tabolio off: Batoli voli 7 (libaoliag2oagoli								
A/C	n_{pax}	n_{sa}	$l_{ extit{tota\"o}}$	$l_{\it Rumpf}$	$l_{\it cabin}$	$d_{\it effektiv}$	$k_{\scriptscriptstyle cabin}$	$\frac{l_{\it Rumpf}}{d_{\it effektiv}}$
A318	129	6	31,40m	31,40m	21,06m	3,96m	0,980	7,929
A319	153	6	33,80m	33,80m	23,46m	3,96m	0,920	8,535
A320-200	180	6	37,60m	37,60m	27,26m	3,96m	0,909	9,495
A321	220	6	44,50m	44,50m	34,16m	3,96m	0,932	11,237
A310-300	280	9	46,70m	46,20m	33,18m	5,64m	1,066	8,191
A330-200	405	9	59,00m	58,48m	45,46m	5,64m	1,010	10,369
A306	361	9	54,10m	53,13m	40,11m	5,64m	1,000	9,420
A340-200	420	9	59,40m	58,48m	45,46m	5,64m	0,974	10,369
A330-300	440	9	63,70m	63,21m	50,19m	5,64m	1,027	11,207
A340-300	440	9	63,70m	63,21m	50,19m	5,64m	1,027	11,207
A340-500	440	9	67,90m	66,17m	53,15m	5,64m	1,087	11,732
A340-600	485	9	75,30m	73,46m	60,44m	5,64m	1,121	13,025
A3XX-050	608	18	68,20m	64,82m	48,29m	7,83m	1,430	8,278
A3XX-100	842	18	73,30m	69,90m	53,37m	7,83m	1,141	8,927
A3XX-200	970	18	79,60m	76,25m	59,72m	7,83m	1,108	9,738

Beschreibung der enthaltenen Größen:

- n_{pax} ; Es wird die höchste Passagierzahl verwendet, die zulässig ist (High Density)
- l_{total} ; Diese Größe beschreibt die maximale Länge des Flugzeuges, dieses ist nicht immer die Rumpflänge l_{Rumpf} . Nur bei den Flugzeugen der Single Aisle Familie ist $l_{total} = l_{Rumpf}$
- $l_{\textit{Rumpf}}$; Die Rumpflänge wird aus Datenblättern entnommen, Ist diese Datenquelle nicht vorhanden ist die Rumpflänge aus einer Drei- Seiten- Ansicht abgemessen worden. Die Rumpflänge beinhaltet auch das APU- Compartment.
- ullet l_{cabin}; Die Kabinenlänge berechnet sich aus der oben definierten Formel
- $d_{effektiv}$; Für nicht kreisförmige Querschnitte wird mit Hilfe der Formel:

$$d_{effektiv} = \sqrt{\frac{4}{\mathbf{p}} \cdot A_{Querschnitt}}$$
 (3.3)

ein effektiver Durchmesser nach Torenbeek '88 bestimmt.

 $\frac{\sigma_{Rumpf}}{d_{effektiv}}$; Dieser Quotient stellt den Schlankheitsgrad der Rumpfröhre dar. Lange gestreckte Versionen eines Flugzeugmusters haben einen höheren Schlankheitsgrad als das Ausgangsmuster oder verkürzte Versionen. Alternative Bezeichnung I_{Rumpf}

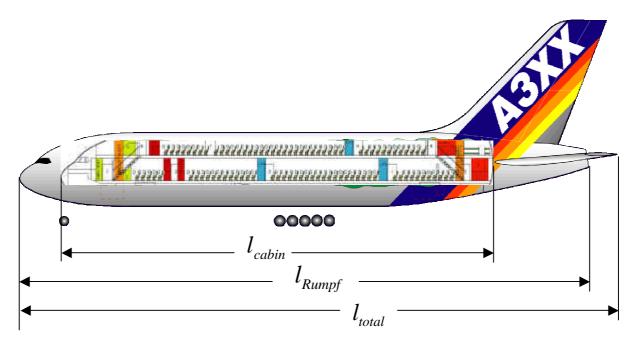
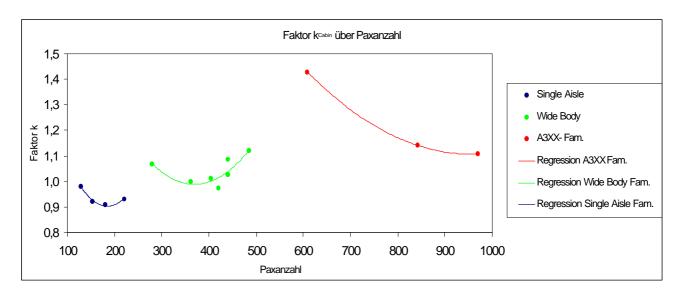



Bild 3.11: Längenmaße am Rumpf der A3XX

Mit den Daten der Tabelle 3.1 läßt sich der Faktor $k_{\it cabin}$ über die Passagieranzahl auftragen. Bei dieser Darstellung werden die verschiedenen (Airbus-) Flugzeugfamilien $\it Single Aisle$, $\it Wide Body$ und $\it A3XX Familie$ unterschieden.

Bild 3.12: Faktor $k_{\it cabin}$ über die Passagieranzahl aufgetragen

Die Datenpunkte sind durch Regression in Gleichungen verarbeitet worden. Für die einzelnen Flugzeugfamilien gelten folgende Zusammenhänge:

• *Single Aisle Familie* (A319...):

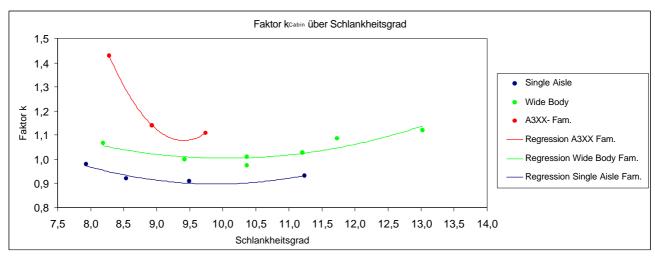
$$k_{cabin} = 2,396 \cdot 10^{-5} \cdot n_{Pax}^{2} - 8,847 \cdot n_{Pax} + 1,719$$
 (3.4)

Das Bestimmtheitsmaß beträgt $R^2 = 0.971$

• Wide Body Familie (A300...):

$$k_{cabin} = 9,996 \cdot 10^{-6} \cdot n_{Pax}^{2} - 7,384 \cdot 10^{-3} \cdot n_{Pax} + 2,353$$
 (3.5)

das Bestimmtheitsmaß beträgt $R^2 = 0.734$


• A3XX Familie:

$$k_{cabin} = 2,702 \cdot 10^{-6} \cdot n_{Pax}^{2} - 5,152 \cdot 10^{-3} \cdot n_{Pax} + 3,563$$
(3.6)

das Bestimmtheitsmaß beträgt $R^2 = 1$

Mit der Hilfe der hier ermittelten Gleichungen läßt sich in erster Näherung der Faktor k_{cabin} anhand der Passagieranzahl n_{Pax} schätzen. Ist Faktor k_{cabin} bekannt, so läßt sich eine Rumpflänge l_{Rumpf} mit den oben dargestellten Zusammenhängen ermitteln. Da dies erst eine recht grobe Schätzung ist, erfolgt ein zweiter Schritt um die Genauigkeit zu verbessern.

Der Faktor k_{cabin} wird zu diesem Zweck über den Schlankheitsgrad $\frac{l_{Rumpf}}{d_{effektiv}}$ aufgetragen.

Bild 3.13: Faktor k_{cabin} über den Schlankheitsgrad des Rumpfes aufgetragen

Die Datenpunkte sind wieder durch Regression in Gleichungen verarbeitet worden. Für die einzelnen Flugzeugfamilien gelten folgende Zusammenhänge:

• Single Aisle Familie (A319...):

$$k_{cabin} = 0.0196 \cdot \left(\frac{l_{Rumpf}}{d_{effektiv}}\right)^2 - 0.387 \cdot \left(\frac{l_{Rumpf}}{d_{effektiv}}\right) + 2.814$$
(3.7)

Das Bestimmtheitsmaß beträgt $R^2 = 0.8992$

• *Wide Body Familie* (A300...):

$$k_{cabin} = 0.0151 \cdot \left(\frac{l_{Rmpf}}{d_{effektiv}}\right)^2 - 0.3026 \cdot \left(\frac{l_{Rumpf}}{d_{effektiv}}\right) + 2.5239$$
(3.8)

das Bestimmtheitsmaß beträgt $R^2 = 0.814$

• A3XX Familie:

$$k_{cabin} = 0,277 \cdot \left(\frac{l_{Rumpf}}{d_{effektiv}}\right)^2 - 5,214 \cdot \left(\frac{l_{Rumpf}}{d_{effektiv}}\right) + 25,601$$
(3.9)

das Bestimmtheitsmaß beträgt $R^2 = 1$

Bei der Berechnung der A3XX Familie hat es sich als vorteilhaft erwiesen, die Rumpflänge l_{Rumpf} (über den Faktor k_{cabin}) nur über die Passagieranzahl zu bestimmen.

Bei der Kontrolle der Ergebnisse hat sich gezeigt, daß die große Steigung der Regressionskurve für die A3XX Familie in Bild 3.12 schon bei geringen Änderungen des Schlankheitsgrades

$$\frac{l_{\it Rumpf}}{d_{\it effektiv}}$$
 (zu) große Änderungen der Rumpflänge zur Folge hat.

Mit dem jetzt erneut ermittelten Faktor k_{cabin} wird die Rumpflänge endgültig bestimmt.

3.6 Bestimmung der Rumpfoberfläche

Bei der Bestimmung der Rumpfoberfläche in einem frühen Stadium des Flugzeugentwurfes ergeben sich leicht Probleme, da die Rumpfkontur nicht bis ins Detail bekannt ist und bestimmte Abmessungen noch völlig fehlen. Vereinfachungen sind deshalb an dieser Stelle notwendig. Torenbeek gibt in diesem Zusammenhang eine Gleichung an, die sich bei der Bestimmung der Rumpfoberfläche auf wenige schon anfangs bestimmte Eingangsparameter beschränkt. Die gewählte Gleichung gilt für rotationssymetrische Körper mit einem zylindrischen Mittelteil. Bei nichtkreisförmigen Rumpfquerschnitten (wie dies beim A3XX der Fall ist) wird ein effektiver Rumpfdurchmesser gebildet, der dann in die Gleichung eingesetzt wird.

Die Gleichung für die benetzte Rumpfoberfläche ist nach Torenbeek:

$$S_{Rumpf} = \boldsymbol{p} \cdot d_{effektiv} \cdot l_{Rumpf} \cdot \left(1 - \frac{2}{\boldsymbol{I}_{Rumpf}}\right)^{\frac{2}{3}} \cdot \left(1 + \frac{1}{\boldsymbol{I}_{Rumpf}}\right)^{\frac{2}{3}} \cdot \left(1 + \frac{1}{\boldsymbol{I}_{Rumpf}}\right)$$
(3.10)

Es gilt aber die Einschränkung, daß der Schlankheitsgrad $I_{Rumpf} \ge 4.5$ ist.

Da die einzelnen Parameter dieser Gleichung in dem vorherigen Kapitel 3.5 bereits erklärt worden sind, wird an dieser Stelle darauf verzichtet.

Beim Gebrauch dieser Gleichung ist zu bemerken, daß weder Verkleidungen (z.B. Flügel-Rumpf Übergang) noch Lufteinläufe oder sonstige "Verunreinigungen" beachtet werden können. Der Einfluß dieser Flächen wird für diese Arbeit aber als vernachlässigbar eingeschätzt.

Um die Genauigkeit der Formel zu überprüfen, sind einige A3XX Daten nachgerechnet worden:

Tabelle 3.2:			
		l nach Torenbeek	

A/C Typ	$l_{\it Rumpf}$	$S_{\it Rumpf,geg}$	$S_{\it Rumpf,ger}$	Abweichung
A3XX-50	64,82m	1366 m ²	$1342 m^2$	1,75%
A3XX-100	69,90m	1492 <i>m</i> ²	1467 m^2	1,67%
A3XX-200	76,25m	$1650 m^2$	$1622 m^2$	1,69%
Status 8A	69,90m	1466 <i>m</i> ²	1496 m^2	2,04%
DB	69,90m	1506 m ²	$1523 m^2$	1,12%
ТВ	69,90m	1584 <i>m</i> ²	$1502 m^2$	1,14%
NTB	69,90m	1476 <i>m</i> ²	1498 m^2	1,50%
A340-300	63,21m	963 m^2	$990 m^2$	2,75%

Es wird deutlich, daß die Abweichung recht gering ist. Die Genauigkeit ist für diese Art von Betrachtung mehr als ausreichend.

4 FEM - Berechnung

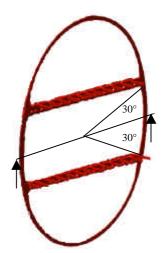
4.1 Grundsätzliches

Bei komplexen Strukturen (hier die Berechnung eines Rumpfquerschnittes) ist es nur selten möglich eine statische Rechnung auf geschlossene, analytische Weise mit ausreichender Genauigkeit durchzuführen. Die nötigen Vereinfachungen beeinträchtigen in solchen Fällen die Qualität des Ergebnisses.

Bei der Finiten Element Methode (kurz FEM) wird eine komplexe Struktur in eine endliche (finite) Anzahl von Elementen zerlegt. Aus den Einzellösungen der Elemente, die bekannt sind, wird unter Berücksichtigung von Gleichgewichts- und Verträglichkeitsbedingungen die Lösung für das Gesamtsystem ermittelt.

Die im Rahmen dieser Arbeit durchgeführten FEM- Rechnungen sind mit dem Programm COSMOS/M (Version 1.71) durchgeführt worden. Dieses Programm ist lange Gegenstand der Vorlesung Finite Element Methode an der Fachhochschule Hamburg gewesen, auf deren Grundlagen hier zurückgegriffen wird.

4.2 Ziel der FEM- Rechnung


Mit Hilfe dieser Berechnungen gilt es Zusammenhänge und Abhängigkeiten zu ermitteln, die eine weitgehend automatische Belastungsermittlung im Rahmen des angefertigten EXCEL-Programmes MAP'99 ermöglichen.

Ziel ist es gewesen, auch komplizierte Querschnittsformen, wie zum Beispiel die Ellipsenkontur, auf einfachere und berechenbare Geometrien zurückzuführen. Dies ist vorzugsweise der Kreisquerschnitt. Dies beinhaltet die Ermittlung von Erfahrungswerten, mit denen anhand bestimmter Querschnittsmerkmale auf das zu erwartende Belastungsniveau geschlossen werden kann. Das wichtigste Querschnittsmerkmal wird in diesem Zusammenhang das Seitenverhältnis sein, was im nachfolgenden Abschnitt noch erläutert wird.

4.3 Bildung eines Rechenmodelles

Um den Umfang dieser Berechnungen zu begrenzen, dies betrifft besonders die SKO- Rechnung, ist der Sachverhalt vereinfacht worden. Diese Vereinfachungen bestehen aus folgenden Punkten:

- Das Frachtdeck wird vernachlässigt
- Die Passagierdecks werden in einem 30° Winkel von der Horizontalen angenommen
- Die Decks sind unendlich steif, was durch entsprechende Auflagerbedingungen simuliert wird
- Die Verformung der Passagierdecks wird nicht berücksichtigt.
 Die durch die Fußböden wirkenden Lasten werden durch Einzellasten an den Fußbodenanschlußpunkten angesetzt.

Bild 4.1: Bildung eines Rechenmodelles

- Es wird nicht zwischen Spant und Haut unterschieden, sondern mit der äußeren Rumpfkontur gerechnet. Es wird vorausgesetzt, daß der Spantradius gegenüber den übrigen Abmessungen groß ist.
- Das Gleichgewicht mit den äußeren Kräften (Einzellasten, Drucklasten) halten 2 an der gedachten Horizontalen angreifende Kräfte (Auflager). Dies ist nötig um den Rechenaufwand der SKO- Rechnung einzugrenzen.

4.4 Durchführung und Art der Berechnung

Um Abhängigkeiten und Gesetzmäßigkeiten bei den unterschiedlichen Rumpfkonturen zu erkennen, sind insgesamt 13 Rumpfquerschnitte mit der FEM- Methode berechnet worden. Zusätzlich sind noch etliche "Exoten" wie Rechteckquerschnitte und aus Kreissegmenten zusammengesetzte Konturen berücksichtigt worden.

- Jeder betrachtete Querschnitt wird belastet durch:
- den doppelten Innendruck, $2 \cdot \Delta p$ (nach FAR 25.365) mit $\Delta p = 60500 Pa$
- das Gewicht der Passagiere bei einem Lastvielfachen von $n_z = 3,75$ (nach FAR 25.337)

Um diese Bedingungen in Kräfte für die jeweiligen Berechnungen (SKO und FEM) umzusetzen sind folgende Schritte notwendig:

Der Innendruck übt auf den Spant folgende Kräfte aus:

$$F_{Snant ops} = 2 \cdot \Delta p \cdot Fl \ddot{a} che \tag{4.1}$$

Die Fläche wird aus dem Umfang des Rumpfquerschnittes sowie der gewählten Spantteilung bestimmt:

$$Fl\ddot{a}che = Umfang \cdot Spantteilung \tag{4.2}$$

Die so ermittelte Kraft wird über 36 bis maximal 72 Punkte in die (Spant-)Struktur eingeleitet. Die Kraft die auf jeden dieser Punkte normal zur Kontur wirkt beträgt so:

$$F_{Punkt} = \frac{F_{Spant,ges}}{n_{Punkte}} \tag{4.3}$$

Mit diesen Annahmen ist es möglich den Biegemomentverlauf über den Umfang ausreichend genau darzustellen und den Rechenaufwand zu begrenzen. Dies betrifft besonders die SKO-Rechnung. Bei der FEM- Rechnung wird der Innendruck als Linienlast idealisiert in die Struktur eingeleitet.

Die Last die durch Passagiere mit dem entsprechenden Lastvielfachen n_z entsteht beträgt:

$$F_{Pax,UpperDeck} = n_{Pax,UpperDeck} \cdot m_{Pax} \cdot g \cdot n_{z} \tag{4.4}$$

$$mit m_{Pax} = 100kg$$
$$g = 9,80665 \frac{m}{s^2}$$

Für das Hauptdeck ist der Rechengang identisch.

Die Hälfte dieser Kräfte wird jeweils an den 2 Befestigungspunkten der Decks in die Struktur eingeleitet.

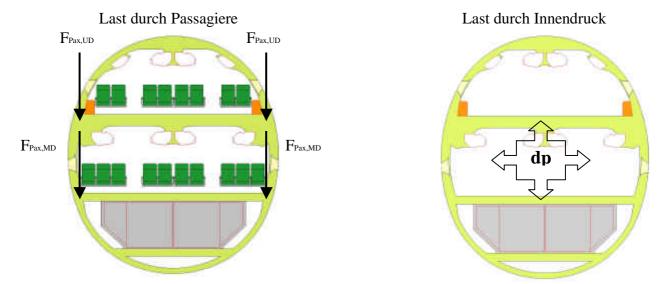


Bild 4.2: Einleitung von Lasten in die Struktur in einem Querschnitt

Die im Rahmen dieser FEM- Rechnung betrachteten Rumpfquerschnitte werden in 3 Gruppen unterteilt, die sich in Art und Verteilung der Nutzlast unterscheiden.

4.4.1 Gruppe 1, 18 abreast Sitzanordnung

Diese Konfiguration ist an das A3XX Konzept angenähert und besteht aus einer 18 abreast Sitzanordnung. Für die Frachtbeförderung werden LD3 Container verwendet.

Aus dieser gewählten Konfiguration ergeben sich folgende Abmessungen für die Nutzlastbox:

•	Breite des Oberdeck	5,28m
•	Höhe des Oberdeck	2,50m
•	Breite des Hauptdeck	6,35m
•	Höhe des Hauptdeck	2,50m
•	Breite des Frachtdeck	4,02m
•	Höhe des Frachtdeck	1,90m

Auf dem Oberdeck sitzen 8, auf dem Hauptdeck 10 Passagiere.

Die Anzahl der Gänge beträgt 2 je Deck.

- Sitze abreast 18 (8+10)
- Anzahl Gänge 4 (2+2)

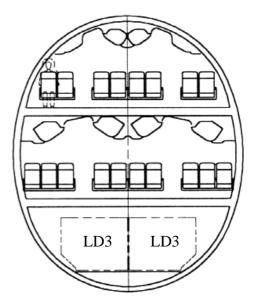


Bild 4.3: 18 abreast Sitzanordnung

Im Folgenden wird die oben festgelegte Nutzlastbox in Rumpfquerschnitten mit verschiedenen Konturen untergebracht. Ausgehend von einem Kreisquerschnitt werden noch vier Ellipsenquerschnitte untersucht. Die Ellipsenquerschnitte werden dabei so gewählt, so daß beim Seitenverhältnis eine relativ gleichmäßige Abstufung erfolgt.

 Tabelle 4.1
 Berechnete Rumpfquerschnitte der Gruppe 1

Tubelle 4.1	Derecti	note itampi	quersormitte	aci Ciappe	<i>,</i> ,		
	Übergang Kreisform zu Ellipsenform						
Breite	Höhe	Fläche	Umfang	Seiten-	SKO	FEM	Zuwachs-
Dicito	110110	Tidono	Officially	verhältnis	Biegemoment	Biegemoment	faktor
8086 mm	8086 mm	51,35 m ²	25,402 m	1,000	3546900 Nmm	3296000 Nmm	1,000
7824 mm	8040 mm	49,40 m ²	24,920 m	0,973	3699900 Nmm	3369129 Nmm	1,022
7450 mm	8170 mm	47,80 m ²	24,561 m	0,912	4302300 Nmm	5589621 Nmm	1,696
7108 mm	8278 mm	46,21 m ²	24,238 m	0,859	5532900 Nmm	7727637 Nmm	2,345
6780 mm	8390 mm	44,66 m ²	23,958 m	0,808	6701400 Nmm	9860681 Nmm	2,992

Bedeutung der hier verwendeten Größen:

- das Seitenverhältnis stellt den Quotienten aus Breite und Höhe eines Querschnittes dar. Ein Seitenverhältnis von 1 beschreibt eine Kreiskontur. Je kleiner das Seitenverhältnis wird, desto höher und schlanker wird der Querschnitt, in diesem Fall die Ellipse.
- das SKO Ergebnis stellt das Resultat der Berechnung dar, wie sie mit Verwendung der Unterlagen der Vorlesung Strukturkonstruktion an der Fachhochschule Hamburg gemacht wird, um den Biegemomentenverlauf in einem Spant zu ermitteln. Das Ergebnis dieser

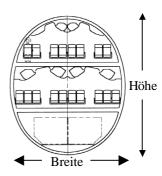


Bild 4.4: Seitenverhältnis

Berechnung ist bei Querschnitten, die annähernd kreisförmig sind, ausreichend genau. Wird von der Kreisform abgewichen, ist es notwendig Korrekturen bei der Bestimmung des Biegemoments vorzunehmen. Dies geschieht mit der Hilfe der FEM- Rechnung. Der hier angegebene Wert für das Biegemoment ist ein Mittelwert der über den gesamten Umfang vorhandenen Biegemomente.

- das FEM- Ergebnis ist das Resultat einer Berechnung des entsprechenden Querschnittes mit der Hilfe des FEM- Programmes COSMOS\M. Wie bei der SKO- Berechnung stellt der hier angegebene Wert einen Mittelwert aller über den Umfang vorhandenen Biegemomente dar.
- der Zuwachsfaktor setzt das mittlere Biegemoment im betrachteten Querschnitt mit dem mittleren Biegemoment des Kreisquerschnittes, der als Referenzquerschnitt dient, ins Verhältnis. Ist der Faktor beispielsweise gleich 2 so bedeutet dies, daß die Belastung durch das Biegemoment in dem betrachteten Querschnitt doppelt so groß ist wie bei einem vergleichbaren Kreisquerschnitt. Dies führt dazu, daß die Struktur an die höhere Belastung angepaßt werden muß, was zu einem höheren Strukturgewicht führt.

4.4.2 Gruppe 2, 14 abreast Sitzanordnung

Um auch Veränderungen des Lastniveaus bei kleineren Querschnitten beurteilen zu können, wird eine 14 abreast Sitzanordnung betrachtet. Für das Frachtdeck werden wiederum LD3 Container verwendet.

Aus dieser gewählten Konfiguration ergeben sich folgende Abmessungen für die Nutzlastbox:

•	Breite des Oberdeck	4,72m
•	Höhe des Oberdeck	2,50m
•	Breite des Hauptdeck	5,79m
•	Höhe des Hauptdeck	2,50m
•	Breite des Frachtdeck	4,02m
•	Höhe des Frachtdeck	1,90m

Auf dem Oberdeck sitzen 6, auf dem Hauptdeck 8 Passagiere.

Die Anzahl der Gänge beträgt 2 je Deck.

- Sitze abreast 14 (6+8)
- Anzahl Gänge 4 (2+2)

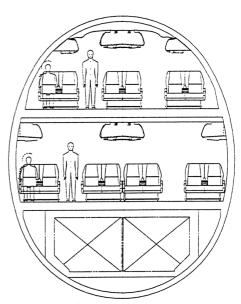


Bild 4.5: 14 abreast Sitzanordnung

Für die Unterbringung der Nutzlastbox werden nachfolgende Rumpfkonturen gewählt. Für diese Konfiguration ergeben sich aus der SKO- und der FEM- Rechnung folgende Ergebnisse:

 Tabelle 4.2
 Berechnete Rumpfquerschnitte der Gruppe 2

Übergang Kreisform zu Ellipsenform							
Breite	Höhe	Fläche	Umfang	Seitenver-	SKO	FEM	Zuwachs-
				hältnis	Biegemoment	Biegemoment	faktor
7986 mm	7986 mm	50,09 m ²	25,088 m	1,000	2768640 Nmm	3224861 Nmm	1,000
6814 mm	8376 mm	44,83 m ²	23,986 m	0,814	6192000 Nmm	9819727 Nmm	2,987
5979 mm	8654 mm	40,64 m ²	23,366 m	0,691	9266100 Nmm	15875678 Nmm	4,810
5195 mm	8916 mm	36,38 m ²	22,923 m	0,583	12350400 Nmm	21486089 Nmm	6,501

4.4.3 Gruppe 3, 20 abreast Sitzanordnung

Um noch größere Querschnitte beurteilen zu können wird in dieser Gruppe 3 eine 20 abreast Sitzanordnung behandelt. Auf dem Frachtdeck werden wiederum LD3 Container verwendet.

Aus dieser gewählten Konfiguration ergeben sich folgende Abmessungen für den Rumpfquerschnitt:

•	Breite des Oberdeck	6,35m
•	Höhe des Oberdeck	2,50m
•	Breite des Hauptdeck	6,35m
•	Höhe des Hauptdeck	2,50m
•	Breite des Frachtdeck	4,02m
•	Höhe des Frachtdeck	1,90m

Auf beiden Decks sitzen jeweils 10 Passagiere.

Die Anzahl der Gänge beträgt 2 je Deck.

• Sitze abreast 20 (10+10)

• Anzahl Gänge 4 (2+2)

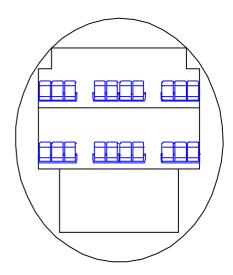


Bild 4.6: 20 abreast Sitzanordnung

Als Querschnitte für diese Gruppe sind nachfolgende Konturen gewählt worden. Für diese Konfiguration ergeben sich aus der SKO- und der FEM- Rechnung folgende Ergebnisse:

 Tabelle 4.3
 Berechnete Rumpfquerschnitte der Gruppe 3

Übergang Kreisform zu Ellipsenform									
Breite	Höhe	Fläche	Umfang	Seitenver-	SKO	FEM	Zuwachs-		
				hältnis	Biegemoment	Biegemoment	faktor		
8690 mm	8690 mm	59,31 m ²	27,300 m	1,000	4248000 Nmm	3823833 Nmm	1,000		
8409 mm	8828 mm	58,30 m ²	27,083 m	0,953	4547400 Nmm	4923183 Nmm	1,287		
8071 mm	8994 mm	57,01 m ²	26,844 m	0,897	5337300 Nmm	7726444 Nmm	2,021		
7437 mm	9305 mm	54,35 m ²	26,462 m	0,799	8200200 Nmm	13028733 Nmm	3,407		

4.5 Ergebnis und Darstellung der FEM- Berechnung

Die Zuwachsfaktoren für das Biegemoment werden hier in Abhängigkeit vom Seitenverhältnis des betrachteten Querschnittes dargestellt. Enthalten sind nur die Querschnitte der aktuellen Gruppe.

4.5.1 Gruppe 1 (18 abreast Sitzanordnung)

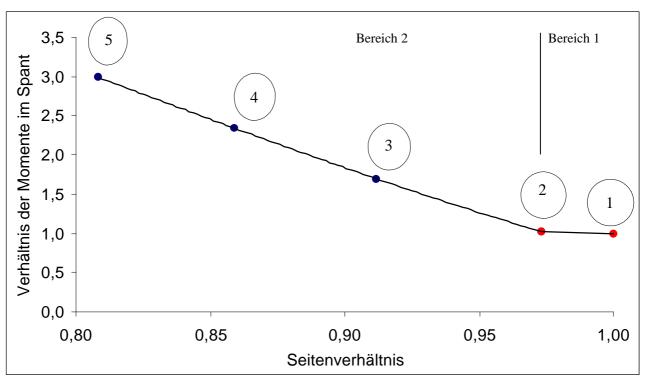


Bild 4.7: Zuwachsfaktoren des Biegemomentes bei Gruppe 1

Auffallend bei dieser Darstellung ist der fast linear scheinende Zusammenhang von Belastungsniveau und Seitenverhältnis. Seitenverhältnisse von 1 bis etwa 0,97 nehmen hier eine Sonderrolle ein. Das Seitenverhältnis wird mit SV in den Formeln abgekürzt.

Diese Abhängigkeiten lassen sich in Form von folgenden Gleichungen darstellen:

Bereich 1:

$$Zuwachsfaktor = -0.8259 \cdot SV + 1.8259$$
 (4.1)

Bereich 2:

$$Zuwachsfaktor = 27,541 \cdot SV^{3} - 65,139 \cdot SV^{2} + 38,368 \cdot SV + 0.0098 \tag{4.2}$$


Es wird schon hier deutlich, daß bereits geringe Abweichungen von der Kreisform eine deutliche Zunahme des mittleren Biegemoments im Spant zur Folge haben.

Für die Rumpfquerschnitte dieser Gruppe ergeben sich folgende Biegemomentverläufe:

• Kontur 1

Typ: Kreis Radius: 4043mm

Seitenverhältnis: 1 Zuwachsfaktor: 1

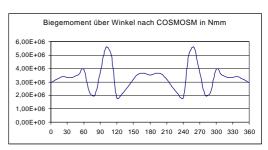
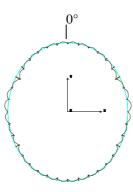



Bild 4.8: Biegemomentverlauf Kontur 1

• Kontur 2

Typ: Ellipse
Höhe: 8040mm
Breite: 7824mm
Seitenverhältnis: 0,973
Zuwachsfaktor: 1,022

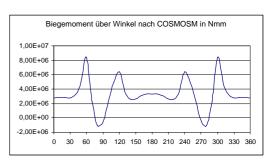
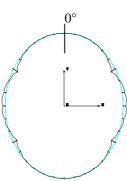



Bild 4.9: Biegemomentverlauf Kontur 2

• Kontur 3

Typ: Ellipse
Höhe: 8170mm
Breite: 7450mm

Seitenverhältnis: 0,912 Zuwachsfaktor: 1,696

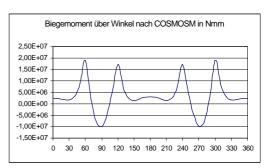


Bild 4.10: Biegemomentverlauf Kontur 3

• Kontur 4

Typ: Ellipse
Höhe: 8278mm
Breite: 7108mm
Seitenverhältnis: 0,859

Zuwachsfaktor: 2.345

0°

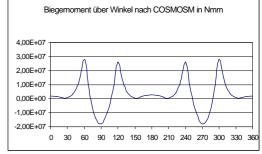
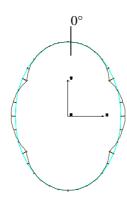



Bild 4.11: Biegemomentverlauf Kontur 4

• Kontur 5

Typ: Ellipse
Höhe: 8390mm
Breite: 6780mm
Seitenverhältnis: 0,808
Zuwachsfaktor: 2,992

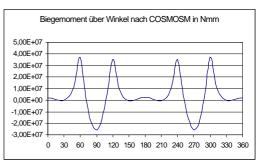


Bild 4.12: Biegemomentverlauf Kontur 5

4.5.2 Gruppe 2 (14 abreast Sitzanordnung)

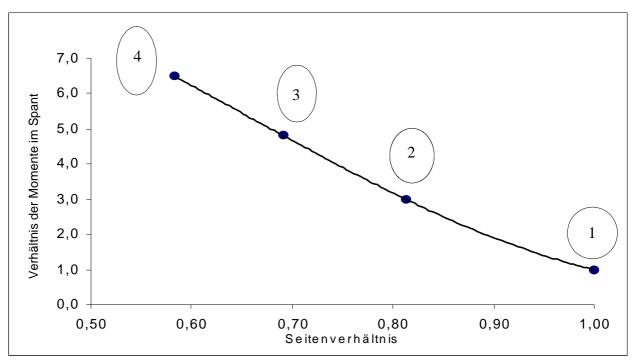


Bild 4.13: Zuwachsfaktoren des Biegemomentes bei Gruppe 2

Auch bei Querschnitten die kleiner als das A3XX- Konzept sind, gibt es einen Zusammenhang der nur wenig anders definiert ist, als bei den größeren Querschnitten.

Wie auch bei den Querschnitten der Gruppe 1 ist der Zusammenhang von Belastungsniveau und Seitenverhältnis, abgesehen vom Bereich nahe einer Kreiskontur, fast linear.

Diese Abhängigkeiten lassen sich in Form von folgender Gleichung darstellen:

$$Zuwachsfaktor = 24,96 \cdot SV^{3} - 48,856 \cdot SV^{2} + 16,165 \cdot SV + 8,7313 \tag{4.3}$$


Wird sehr stark von der Kreisform abgewichen, wie dies bei Kontur 4 der Fall ist, erfordert das um ein Vielfaches angestiegene Lastniveau ein massives Verstärken der (Spant-) Struktur gegenüber schwächer ausgeprägten Ellipsen.

Für die Rumpfquerschnitte der Gruppe 2 ergeben sich folgende Biegemomentverläufe:

Kontur 1

Typ: Kreis Radius: 3993mm

Seitenverhältnis: 1 Zuwachsfaktor: 1

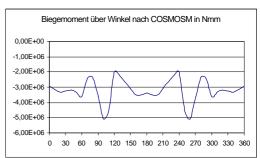
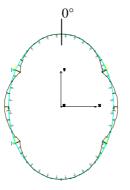



Bild 4.14: Biegemomentverlauf Kontur 1

Kontur 2

Ellipse Typ: Höhe: 8376mm 6814mm Breite: Seitenverhältnis: 0,814

Zuwachsfaktor: 2,987

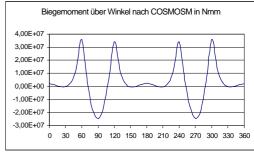
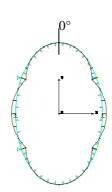



Bild 4.15: Biegemomentverlauf Kontur 2

Kontur 3

Typ: Ellipse Höhe: 8654mm Breite: 5979mm Seitenverhältnis: 0,691

Zuwachsfaktor: 4,810

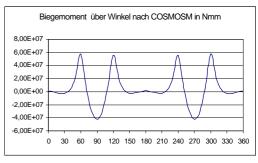
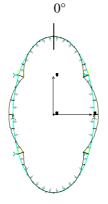



Bild 4.16: Biegemomentverlauf Kontur 3

Kontur 4

Ellipse Typ: Höhe: 8916mm Breite: 5195mm Seitenverhältnis: 0,583

Zuwachsfaktor: 6,501

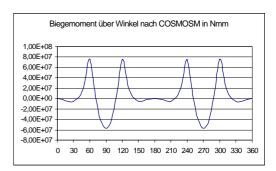


Bild 4.17: Biegemomentverlauf Kontur 4

4.5.3 Gruppe 3 (20 abreast Sitzanordnung)

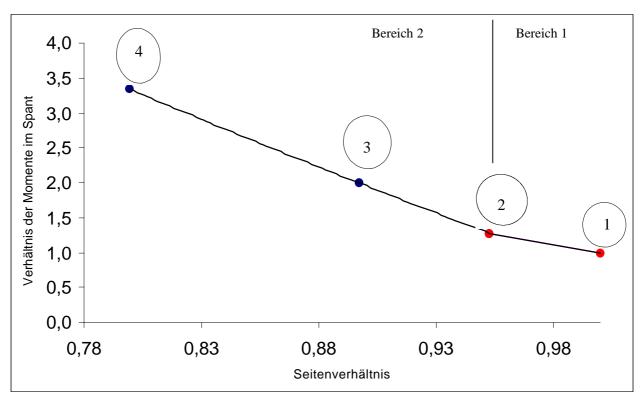


Bild 4.18: Zuwachsfaktoren des Biegemomentes bei Gruppe 3

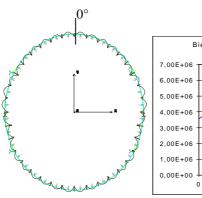
Auch für vergrößerte Querschnitte (gegenüber dem A3XX- Konzept) gelten ähnliche Zusammenhänge, wie bei den Gruppen 1 und 2.

Diese Abhängigkeiten lassen sich in Form von folgenden Gleichungen darstellen:

Bereich 1

$$Zuwachsfaktor = -5,8861 \cdot SV + 6,8861$$
 (4.4)

Bereich 2


$$Zuwachsfaktor = 5,2871 \cdot SV^2 + 22,727 \cdot SV + 18,131 \tag{4.5}$$

Für die Gruppe 3 mit den größten betrachteten Querschnitten ergeben sich folgende Biegemomentverläufe:

Typ: Kreis Radius: 4345mm

Seitenverhältnis: 1 Zuwachsfaktor: 1

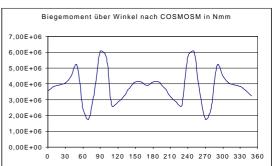
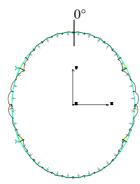



Bild 4.19: Biegemomentverlauf Kontur 1

• Kontur 2

Typ: Ellipse
Höhe: 8828mm
Breite: 8409mm

Seitenverhältnis: 0,953 Zuwachsfaktor: 1,279

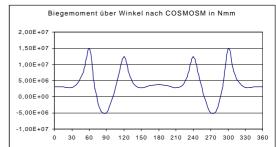
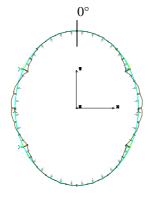



Bild 4.20: Biegemomentverlauf Kontur 2

• Kontur 3

Typ: Ellipse Höhe: 8994mm Breite: 8071mm

Seitenverhältnis: 0,897 Zuwachsfaktor: 1,994

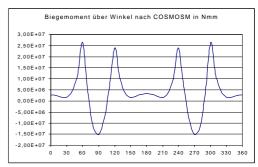
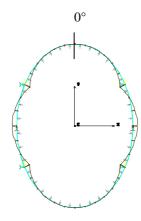



Bild 4.21: Biegemomentverlauf Kontur 3

• Kontur 4

Typ: Ellipse
Höhe: 9305mm
Breite: 7437mm

Seitenverhältnis: 0,799 Zuwachsfaktor: 3,343

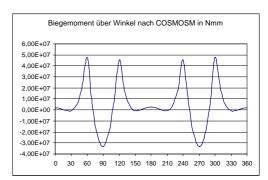


Bild 4.22: Biegemomentverlauf Kontur 4

4.5.4 Gesamtdarstellung des Zuwachsfaktors

In dem folgenden Diagramm werden die Abhängigkeiten von Seitenverhältnis und Zuwachsfaktor für alle 3 Gruppen zusammen dargestellt.

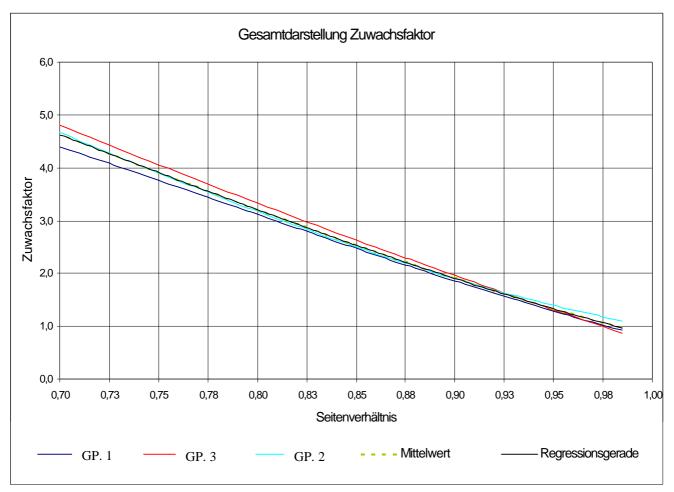


Bild 4.23: Gesamtdarstellung der Zuwachsfaktoren aller Gruppen

Diese Darstellung zeigt, daß die Abhängigkeit von Seitenverhältnis und Zuwachsfaktor relativ unabhängig von der betrachteten Gruppe ist. Dies legt es nahe die Abhängigkeiten (Zuwachsfaktoren) der einzelnen Gruppen in einem Mittelwert zusammenzufassen. Für diesen Mittelwert wird eine Regressionsgerade ermittelt, die auch in dem erstellten EXCEL- Programm zur Anwendung kommt (Gleichung 4.7). Gleichung 4.6 stellt die vereinfachte Variante dar.

$$Zuwachsfaktor = -12,969 \cdot SV + 13,617$$
 (4.6)

Das Bestimmtheitsmaß für diese Gleichung ist: $R^2 = 0.9978$

$$Zuwachsfaktor = 7,3910 \cdot 10^{-5} \cdot SV^{6} - 3,7527 \cdot 10^{-4} \cdot SV^{5} + 7,9274 \cdot 10^{-4} \cdot SV^{4}$$

$$+17,499 \cdot SV^{3} - 36,235 \cdot SV^{2} + 10,602 \cdot SV + 8,9574$$

$$(4.7)$$

Das Bestimmtheitsmaß für diese Gleichung ist: $R^2 = 1$

Beide Gleichungen beschreiben denselben Zusammenhang, wobei die wesentlich einfacher aufgebaute Gleichung 4.6 nur wenig ungenauer ist als die Gleichung 6. Grades.

Mit der Hilfe dieser Betrachtung und der ermittelten Zusammenhänge ist es möglich (fast) beliebige Ellipsen auf einen Kreisquerschnitt zurückzuführen. Dies ist die Voraussetzung für die Anwendung der SKO- Formeln.

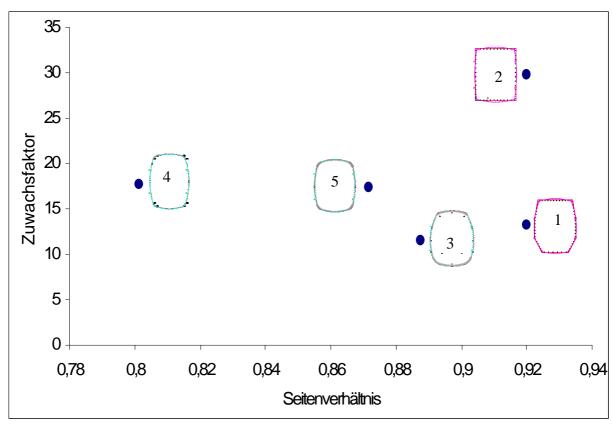
4.5.5 Fazit des ersten Teiles der FEM- Rechnung

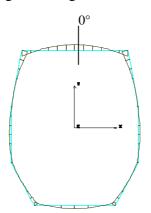
Durch die FEM- Berechnung ist in gewissem Sinne auch die SKO- Rechnung überprüft worden. Es wird deutlich, daß bei der Berechnung des Kreisquerschnittes eine Abweichung von etwa 5-10% gegenüber der FEM- Rechnung vorhanden ist. Es gilt zu beachten, daß mit einem vereinfachten Rechenmodell gearbeitet wird. Die hier in dieser Arbeit berechneten Werte für das Biegemoment können nur Anhalte sein. Tendenzen und Folgen von Konturveränderungen lassen sich so beschreiben. Als absolute Zahlenwerte müssen sie aber kritisch betrachtet werden. Ist eine große Genauigkeit erforderlich, so sind umfangreiche FEM- Rechnungen notwendig, die allerdings den Rahmen dieser Arbeit sprengen würden.

Sollen Konturen untersucht werden, die nicht elliptisch oder kreisförmig sind, ist in jedem Fall eine FEM- Rechnung notwendig, da die hier ermittelten Zusammenhänge auf andere Querschnitte nicht übertragbar sind.

4.6 Beispiele für nicht elliptische oder kreisförmige Rumpfquerschnitte

In diesem Abschnitt werden 5 weitere Querschnitte betrachtet die Nutzlasten der Gruppen 1 und 3 (18 und 20 abreast Sitzanordnung) aufnehmen können. Auf eine SKO- Rechnung ist in diesem Zusammenhang verzichtet worden.




Bild 4.24: Zuwachsfaktoren des Biegemomentes bei nicht elliptischen oder kreisförmigen Querschnitten

Hier wird deutlich, daß es offensichtlich keinen Zusammenhang zwischen Seitenverhältnis der Kontur und dem Zuwachsfaktor des mittleren Biegemomentes gibt. Hier sind Krümmung und die Ausrundungsradien der "Ecken" der Rumpfkontur die ausschlaggebenden Größen.

Für diese Rumpfquerschnitte sind folgende Biegemomentverläufe ermittelt worden:

• Kontur 1

Typ: Segmente
Höhe: 6900mm
Breite: 6350mm
Seitenverhältnis: 0,920
Zuwachsfaktor: 13,247
n_{sa}: 18 (8+10)
Container: LD3

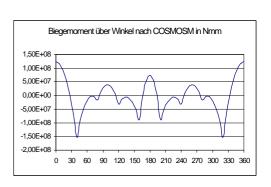


Bild 4.25: Biegemomentverlauf Kontur 1

• Kontur 2

Typ: Rechteck
Höhe: 6900mm
Breite: 6350mm
Seitenverhältnis: 0,920
Zuwachsfaktor: 29,752
n_{sa}: 18 (8+10)
Container: LD3

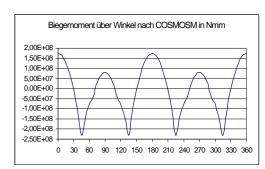


Bild 4.26: Biegemomentverlauf Kontur 2

• Kontur 3 (A350 Vol 1)

Typ: Kreissegmente
Höhe: 7472mm
Breite: 6632mm
Seitenverhältnis: 0,887
Zuwachsfaktor: 11,597
n_{sa}: 18 (8+10)
Container: LD3

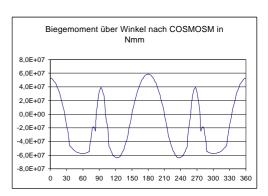
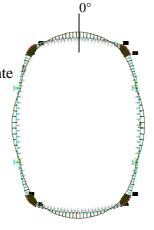



Bild 4.27: Biegemomentverlauf Kontur 3

• Kontur 4 (A350 Vol 2)

Typ: Kreissegmente
Höhe: 8344mm
Breite: 6686mm
Seitenverhältnis: 0,801
Zuwachsfaktor: 17,814
n_{sa}: 18 (9+9)
Container: M1

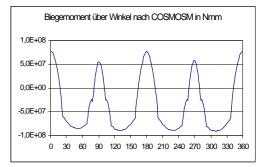


Bild 4.28: Biegemomentverlauf Kontur 4

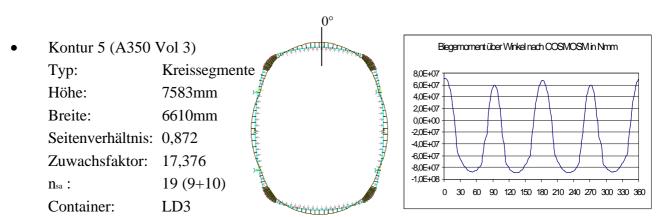


Bild 4.25: Biegemomentverlauf Kontur 1

4.6.1 Fazit des zweiten Teiles der FEM- Rechnung

Die Berechnung dieser von der Ellipsenkontur abweichenden Querschnitte zeigt, daß der Zuwachsfaktor ganz erheblich ansteigt. Ein Extremwert wird bei der Rechteckkontur (Kontur 2) erreicht, bei der das Belastungsniveau fast um den Faktor 30 ansteigt (gegenüber dem Referenzkreisquerschnitt). Auch wenn solche Querschnitte bei der Raumausnutzung erhebliche Vorteile haben, so überwiegen die Nachteile durch die sehr schwere (Spant-) Struktur.

5 Berechnung von Strukturmassen

5.1 Grundsätzliches zur Struktur

Wenn in diesem Zusammenhang von Struktur gesprochen wird, dann ist damit der innere und äußere Aufbau der Flugzeugzelle gemeint. Die Flugzeugzelle umfaßt Flügel, Leitwerke und den Rumpf, um den es hier in der Hauptsache geht.

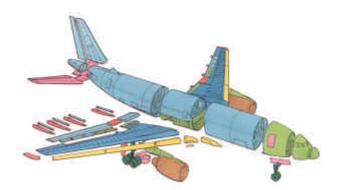


Bild 5.1: Baugruppen an der A310

Die Aufgaben einer Flugzeugzelle sind:

- Aufnahme der Nutzlast
- Aufnahme von Ausrüstung und Betriebsstoffen
- Unterbringung der Systeme
- Formgebung um aerodynamische Aufgaben bzw. Anforderungen zu erfüllen

Bei der Erfüllung dieser Aufgaben entstehen in der Zelle strukturmechanische Beanspruchungen, denen die Struktur widerstehen können muß.

Die auftretenden Belastungen und die Berücksichtigung der Vorschriften von JAA und FAA setzen Eckpunkte bei der Entwicklung und Konstruktion der Flugzeugzelle. Ergebnis soll eine Struktur sein, die, neben anderen Forderungen, eine möglichst geringe Masse haben soll.

Diese Masse gilt es bereits im frühen Entwurfsstadium zu bestimmen. Dies geschieht in dieser Arbeit mit bekannten Gleichungen aus dem Flugzeugentwurf und Zusammenhängen aus der Strukturkonstruktion.

5.1.1 Betrachtete Bestandteile an der Flugzeugzelle

Der Bestandteil "Rumpf" an der Flugzeugzelle wird in dieser Arbeit für die Massenberechnung in folgende Strukturbauteile aufgegliedert:

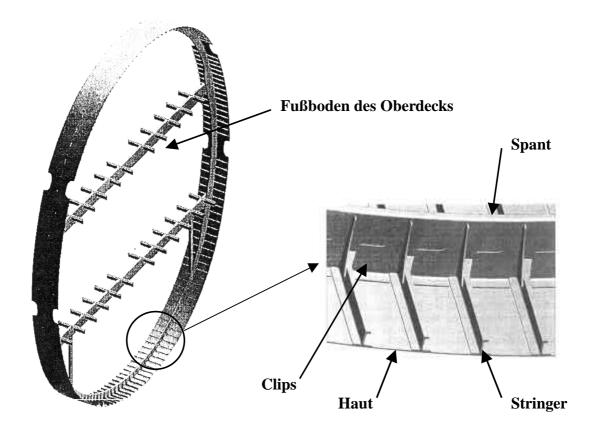


Bild 5.2: Strukturbauteile an einem Rumpfquerschnitt des A3XX

Im weiteren Verlauf sollen das Leitwerk und das Fahrwerk näher betrachtet werden.

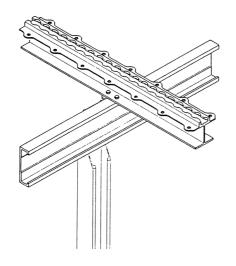
Bei der Berechnung der Strukturmasse wird hauptsächlich mit den Gleichungen nach *Burt-Phillips* gearbeitet werden. Diese haben eine semiempirische Grundlage. Die Daten, die hier als Basis dienen, sind im Laufe der Zeit nicht verändert worden.

Da deshalb auch keine Projektdaten für Flugzeuge mit großen Ellipsenrümpfen, geschweige denn zwei durchgehenden Passagierdecks und Kapazitäten jenseits 500 Passagieren berücksichtigt worden sind, ist es nötig, an verschiedenen Stellen Korrekturen vorzunehmen.

Am Ende dieser Arbeit (Kapitel 8) wird ein Vergleich mit anderen bekannten Gleichungen des Flugzeugentwurfes vorgenommen werden.

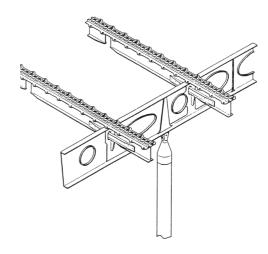
5.2 Fußboden des Oberdecks

In zivilen Verkehrsflugzeugen besteht der Fußboden hauptsächlich aus den Querträgern (die hier berechnet werden sollen) und den Längsträgern (Sitzschienen). Freiräume werden durch Bodenplatten, die üblicherweise aus Faserverbundwerkstoffen bestehen, abgedeckt. Befestigt wird der Fußboden am Spant. Oftmals wird der Passagierfußboden durch Sarmastangen abgestützt (siehe Bild 5.3). Als äußere Lasten wirken auf dieses Gerüst Passagiere, Fracht und die Innenausstattung. Die Querträger haben die Aufgabe diese Massenlasten an den Spant weiterzuleiten. Desweiteren werden an den Querträgern Systemleitungen befestigt.


In dieser Arbeit sollen Kräfte in Z- Richtung (in Längsrichtung der Hochachse des Flugzeuges) näher betrachtet werden. Im normalen Betrieb wirken natürlich Kräfte in allen drei Raumachsen, wobei aber die Kräfte in Z- Richtung dominieren.

Das Lastvielfache n_z das hier wirkt, beträgt nach FAR 25.561 $n_z = 6.0$.

5.2.1 Gängige Bauprinzipien bei Airbusflugzeugen


Bei den Fußböden wird nach zwei Bauprinzipien unterschieden. Diese Unterteilung gliedert sich auf in die Single Aisle Familie (A320...) und die Wide Body Familie (A300....).

Single Aisle Familie

- Anwendung bei A320 und ihrer Derivate
- Systemführung zwischen Querträger und Fußbodenplatten
- Querträger sind Strangpreßprofile
- Längsträger befinden sich komplett auf bzw. über dem Querträger

Wide Body Familie

- Anwendung bei A300, A310......
- Systemführung durch vorhandene Aussparungen im Querträger
- Verknüpfung von Längs- und Querträgern

Quelle: Diplomarbeit Schmolla

Bild 5.3: Konstruktionsprizipien bei Fußbodenrosten von Airbusflugzeugen

Die Art der Bauweise hat in dieser Arbeit aber wenig Einfluß auf die Berechnung. Es kann bei der Berechnung zwischen den Längsträgerprofilen der *Single Aisle Familie* oder der *Wide Body Familie* gewählt werden. Das in Bild 5.3 dargestellte Querträgerprofil für die *Single Aisle Familie* ist verändert worden. Das neue Profil ist in Bild 5.6 dargestellt.

5.2.2 Querträgermasse

Wenn von Querträgermasse gesprochen wird, so beinhaltet dies die Masse:

•	der Längsträger	Kap. 5.2.2.1
•	der Fußbodenplatten	Kap. 5.2.2.2
•	des eigentlichen Fußbodenquerträgers	Kap. 5.2.2.3

Die hier bestimmten Massen gelten für die Länge einer Spantteilung.

Um eine Aussage über die Gesamtmasse des oberen Passagierdecks machen zu können, wird die Querträgermasse mit der gesamten Spantanzahl multipliziert. An dieser Stelle werden zwei Fehler gemacht, die sich in ihrer Wirkung allerdings subtrahieren dürften. Nach dieser Annahme ist der gesamte Rumpf zylindrisch ohne Beachtung der Form von Bug und Heckteil. Andererseits werden örtliche Verstärkungen des Bodens, wie dies bei Galleys, Türen oder Durchbrüchen anderer Art der Fall ist, mit ihrem Zusatzgewicht nicht beachtet. Der Fehler sollte aufgrund dieser Tatsache nicht zu groß sein.

5.2.2.1 Masse der Längsträger

Die Längsträger, auf denen auch die Sitze und andere Teile der Inneneinrichtung befestigt werden, werden auch nach Single Aisle und Wide Body Familie unterschieden. Die interessante Größe für eine Massenbestimmung ist die Querschnittsfläche des gewählten Profils.

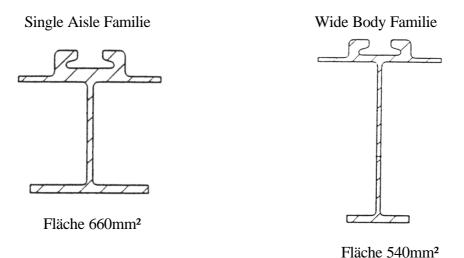


Bild 5.4: Verwendete Längsträgerprofile bei Airbusflugzeugen

Die Anzahl der Längsträger kann bestimmt werden, wenn neben der Querträgerlänge auch der Längsträgerabstand bekannt ist. Dieser Abstand sollte nicht weniger als 525mm betragen, damit Handgepäck noch unter den Sitzen untergebracht werden kann.

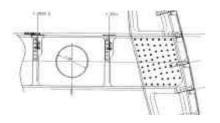
Die Anzahl der Längsträger beträgt so:

$$n_{Seattrack} = \frac{l_{Querträger}}{525mm} \tag{5.1}$$

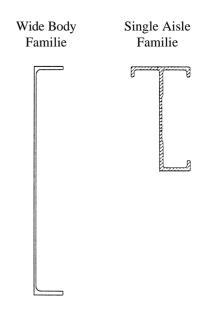
Dieser Wert wird dann sinnvoll gerundet.

Mit der Querschnittsfläche sowie der Anzahl der Längsträger und der Spantteilung läßt sich ein Materialvolumen berechnen. Mit der angenommenen Dichte für Aluminium von $\mathbf{r}_{Al} = 2.7 \frac{gr}{cm^3}$ läßt sich die Masse der Längsträger in diesem Abschnitt berechnen.

$$m_{Seattrack} = V_{Seattrack} \cdot \mathbf{r}_{Al} \tag{5.2}$$


5.2.2.2 Masse der Bodenplatten

Die Masse der Bodenplatten pro Quadratmeter beträgt nach Praxiswerten etwa $3.5 \frac{kg}{m^2}$. Das Produkt aus der Querträgerlänge und der Spantteilung ergibt die benötigte Fläche. Die Masse der Bodenplatten ist somit bekannt:


$$m_{Floorpanels} = A_{Floor} \cdot 3.5 \frac{kg}{m^2}$$
 (5.3)

5.2.2.3 Masse des Querträgers

Bei beiden (Fußboden-) Bauprinzipien verwendet Airbus C-Profile. Bei diesen Berechnungen wird dies auch gemacht, mit der Einschränkung das keine Rücksicht auf Normgrößen genommen wird. Weiter wird nicht auf den Bördel verzichtet, wie es bei dem *Wide Body* Profil von Airbus der Fall ist.

Bild 5.5: A3XX Quer- und Längsträgerprofile beim Oberdeck

Bild 5.6: Derzeit gebräuchliche Querträgerprofile

Der Querträger wird hier durch eine Linienlast beansprucht, die bestimmt wird nach:

$$q_{Pax,UpperDeck} = \frac{n_{Pax,UD} \cdot m_{Pax} \cdot n_z \cdot g}{l_{Quertr\"{a}ger}}$$
 (5.4)

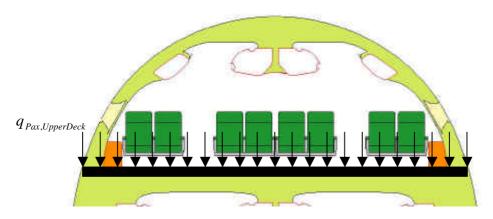


Bild 5.7: Lasten auf den Querträger des Oberdecks

Im normalen Betrieb dagegen erfolgt die Krafteinleitung eher konzentriert an den Befestigungspunkten der Längsträger.

Mit der berechneten Linienlast läßt sich das Moment an der Trägereinspannung bestimmen:

$$M_{Einsp} = \frac{q_{Pax,UpperDeck} \cdot l_{Querträger}^2}{12}$$
 (5.5)

Das erforderliche Widerstandsmoment berechnet sich dann zu:

$$W_{erf} = \frac{M_{Einsp.}}{\mathbf{s}_{zul}} \tag{5.6}$$

mit
$$\mathbf{s}_{zul} = \mathbf{s}_{0,2} = 300 \frac{N}{mm^2}$$
, Werkstoff 3.1354 T3

Nun gilt es, dieses erforderliche Widerstandsmoment durch eine geeignete Gestaltung des Querträgers mit möglichst geringer Masse zu erreichen.

Mit Zusammenhängen aus der Technischen Mechanik wird das Flächenmoment des Querträgers berechnet: Gleichung (5.7)

$$I_{x} = 2 \cdot \left[\left(s \cdot h_{B} \right) \cdot \left(\frac{h}{2} - \frac{h_{B}}{2} \right)^{2} \right] + 2 \cdot \left[\left(b \cdot s \right) \cdot \left(\frac{h}{2} \right)^{2} \right] + \left[\frac{s \cdot h^{3}}{12} \right]$$

$$1 \qquad 5 \qquad 2 \qquad 4 \qquad 3$$

Das Widerstandsmoment wird berechnet nach:

$$W_{x} = \frac{I_{x}}{0.5 \cdot h} \tag{5.8}$$

Bild 5.8: Parameter bei der Querträgerberechnung

Die einzelnen (Teil-)Abmessungen des Querträgers werden mit Hilfe des EXCEL- Solvers berechnet. Bei dieser Berechnung sollen bestimmte Ziele erreicht und Randbedingungen eingehalten werden.

Die Ziele sind:

- erforderliches Widerstandsmoment wird erreicht
- das Gewicht des Trägers ist minimal

Randbedingungen werden durch gewählte Minimal- und Maximalwerte der Querschnittsgeometrie des Querträgers festgelegt.

Die Gesamtmasse des Querträgers ist dann die Summe der Masse von:

- Längsträgern
- Bodenplatten
- Querträger

Abschließend läßt sich sagen, daß große Querschnitte eine starke Massenzunahme des oberen Querträgers zur Folge haben. Dies liegt daran, daß die (ungestützte) Länge des Querträgers bei der Gleichung (5.5) zur Berechnung des Einspannmomentes im Quadrat eingeht.

5.2.2.4 Alternatives Verfahren nach Torenbeek

Torenbeek gibt eine Gleichung an, mit der, basierend auf statistischen Daten, das Gewicht des Fußbodens berechnet wird. Enthalten sind dabei Längs- und Querträger sowie die Bodenplatten.

Die Gleichung lautet:

$$W_{fl} = k_{fl} \cdot (S_{fl})^{1,045} \tag{5.9}$$

Die Fläche des Bodens S_{fl} wird berechnet durch:

$$S_{fl} = l_{Ouerträser} \cdot l_{Cabin} \tag{5.10}$$

Der Faktor k_{fl} wird für zwei verschiedene Fußbodentypen angegeben:

- Typ A Der Boden ist direkt am Spant angeschlossen und ist nicht abgestrebt. Der untere Rumpfteil kann abgeflacht sein. Diese Gleichung gilt offenbar für kleinere Flugzeuge. Der Faktor ist $k_{\pi} = 4,62$.
- Typ B Der Boden ist direkt am Spant befestigt, wird aber meistens abgestrebt. Typ B gilt für druckbelüftete Flugzeuge mit Frachträumen im Unterflurbereich. Der Faktor k_{fl} wird über die folgende Gleichung bestimmt:

$$k_{fl} = 0.3074 \cdot \sqrt{P_{fl}} \tag{5.11}$$

Der Faktor P_{fl} beschreibt die zulässige Flächenlast des Bodens und beträgt für Verkehrsflugzeuge 300 bis $500\,kg/m^2$

Soll die Bodenstruktur eines Flugzeuges der Größe eines A3XX berechnet werden, so tritt hier das Problem auf, daß Typ A nicht geeignet ist, weil es sich nicht um ein kleineres Flugzeug handelt. Typ B ist nur sehr bedingt geeignet, da der Boden abgestrebt sein soll. Diese Abstrebung fehlt aber beim Oberdeck des A3XX und verursacht daher ein deutliches Mehrgewicht. Die Ergebnisse der Berechnung nach Torenbeek liefert deshalb zu "leichte" Fußbodenmassen, wenn es um Konzepte wie die eines A3XX geht. Für herkömmliche Flugzeuge mit klassischer Eindeck Auslegung ist diese Gleichung besser geeignet.

5.3 Rumpfhaut

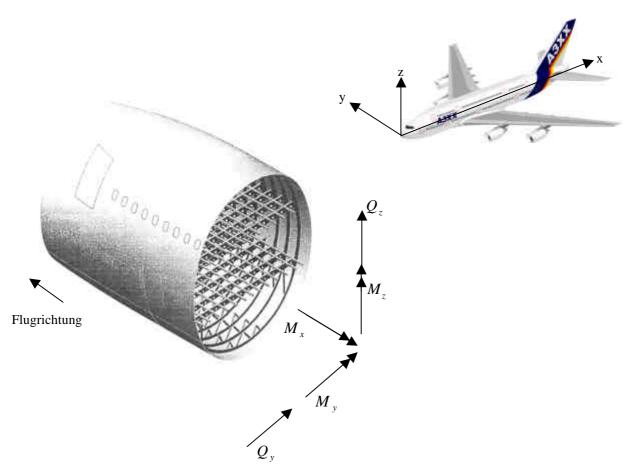
5.3.1 Grundsätzliches zur Rumpfbehäutung

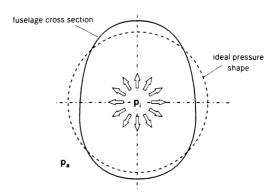
Das Bauelement Rumpfhaut übernimmt in einer Flugzeugzelle zahlreiche Aufgaben.

Die Hauptaufgaben liegen in der aerodynamischen Formgebung und der Aufnahme und Weiterleitung von Luft- und Massenkräften. Die Rumpfbehäutung stellt eine Behälterwand dar und nimmt den Innendruck auf. Außerdem wird die Nutzlast vor den Einflüssen der Umgebung/Atmosphäre geschützt.

Die Belastungen die von der Haut aufgenommen werden sind:

- Längskräfte aus M_y , M_z
- Membrankräfte resultierend aus dem Innendruck in Längs- und Umfangsrichtung
- Schubkräfte aus Q_z , Q_y , M_x
- Schubkräfte aus Kraftein- und umleitungen




Bild 5.9: Belastungen die in die Rumpfhaut eingeleitet werden

5.3.2 Massenberechnung der Haut

Bei nicht kreisförmigen Rümpfen wird die Belastung, die sich aus der Druckbelüftung ergibt, in Form von Biegemomenten immer größer je weiter sich die Kontur von der Kreisform entfernt.

Ein elliptischer Rumpfquerschnitt ist bestrebt bei Druckbelüftung eine Kreisform anzunehmen.

Während die Haut bei einer Kreiskontur in Umfangsrichtung hauptsächlich durch Zugspannungen belastet wird, so kommen bei nicht kreisförmigen Konturen Biegespannungen hinzu. Diese werden um so größer je weiter

Bild 5.10: Bei Druckbelüftung ist die Kreisform am besten geeignet

von der Kreiskontur abgewichen wird. Diese Biegespannungen müssen bei der Auslegung beachtet werden.

Die Haut wird durch den Innendruck dynamisch belastet. Dieses soll mit Hilfe der Kesselformel berücksichtigt werden. Aufgrund der Abweichungen von der Kreisform ist die Kesselformel aber nur bedingt aussagefähig. Zudem werden durch die Fußböden Normalkräfte aufgenommen, die den Kraftfluß in der Haut beeinflussen. Außer der Kesselformel muß also ein weiteres Verfahren zur Anwendung kommen.

In einem 1. Schritt soll eine Mindesthautstärke mit Hilfe der Kesselformel bestimmt werden.

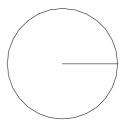
In dem folgenden 2. Schritt wird die Haut zusammen mit dem Spant mit Formeln der Strukturkonstruktion ausgelegt. Dieser Weg wird gewählt da die Haut über die mittragende Breite b_m mit dem Spant ein Biegeelement bildet.

In diesem 2. Schritt wird

Clip Stringer Stringer Haut

Bild 5.11: Strukturkomponenten Haut, Stringer und Spant in einem Längsschnitt

dieses Biegeelement aus Spant und einem Stück mittragender Haut so ausgelegt, daß in der Randfaser (Haut) gerade $\mathbf{s}_{zul} = \mathbf{s}_{0,2} = 300 \, N/mm^2$ erreicht wird. Diese Berechnung wird im Kapitel 5.4 gemacht. Die mittragende Breite b_m der Haut entspricht nach der Vorlesung SKO etwa der Spantbreite.


Schritt 1:

Aus der Kesselformel ergibt sich für Kreisquerschnitte eine erforderliche Hautstärke mit:

$$s_{erf} = \frac{\Delta p_{dyn} \cdot r}{\mathbf{S}_{U,zul}} \tag{5.12}$$

 ${m s}_{\scriptscriptstyle U,zul}$ beträgt für Kurzstreckenflugzeuge aufgrund der höheren Lastwechselzahl $80\,N/mm^2$ und für Langstreckenflugzeuge, wie im Fall des A3XX, $100\,N/mm^2$.

Der Differenzdruck beträgt in allen Fällen $\Delta p_{dyn} = 60500 Pa$.

r-

Bild 5.12: schnitt

Bei elliptischen Querschnitten wird die Hautstärke bestimmt nach:

$$s_{erf} = \frac{\Delta p_{dyn} \cdot \left(b \cdot (\cos(\mathbf{j}))^2 + a \cdot (\sin(\mathbf{j}))^2\right)}{\mathbf{s}_{U,zul}}$$
(5.13)

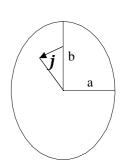
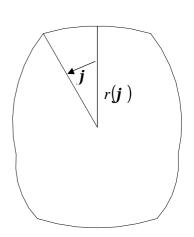



Bild 5.13: Elliptischer Querschnitt

Bei anders, beliebig geformten Querschnitten muß durch eine geeignete Berechnungsweise das Maß $r(\mathbf{j})$ berechnet werden. Zur Anwendung kommt wieder die normale Kesselformel.

$$s_{erf} = \frac{\Delta p_{dyn} \cdot r(\mathbf{j})}{\mathbf{s}_{U,zul}}$$
 (5.14)

Bild 5.14: Segmentquer-schnitt

Da die Hautstärke eine Funktion des Winkels

Kreisquerschnitt wo sie konstant ist), wird zur einfacheren Weiter-

rten Berechnungen zeigt sich,

die mittlere Hautstärke in der Regel auch bei der er i-

terten B rechnung über die Spantberechnung er

Das Hautvolumen wird berechnet aus der Rumpfoberfläche, und der hier bestimmten und in Kapitel 5.4 bestätigten Hautstärke. Als Produkt aus Hautvolumen und Dichte des Aluminiums errechnet sich die Hautmasse. Die hier ermittelten Werte sind verglichen mit realen Werten zu gering. Ein Grund dafür ist die Nichtberücksichtigung der örtlichen Aufdickungen der Haut in den Bereichen der Fenster und Türen sowie anderer "Störungen" an der Rumpfbehäutung. Über die Kesselformel wird eine "ideale", ungestörte Haut berechnet.

5.4 Spante

5.4.1 Grundsätzliches zum Spant

Der Spant, als wesentliches Bauteil des Rumpfes, gehört neben Stringern und Haut zu den Primärstrukturbauteilen des Flugzeuges. Spante und Stringer sind notwendig, um in die dünne Haut konzentrierte Lasten einleiten zu können.

Die Rumpfspante lassen sich in zwei Kategorien einteilen. Die "normalen" oder auch Systemspante und die Krafteinleitungsspante an denen große Einzellasten (z.B. aus dem Flügelanschluß) in die Struktur eingeleitet werden.

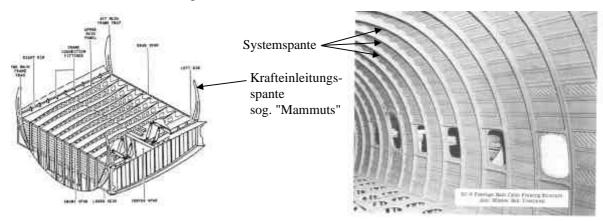
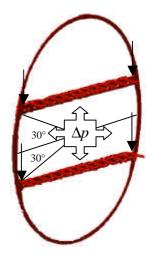


Bild 5.15: Verschiedene Arten von Spanten; Krafteinleitungs- und Systemspante

Die Systemspante erstrecken sich über die gesamte Rumpflänge und machen etwa 95% aller Spante aus.


Die Berechnung der Spantmasse erfolgt mangels ausreichend statistischer Daten über große elliptische Rümpfe nicht über vorhandene Statistikgleichungen. Zum Einsatz kommen hier Zusammenhänge aus der Strukturkonstruktion.

Wird in diesem Zusammenhang von Spantmasse gesprochen, so soll dies die Masse des Spantprofils sowie die Masse der Clips beinhalten.

5.4.2 Bestimmung der Biegemomente im Spant

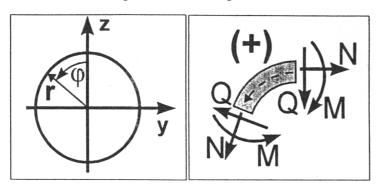
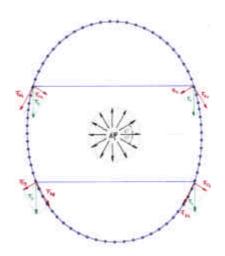
Der Biegemomentenverlauf soll hier an einem Kreisquerschnitt berechnet werden. Sollen Biegemomente für nicht kreisförmige Querschnitte bestimmt werden, kommen die Ergebnisse der FEM- Rechnung (Kapitel 4) zur Anwendung. Als Referenzquerschnitt gilt immer der entsprechende Kreisquerschnitt.

Für die Berechnung des Biegemomentes werden Gleichungen aus der Vorlesung SKO an der Fachhochschule Hamburg verwendet. Um diese anwenden zu können, ist der Sachverhalt, wie in Kapitel 4 FEM- Rechnung beschrieben, vereinfacht worden. Als wirkende Kräfte werden bei diesem Modell betrachtet:

Bild 5.16: Rechenmodell für die SKO- Rechnung

- Innendruck mit $2 \cdot \Delta p$, gemäß Vorschrift FAR 25.365
- Passagierlasten getrennt nach Ober- und Unterdeck bei einem Lastvielfachen von $n_z=3,75$, gemäß Vorschrift FAR 25.337

Diese Kräfte werden aufgeteilt in tangentiale und radiale Kraftanteile (bezogen auf die Rumpfkontur).

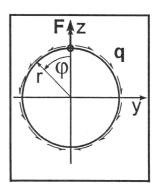

Bild 5.17: Koordinatensysteme und Kraftgrößen

Bild 5.18: Zerlegung der Kräfte in ihre Anteile

<u>Eine</u> radiale Kraft hat im Spant einen Biegemomentenverlauf zur Folge, der über folgende Formel bestimmt wird [Skript SKO Flüh '97]:

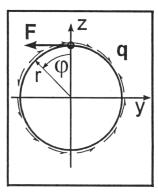

$$M(\mathbf{j}) = \left(\frac{F \cdot r}{2 \cdot \mathbf{p}}\right) \cdot \left(1 + \frac{1}{2} \cdot \cos(\mathbf{j}) - (\mathbf{p} - \mathbf{j}) \cdot \sin(\mathbf{j})\right)$$
(5.15)

Bild 5.19: Radial angreifende Kräfte

<u>Eine</u> tangentiale Kraft hat im Spant einen Biegemomentenverlauf zur Folge, der über folgende Formel bestimmt wird [Skript SKO Flüh '97]:

$$M(\mathbf{j}) = \left(\frac{F \cdot r}{2 \cdot \mathbf{p}}\right) \cdot \left(\frac{3}{2} \cdot \sin(\mathbf{j}) - (\mathbf{p} - \mathbf{j}) \cdot (1 - \cos(\mathbf{j}))\right)$$
(5.16)

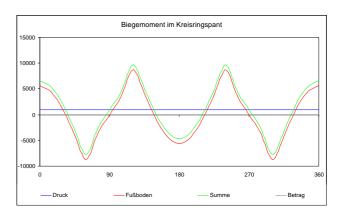


Bild 5.20: Tangential angreifende Kräfte

Eine Aussage über den gesamten Biegemomentverlauf ist möglich, indem die für jede einzelne Kraft ermittelten Biegemomentverläufe überlagert werden.

Diese Ermittlung des Biegemomentes ist umfangreich und erfordert Vereinfachungen, wie sie bei dem hier verwendeten Modell gemacht worden sind.

Aus dem Betrag des hier ermittelten Biegemomentenverlaufes wird ein Mittelwert gebildet, mit dem der Spant dann ausgelegt wird.

Bild 5.21: Aufsummierter Biegemomentverlauf in einem Kreisringspant

Die Benutzung des Mittelwertes für die Auslegung hat zwei Gründe.

Zum einen ist es für eine Aussage über die Spantmasse nicht wichtig zu wissen, welche Masse ein Spantsegment bei einem bestimmten Winkel hat und wie die genaue Spantgeometrie an dieser Stelle ist. Zum anderen sollen in diesem Ansatz alle Teilabmessungen des Spantquerschnittes verändert werden können, um eine möglichst leichte Spantgeometrie zu erhalten. Wäre das Biegemoment über den Umlaufwinkel veränderlich, so wäre aufgrund der vielen zu berechnenden Parameter ist ein sehr großer Rechenaufwand nötig,.

Sollen jetzt nichtkreisförmige Querschnitte berechnet werden, so wird, mit den im Kapitel 4 ermittelten Zusammenhängen, über das Belastungsniveau eine Aussage gemacht.

Eine bestimmte Nutzlast wird also in einer Kreiskontur (Kontur K1) und beispielsweise in einer Ellipsenkontur (Kontur E1) untergebracht. Für die Kreiskontur läßt sich das Biegemoment mit den beschriebenen Gleichungen bestimmen. Diese (Kreis-) Kontur K1 ist der Referenzquerschnitt für die Ellipsenkontur E1. Aus den Geometrieeingenschaften (speziell das Seitenverhältnis) der Ellipse läßt sich mit den Erkenntnissen aus Kapitel 4 ein Zuwachsfaktor bestimmen. Wird das Biegemoment des Referenzquerschnittes mit dem Zuwachsfaktor multipliziert so ergibt das Produkt das Biegemoment im Ellipsenquerschnitt.

Mit diesem Biegemoment kann der Spant des Ellipsenquerschnittes ausgelegt werden.

5.4.3 Berechnung der Spantgeometrie

Aus dem berechneten mittleren Biegemoment läßt sich ein erforderliches Widerstandsmoment bestimmen.

Die Spantgeometrie muß so gestaltet sein, daß sie bei minimalem Gewicht (=Querschnittsfläche) ein möglichst hohes Flächenmoment hat. Wichtig in diesem Zusammenhang ist die mittragende Breite der Haut, da sie das Flächenmoment deutlich erhöht (großer Abstand von der Neutral-

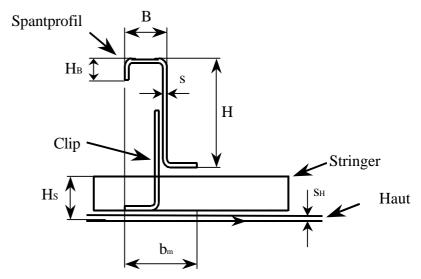


Bild 5.22: Geometrie des Spantes

achse). Die mittragende Breite der Haut beträgt nach der Vorlesung Strukturkonstruktion an Fachhochschule Hamburg:

$$b_m = 2 \cdot B \tag{5.17}$$

Für die Berechnung der Spantgeometrie wird, wie beim Fußbodenquerträger, der EXCEL-Solver verwendet, da es so möglich ist, alle Parameter der Spantquerschnittsgeometrie innerhalb festgelegter Grenzen zu variieren.

In diesem Zusammenhang gelten drei Forderungen bei der Berechnung:

- das erforderliche Widerstandsmoment muß erreicht werden
- die Spantfläche und damit die Spantmasse soll möglichst gering sein
- in der Randfaser (Haut) darf die zulässige Spannung $s_{zul} = 300 \, N/mm^2$ nicht überschritten werden

Durch die letzte Forderung wird gewissermaßen die Haut ausgelegt und das Ergebnis der Kesselformel überprüft.

Die Spantprofilmasse ist das Produkt aus Spantvolumen und Materialdichte. Das Spantvolumen wird bestimmt aus der Spantquerschnittsfläche und dem (äußeren) Rumpfumfang. Dies ist zulässig bei der Annahme, daß die Spantabmessungen klein gegenüber dem Rumpfdurchmesser sind.

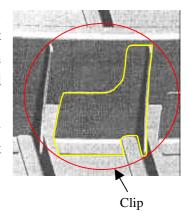
Die gesamte Spantprofilmasse (alle Spante) berechnet sich aus:

$$m_{Spant,gesamt} = m_{Spant} \cdot \frac{l_{Rumpf}}{Spantteilung}$$
 (5.18)

Hier wird vereinfachend angenommen, daß über die gesamte Rumpflänge die gleichen Spante eingesetzt werden. Bei der Spantmasse wird, wie eingangs erwähnt, üblicherweise die Masse der Clips mit berücksichtigt.

5.4.4 Abschlußbetrachtung zur Spantberechnung

Es hat sich gezeigt, daß die Spantmasse bei nicht kreisförmigen Querschnitten zunehmend schwerer wird, im Vergleich zum Kreisreferenzquerschnitt. Die Gewichtsnachteile bestimmter Querschnittsformen beruhen oft auf den um ein Vielfaches angestiegenen Spantmassen.


Die umfangreichen Arbeiten im Zusammenhang mit dem Spant und der damit verbundenen FEM- Rechnung haben gezeigt, wie umfangreich dieses (Teil-) Thema ist. Auch wenn hier stark vereinfacht wird, ist der Aufwand sehr hoch. Dementsprechend ist auch reichlich Luft für Verbesserungen bei der Definition eines geeigneten FEM- Modells sowie aufwendigeren SKO-Rechnungen vorhanden.

5.5 Clip

5.5.1 Grundsätzliches zum Clip

Clips haben die Aufgabe die Spante mit der Haut zu verbinden. Dies ist nötig, wenn die Haut durch Stringer längsversteift ist (durchlaufende Stringer) und der Kraftfluß nicht gestört werden soll. Die Clips übertragen als Schnittstelle zwischen Spant und Haut Schubkräfte.

Sind in einer anderen Bauweise die Stringer an den Spanten getrennt, kann auf die Clips verzichtet werden, da der Spant direkt durch Nietung oder Klebung mit der Haut verbunden ist.

Bild 5.23: Clip als Verbindung zwischen Spant und Haut

5.5.2 Masse des Clip

Bei der Massenberechnung des Clips, bezogen auf das ganze Flugzeug, haben sich zwei Berechnungsmöglichkeiten ergeben, die hier kurz dargestellt werden sollen.

Als Praxiswert (für die jetzigen Airbusflugzeuge) hat sich herausgestellt, das die Clips etwa 50% der Spantprofilmasse wiegen. Dieser Wert kann jedoch leicht variieren.

Berechnen läßt sich die Masse der Clips für einen Spant auf folgendem Wege:

$$m_{Clip,gesamt} = \left(\frac{Umfang_{Rumpf}}{Stringerteilung}\right) \cdot m_{Clip}$$
(5.19)

Der erste Term berechnet die Anzahl der Clips und wird sinnvoll gerundet. Die Stringerteilung (orientiert an der A 340) bewegt sich zwischen 145mm und 170mm. Das Clipgewicht wird mit 100gr bzw. 110gr angegeben.

Stringerteilung und Clipgewicht hängen von der Einbaulage ab (Seitenschale oder Ober- bzw. Unterschale).

Üblicherweise ist bei der Angabe der Spantmasse die Masse der Clips bereits enthalten. Hier in dieser Arbeit ist dies, für die Herleitung, getrennt betrachtet worden.

5.6 Stringer

5.6.1 Grundsätzliches zum Stringer

Die Stringer verlaufen parallel zur Flugrichtung und sind gleichmäßig über den gesamten Umfang des Querschnittes verteilt. Die Stringer haben eine hautfeldbildende und zugleich stützende Funktion. Durch die Stringer wird eine Formgebung des Rumpfes ermöglicht. Sie haben die

Aufgabe Luft-, Massen- und Behälterwandkräfte aufzunehmen und weiterzuleiten. Belastungen sind primär Längstkräfte, die aus der Biegung um Hoch- und Querachse entstehen. Desweiteren entstehen Längskräfte aus Kraftein- und Umleitungen (z.B. Türen, Fenster,...).

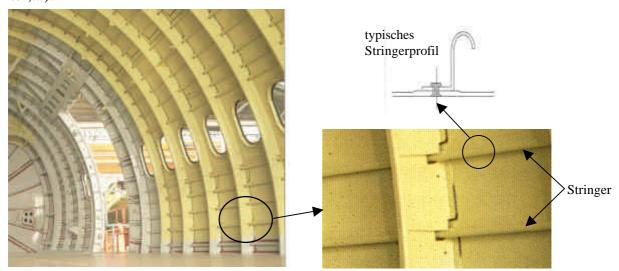


Bild 5.24: Innere Rumpfstruktur anhand einer A310

5.6.2 Masse der Stringer

Die Masse der Stringer wird hier ähnlich wie bei den Clips einmal mit Praxiswerten und einmal durch Berechnungen nach *Burt- Phillips* bestimmt.

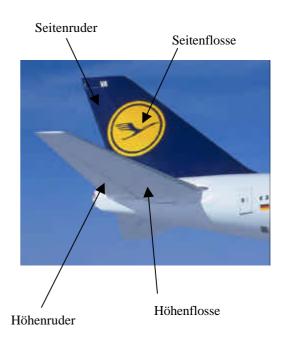
In der Praxis beträgt das Gewicht der Stringer etwa 30% der Hautmasse. Bei dieser Hautmasse dürfte es sich allerdings um die "reale" Hautmasse handeln und nicht um die "ideale" Hautmasse, wie sie in Kapitel 5.3 berechnet worden ist. Dieser Praxiswert sollte in diesem Zusammenhang überprüft werden. Bei der Auslegung wird gesagt, daß das Verhältnis Stringer- zur Hautfläche etwa 0,5 beträgt. Diese Annahme scheint hier besser geeignet.

Als Grundlage für die weiteren Berechnungen sind jedoch die Berechnungen nach *Burt- Phillips* gewählt worden:

$$m_{Stringer} = 0.0142 \cdot O_{Rumpf}^{1.45} \cdot v_{Dive}^{0.39} \cdot n_z^{0.316}$$
(5.20)

Bis auf v_{Dive} ist in dieser Formel alles bekannt. Die fehlende Größe v_{Dive} wird (mangels Daten) von der B747 aus Torenbeek '88 übernommen. Für die Boeing 747-200 werden in diesem Zusammenhang ein v_{Dive} von 445kts bzw. $228\,m/s$ angegeben. Eine Formel die Marckwardt in dem Skript Flugzeugentwurf angibt lautet:

$$v_{Dive} = 217 \, m/s \cdot M_{MO} + 30 \, m/s \tag{5.21}$$


Für den A3XX ist die maximale operationelle Machzahl M_{MO} mit 0,89 angegeben. In die Formel eingesetzt, ergibt sich ein v_{Dive} von $223\,m/s$. Dieses ist damit dicht an dem von Torenbeek für die 747 angegebenen Wert. Gewählt wird der Wert nach Torenbeek mit $v_{Dive} = 228\,m/s$.

5.7 Leitwerke

5.7.1 Grundsätzliches zu Leitwerken

Das Leitwerk besteht aus Höhen- und Seitenflosse, sowie Höhen- und Seitenrudern am Rumpfende. Mit Hilfe des Leitwerks wird das Flugzeug im Gleichgewicht gehalten und um die Bewegungsachsen gesteuert.

Bei den meisten modernen Verkehrsflugzeugen handelt es sich um Normalleitwerke. Der Vorteil gegenüber anderen Bauweisen ist das relativ geringe Gewicht der Struktur. Dies ist aber nur ein Faktor von vielen, der bei der Wahl der Leitwerksform von Bedeutung ist. Da für den A3XX ein Normalleitwerk vorgesehen ist, wird die Berechnung auf diesen Leitwerkstyp ausgerichtet.

Bild 5.25: Aufbau eines Normalleitwerkes am Beispiel einer Boeing 747

5.7.2 Berechnung der Leitwerksmasse

In einem ersten Schritt sind Leitwerksmassen und Flächen von Airbusflugzeugen in einer Statistik verarbeitet worden. Die Leitwerksmasse ist in den erstellten Diagrammen über die Leitwerksfläche aufgetragen worden. Weiter wird aufgezeigt was ein m^2 Leitwerksfläche in Abhängigkeit von der vorhandenen Leitwerksgröße wiegt.

Für das Seitenleitwerk ist folgender Zusammenhang ermittelt worden:

Tabelle 5.1 SLW- Massen von Airbusflugzeugen

Tabone on Carringeous von Ambachageoagen						
Seitenleitwerksmassen						
Тур	Typ Gewicht Fläche Index					
A300	1000 kg	58,8m²	17,02 kg/m^2			
A3XX	3550 kg	124,0m ²	$28,63 kg/m^2$			
A319	465 kg	21,4m²	21,75 kg/m^2			
A320	465 kg	21,4m²	21,75 kg/m^2			
A321	465 kg	21,4m²	21,75 kg/m^2			
MPC 4	345 kg	16,0m²	21,56 kg/m^2			
MPC 5a,b	388 kg	18,0m²	21,56 kg/m^2			

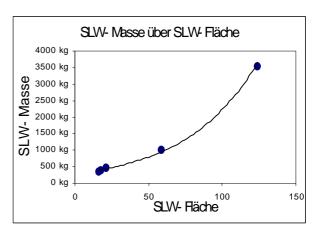


Bild 5.26: Seitenleitwerksmassen

Die Gleichung der Regressionsgeraden lautet:

$$m_{SLW} = 283,23 \cdot e^{0.0206 \cdot S_{SLW}} \tag{5.22}$$

Diesem Diagramm zufolge steigt das Gewicht des Seitenleitwerks nicht linear sondern exponentiell mit der Fläche an. Ein Problem stellt aber die lückenhafte Datenbasis für sehr große Leitwerke dar, weil es in diesem Bereich keine zivilen Flugzeugmuster gibt oder die Daten nicht verfügbar gewesen sind.

Für das Höhenleitwerk ist folgender Zusammenhang ermittelt worden:

Tabelle 5.2 HLW- Masse von Airbusflugzeugen

Höhenleitwerksmassen					
Тур	Gewicht	Fläche	Index		
A310-300	1800 kg	64,0m ²	$28,13 kg/m^2$		
A3XX	7300 kg	220,0m ²	33,18 kg/m^2		
A340-300	2200 kg	70,0m²	$31,43 kg/m^2$		
A320	640 kg	25,6m²	$25,00 kg/m^2$		
MPC 4	427 kg	21,0m ²	$20,33 kg/m^2$		
MPC 5a,b	478 kg	23,5m ²	$20,34 kg/m^2$		

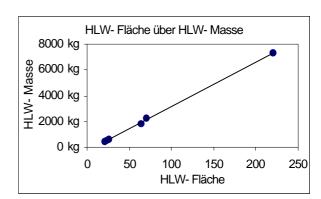


Bild 5.27: Höhenleitwerksmassen

Für das Höhenleitwerk ist ein linearer Zusammenhang zwischen Leitwerksfläche und Leitwerksmasse ermittelt worden. Dieser lautet:

$$m_{HLW} = 34,535 \cdot S_{HLW} - 300,22 \tag{5.23}$$

In einem jetzt folgenden 2. Schritt wird die erforderliche Leitwerksfläche bestimmt. Die Auslegung erfolgt hier nach dem Leitwerksvolumen. Das Leitwerksvolumen stellt das Produkt aus Leitwerksfläche (Höhen- oder Seitenleitwerk) und dem entsprechenden Hebelarm dar.

Aus den Gleichungen für die Leitwerksvolumenbeiwerte [Skript FE Scholz '98]

$$C_{HLW} = \frac{S_{HLW} \cdot l_{HLW}}{S_W \cdot c_{MAC}}$$
, für das Höhenleitwerk (5.24)

$$C_{SLW} = \frac{S_{SLW} \cdot l_{SLW}}{S_w \cdot b}$$
, für das Seitenleitwerk (5.25)

werden die zu errechnenden Leitwerksflächen freigestellt. Weiter wird Technologiefaktor k_{Tech} angefügt um die Gleichung auf bekannte A3XX Daten abstimmen zu können.

Die Leitwerksflächen können jetzt berechnet werden durch:

$$S_{HLW} = C_{HLW} \cdot S_W \cdot c_{MAC} \cdot \frac{1}{l_{HLW}} \cdot k_{Tech, HLW}$$
, für das Höhenleitwerk (5.26)

$$S_{SLW} = \frac{C_{SLW} \cdot S_W \cdot b}{l_{SLW}} \cdot k_{Tech,SLW}$$
, für das Seitenleitwerk (5.27)

Die enthaltenen Parameter sind definiert mit:

$$\begin{array}{l} \bullet \quad C_{HLW} = 0{,}85 \\ \bullet \quad C_{SLW} = 0{,}09 \\ \bullet \quad S_W = 780m^2 \\ \bullet \quad c_{MAC} = 11{,}509m \\ \bullet \quad b = 79m \\ \bullet \quad l_{SLW} = \left(\frac{l_{SLW}}{l_{Rumpf}}\right) \cdot l_{Rumpf} = 0{,}40 \cdot l_{Rumpf} \\ \bullet \quad l_{HLW} = \left(\frac{l_{HLW}}{l_{Rumpf}}\right) \cdot l_{Rumpf} = 0{,}45 \cdot l_{Rumpf} \end{array} \right) \begin{array}{l} \text{diese Werte sind mit A3XX-100} \\ \text{Daten bestimmt worden} \end{array}$$

Anhand bekannter Daten des A3XX werden die Technologiefaktoren $k_{Tech,HLW}$ und $k_{Tech,SLW}$ bestimmt. Alle Parameter, die hier dargestellt sind, werden auch bei den weiteren Rechnungen verwendet. Die einzige Variable ist dann die Rumpflänge, die auf anderem Weg berechnet wird.

Die Technologiefaktoren werden bestimmt zu:

```
k_{Tech,HLW} = 0.9 , für das Höhenleitwerk k_{Tech,SLW} = 0.625 , für das Seitenleitwerk
```

Die Größe des Seitenleitwerks beträgt in diesem Fall $S_{SLW}=124m^2$, die Fläche des Höhenleitwerks beträgt $S_{HLW}=220m^2$. Wie schon erwähnt werden die ermittelte Faktoren bei der Berechnung anderer Rumpfformen beibehalten. Die Länge der Hebelarme läßt sich über die oben erklärten Zusammenhänge bestimmen.

Sind die Leitwerksflächen bekannt, so können über die in Schritt 1 beschriebenen Statistikzusammenhänge die Massen der Leitwerke errechnet werden.

5.7.3 Abschließende Betrachtung zur Leitwerksberechnung

In der Theorie ist es klar zu erkennen, daß verkürzte Flugzeuge (gegenüber einem Basisentwurf) ein größeres, schwereres Leitwerk benötigen. Lange Flugzeuge können dementsprechend kleinere, leichtere Leitwerke haben. Der Grund dafür liegt in dem veränderten Hebelarm für das Leitwerk.

In der Realität werden die Leitwerke einer Flugzeugfamilie, wie z.B. der A320 und ihrer Derivate aber nur minimal verändert. Die Veränderungen auf der Strukturseite werden dabei so gering wie möglich gehalten. Die Gründe hierfür liegen in der wirtschaftlicheren Fertigung einer großen Anzahl von identischen Bauteilen.

Vom Standpunkt einer minimalen Leitwerksmasse wäre es sicher sinnvoll für jeden Flugzeugtyp ein eigenes optimiertes Leitwerk zu konstruieren. Die Kosten, die aber durch den Entwicklungsaufwand und Ausbau oder Veränderung der Produktionsstätten notwendig wären, würden den Vorteil einer leichteren Strukturmasse (und damit günstigeren Betrieb) über den höheren Verkaufspreis schnell aufzehren.

5.8 Fahrwerke

5.8.1 Grundsätzliches zu Fahrwerken

Das Fahrwerk wird in dieser Arbeit betrachtet, da es einen großen Teil (15- 25%) der Gesamtstrukturmasse darstellt. In Bezug auf das MTOW hat das Fahrwerk einen Massenanteil von etwa drei bis fünf Prozent.

Während für das Hauptfahrwerk der Landestoß dimensionierend ist, so wird das Bugfahrwerk für den Schleppvorgang am Boden ausgelegt.

Prinzipiell werden Fahrwerke für Verkehrsmaschinen (und Militärmaschinen) heute einziehbar konstruiert. Nur sehr leichte, kleine und langsame Flugzeuge haben manchmal noch starre Fahrwerke. Bei der Konstruktion eines Einziehfahrwerkes spielt der vorhandene Platz im Rumpf oder im Flügel eine wichtige Rolle bei der Dimensionierung.

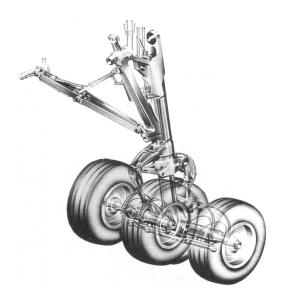


Bild 5.28: Tandem- Fahrwerk der A340

Das gesamte Fahrwerk der A3XX wird voraussichtlich 22 Räder umfassen, davon 2 am Bugfahrwerk. Von den 4 Hauptfahrwerksbeinen sind jeweils zwei mit 6 bzw. 4 Rädern bestückt.

5.8.2 Berechnung der Fahrwerksmasse

Bei der Berechnung der Fahrwerksmasse wird auf bekannte oder hergeleitete Statistikgleichungen zurückgegriffen. Den verwendeten Gleichungen ist gemeinsam, daß sie die Fahrwerksmasse aus dem MTOW ableiten. Im folgenden Teil sollen 2 Gleichungen näher erläutert werden.

• 1. Gleichung nach Torenbeek

$$m_{LG,N}$$
 bzw. $m_{LG,M} = k_{LG} \cdot \left(A_{LG} + B_{LG} \cdot m_{mto}^{0.75} + C_{LG} \cdot m_{mto} + D_{LG} \cdot m_{mto}^{1.5} \right)$ (5.28)

mit folgenden Parametern:

m_{LG}	Masse des gesamten Fahrwerks in kg	$m_{LG} = m_{LG,N} + m_{LG,M}$
$m_{LG,N}$	Masse des Bugfahrwerks in kg	
$m_{LG,M}$	Masse des Hauptfahrwerks in kg	
m_{mto}	maximale Startmasse in kg	
$k_{LG} = 1$	gilt für Tiefdecker	

 k_{LG} = 1,08 gilt für Hochdecker

 $A_{LG} \dots D_{LG}$ werden nach folgender Tabelle definiert

 Tabelle 5.3
 Faktoren zur Berechnung der Fahrwerksmasse nach Torenbeek

airplane type	gear type	gear component	A_{LG}	B_{LG}	C_{LG}	D_{LG}
jet trainers and	retractable gear	main gear	15,0	0,033	0,0210	
business jets	Tetractable gear	nose gear	5,4	0,049		
		main gear	9,1	0,082	0,0190	
	fixed gear	nose gear	11,3		0,0024	
		tail gear	4,1		0,0024	
other civil types		main gear	18,1	0,131	0,0190	$2,23\cdot10^{-5}$
	retractable gear	nose gear	9,1	0,082		$2,97 \cdot 10^{-6}$
		tail gear	2,3		0,0031	

Werden Haupt- und Bugfahrwerk in einer Gleichung zusammengefaßt, so lautet die Gleichung:

$$m_{LG} = 27.2 + 0.213 \cdot m_{mto}^{0.75} + 0.0190 \cdot m_{mto} + 2.527 \cdot 10^{-5} \cdot m_{mto}^{1.5}$$
 (5.29)

Für die Berechnung der Fahrwerksmassen neuerer Airbusflugzeuge hat es sich als vorteilhaft erwiesen, die Formel (5.28) für das Hauptfahrwerk für die gesamte Fahrwerksmasse zu verwenden. Das Ergebnis ist in diesem Fall genauer als bei der Verwendung der Gleichung (5.29).

Tabelle 5.4 Fahrwerksmassen

Fahrwerksmasse nach Torenbeek				
A/C Turn	MTOW	Torenbeek	Abwei-	
A/C Typ	kg	kg	chung	
707-121	111584	4390	0,6%	
707-320	141067	5597	3,1%	
727-100	73028	2860	12,6%	
737-200	45359	1795	9,1%	
747-100	322051	13644	4,3%	
747-200	351534	15048	-1,5%	
BAC1-11	39463	1571	-19,5%	
DC-10-30	251744	10396	10,2%	
DC-8	123831	4887	-5,8%	
DC-8	148778	5918	-15,9%	
DC-9	41504	1649	0,7%	
F-28	29484	1195	4,5%	
F-28	32114	1294	-2,3%	
VC-10	141521	5616	-18,0%	
VFW614	18589	784	-6,6%	
A310	157000	5422	1,4%	
A300B2	137892	4717	23,6%	
A306	174600	6081	6,4%	
A319	70000	2325	3,1%	
A320	75500	2512	-4,7%	
A321	89000	2976	-10,2%	
A340-300	275000	10032	-0,3%	
A3XX-100	540000	21737	-8,7%	
A3XX-200	583000	23786	0,9%	

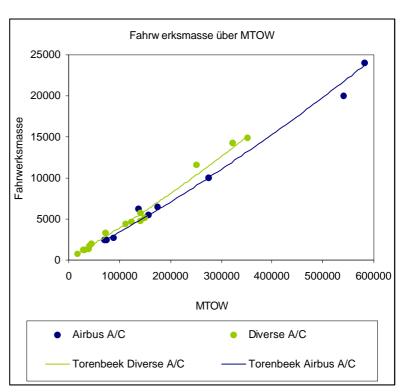


Bild 5.29: Auftragung der Fahrwerksmasse über das MTOW

Hier wird deutlich, daß die Zweiteilung bei dieser Berechnung mit Torenbeek sinnvoll ist, da die Abweichungen für die Airbusflugzeuge sonst unnötig groß werden.

2. Gleichung nach Siewert

Die Gleichung nach Siewert ist anhand der hier dargestellten Flugzeugdaten erstellt worden. Die Genauigkeit ist allerdings nicht so hoch wie bei der (nach Airbus und Nichtairbus) geteilten Torenbeek- Formel.

$$m_{LG} = 8 \cdot 10^{-9} \cdot m_{mto}^2 + 0.0375 \cdot m_{mto}$$
 (5.30)

 Tabelle 5.5
 Fahrwerksmassen

rabelle 5.5 Fantwerksmassen					
Fahr	Fahrwerksmasse nach Siewert				
A/C Typ	MTOW	Siewert	%		
7,0 тур	kg	kg			
707-121	111584	4284	3,0%		
707-320	141067	5449	5,7%		
727-100	73028	2781	15,0%		
737-200	45359	1717	13,0%		
747-100	322051	12907	9,5%		
747-200	351534	14171	4,4%		
BAC1-11	39463	1492	-13,5%		
DC-10-30	251744	9947	14,1%		
DC-8	123831	4766	-3,2%		
DC-8	148778	5756	-12,8%		
DC-9	41504	1570	5,4%		
F-28	29484	1113	11,1%		
F-28	32114	1213	4,2%		
VC-10	141521	5467	-14,9%		
VFW614	18589	700	4,8%		
A310	157000	6085	-10,6%		
A300B2	137892	5323	13,8%		
A306	174600	6791	-4,5%		
A319	70000	2664	-11,0%		
A320	75500	2877	-19,9%		
A321	89000	3401	-26,0%		
A340-300	275000	10917	-9,2%		
A3XX-100	540000	24582	-2,4%		
A3XX-200	583000	22583	-12,9%		

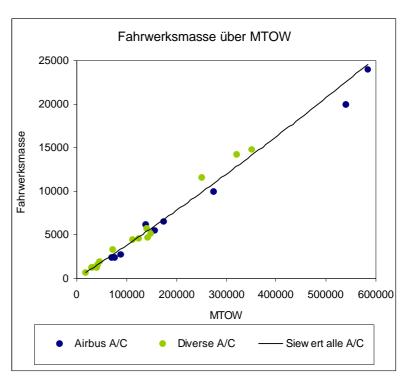


Bild 5.30: Auftragung der Fahrwerksmasse über das MTOW

Der Vorteil bei diesem Verfahren liegt bei einer einfacheren Anwendung von einer statt zwei Formeln unabhängig von Flugzeughersteller und Technologiestand. Dies geht allerdings zulasten der Genauigkeit. Im Rahmen dieser Arbeit sollte diese aber ausreichend sein.

Es wird deutlich, daß genaue Abschätzungen der Fahrwerksmasse nur in Abhängigkeit von dem MTOW schwierig sind. Wichtige Einflüsse auf das Fahrwerksgewicht sind der Technologiestand (viele der in der Statistik verwendeten Flugzeuge sind recht alt), der Einsatzbereich des Flugzeuges, Fahrwerkstyp und weitere Faktoren.

In der weiteren Berechnung werden beide Verfahren benutzt.

5.9 Berechnung der gesamten Strukturmasse des Rumpfes

Die Gesamtmasse der Rumpfstruktur setzt sich aus Teilmassen zusammen, die im Laufe dieser Arbeit bereits bestimmt worden sind. Folgende Formel wird zur Bestimmung der gesamten Strukturmasse verwendet:

$$m_{Rumpf} = 2.23 \cdot (m_{Haut} + m_{Stringer} + m_{Spant}) + m_{Oberdeck}$$
 (5.31)

Diese Formel von Burt- Phillips muß an die Zweideck Konfiguration des A3XX angepaßt werden. Zu diesem Zweck wird die ermittelte Masse des Oberdecks zu der ursprünglichen Formel hinzugefügt. Werden Flugzeuge der jetzt üblichen klassischen Eindeck Konfiguration untersucht entfällt die Zusatzmasse des Oberdecks.



Bild 5.31: Berechnung der gesamten Strukturmasse des Rumpfes

5.10 Maximum Take Off Weight

5.10.1 Grundsätzliches

Das **MTOW** beschreibt das maximale Gewicht beim Beginn des Startlaufs. Es wird begrenzt durch Festigkeit

Bild 5.32: Zulässiges MTOW ist knapp erreicht

des Flugzeuges

die

und durch Luftfahrtvorschriften.

Übertroffen wird das MTOW nur noch durch das MTW (Maximum Design Taxi Weight). Dieses beinhaltet noch zusätzliches Gewicht in Form von Treibstoff, der für das Anlassen der Triebwerke und das Rollen zum Startpunkt notwendig ist.

die Berechnung des MTOW ist in dieser Arbeit nötig, um im weiteren Verlauf Aussagen über das Fahrwerk und die Flugleistungen machen zu können.

5.10.2 Berechnung des MTOW

Das MTOW soll in Abhängigkeit vom Rumpf(struktur-)gewicht ermittelt werden. Vorgestellt werden in diesem Rahmen drei Verfahren, die mit annähernd der gleichen Datenbasis arbeiten. Eine Bewertung der Verfahren wird im Anschluß an die Vorstellung vorgenommen.

1. Verfahren, Airbusflugzeuge linear

In diesem Verfahren in dem die neueren Airbusmuster (und Projekte) berücksichtigt sind, wird der Anteil der Rumpfmasse am MTOW bestimmt. Hier zeigt sich auch, daß bei der Single Aisle Familie der Anteil der Rumpfmasse am MTOW größer ist als es bei den Wide Bodies der Fall ist.

$$m_{mto} = 10,449 \cdot m_{Rumpf} - 15276kg \tag{5.32}$$

Tabelle 5.6 Rumpfmassen (1)

Tabolio dio Trampimasson (1)				
Run	npfmasse	über MTOW	'	
A/C Typ	Gewicht	MTOW	Index	
A310	15400kg	157000kg	9,8%	
A3XX-200	58000kg	583000kg	9,9%	
A306	18200kg	174600kg	10,4%	
A340-300	25800kg	275000kg	9,4%	
A319	8550kg	70000kg	12,2%	
A320	9130kg	75500kg	12,1%	
A321	11440kg	89000kg	12,9%	

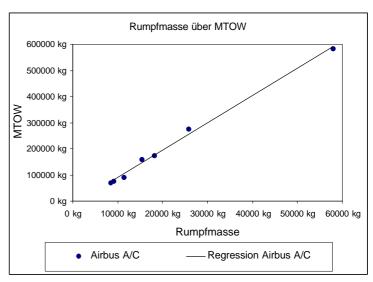


Bild 5.33: Rumpfmasse über MTOW (Verfahren 1)

2. und 3. Verfahren, lineares und logarithmisches Verfahren

Bei diesen Verfahren ist die Datenbasis um Flugzeugmuster anderer Hersteller erweitert worden.

Tabelle 5.7 Rumpfmasse (2, 3)

Rumpfmasse über MTOW				
A/C Typ	$m_{\scriptscriptstyle mto}$	m_{Rumpf}	m_{Rumpf}	
	kg	kg	$m_{\scriptscriptstyle mto}$	
VFW614	18589	2374	12,8%	
F-28	29484	3195	10,8%	
F-28	32114	3470	10,8%	
BAC1-11	39463	4419	11,2%	
DC-9	41504	5083	12,2%	
737-200	45359	5492	12,1%	
A319	70000	8550	12,2%	
727-100	73028	8020	11,0%	
A320	75500	9130	12,1%	
A321	89000	11440	12,9%	
707-121	111584	9100	8,2%	
DC-8	123831	9750	7,9%	
A300B2	137892	16248	11,8%	
707-320	141067	9820	7,0%	
VC-10	141521	11391	8,0%	
DC-8	148778	10092	6,8%	
A310	157000	15400	9,8%	
A306	174600	18200	10,4%	
DC-10-30	251744	21398	8,5%	
A340-300	275000	25800	9,4%	
747-100	322051	32588	10,1%	
747-200	351534	32683	9,3%	
A3XX-200	583000	58000	9,9%	

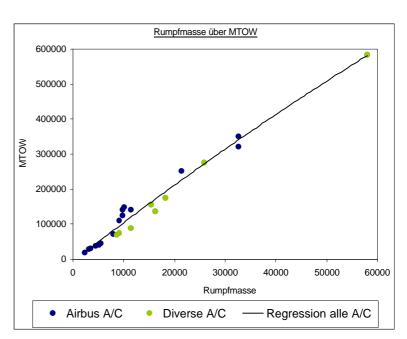


Bild 5.34: Rumpfmasse über MTOW (Verfahren 2)

Auch bei dieser Darstellung ergibt sich ein annähernd linearer Verlauf des Graphen.

Die Gleichung die sich für diesen Zusammenhang ergibt lautet:

$$m_{mto} = -1,976 \cdot 10^{-5} \cdot m_{Rumpf}^2 + 11,28 \cdot m_{mto} - 608,1$$
 (5.33)

Für das 3. Verfahren ist eine logarithmische Regression gewählt worden. Bei dieser Darstellung wird die Rumpfmasse über den Rumpfmassenanteil am MTOW aufgetragen. Die Werte sind dabei Tabelle 5.7 entnommen.

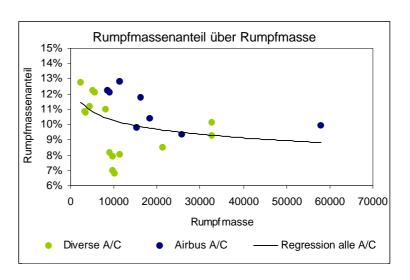


Bild 5.35: Rumpfmasse über Rumpfmassenanteil (Verfahren 3)

Die Gleichung für diesen Zusammenhang lautet:

$$m_{mto} = \frac{m_{Rumpf}}{-0,0082 \cdot \ln(m_{Rumpf}) + 0,1786}$$
 (5.34)

5.10.3 Zusammenfassung der Ergebnisse

Werden die ermittelten Gleichungen in einem Diagramm dargestellt, so werden die Vorteile der einzelnen Verfahren deutlich.

- Verfahren 1 (Airbus linear) hat bei der Berechnung der Airbusmuster eine mittlere Abweichung von 7,2%. Für die anderen Flugzeuge in dieser Statistik erhöht sich der Fehler auf fast 18%. Bei relativ leichten Mustern dieser Statistik hat dieses Verfahren deutliche Nachteile (bis etwa 39000kg MTOW).
- Verfahren 2 (Diverse A/C linear) hat gegenüber Verfahren 1 bei der Beurteilung aller Flugzeuge eine Abweichung von 14,5%. Die Genauigkeit für die Airbusflugzeuge sinkt allerdings auf 16,1%, was die Anwendung für Airbusmuster deutlich einschränken dürfte.

• Verfahren 3 (Diverse A/C log) stellt einen guten Mittelweg dar. Zwar ist die Genauigkeit für Airbusmuster auf 12,5% gesunken, dafür ist ein mittlerer Fehler von 13,2% bei der Beurteilung aller hier aufgeführter Flugzeuge möglich.

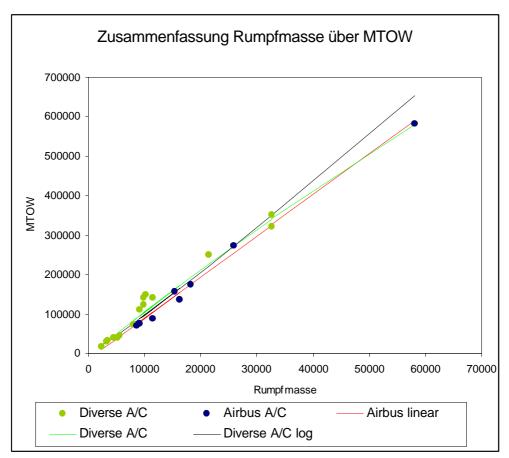


Bild 5.36: Zusammenfassung für die Fahrwerksberechnung

Bei der Entscheidung welches Verfahren jetzt angewendet werden wird, sollte der Einzelfall entscheiden. In den gemachten Berechnungen sind alle Rechenverfahren verwendet worden.

6 Aerodynamik

6.1 Grundsätzliches

Neben der zu erwartenden Strukturmasse soll der Rumpf auch auf seine aerodynamischen Eigenschaften untersucht werden. Als Einflußfaktoren sollen die benetzte Oberfläche und in

Bild 6.1: Auftriebsverteilung am A3XX

gewissem Umfang auch die Art der Rumpfkontur in die Berechnung mit einfließen. Ein gelungener Entwurf zeichnet sich auch durch gute aerodynamische Eigenschaften aus. Diese äußern sich z.B. in einem geringen Kraftstoffverbrauch. Als Folge davon reduziert sich die benötigte Kraftstoffmasse, womit das MTOW sinken kann. Bei unverändertem MTOW kann dieser Entwurf mit der besseren Aerodynamik weiter fliegen oder mehr Nutzlast transportieren.

6.2 Berechnung des Widerstandes

Als unveränderliche Werte in dieser Berechnung werden folgende Größen angenommen:

- Generelle Flügeldaten; in diesem Zusammenhang werden die Daten für den A3XX Status 8 verwendet
- **Spezifischer Kraftstoffverbrauch der Triebwerke**; die Werte für den spezifischen Kraftstoffverbrauch sind dem A3XX Status12 entnommen und gelten für das Rolls-Royce Trent800 Triebwerk
- Leitwerksflächen; die Leitwerksflächen sind dem A3XX Status 8 entnommen

Variable Größen in diesem Zusammenhang sind:

- Rumpflänge
- Rumpfhöhe und -breite
- Querschnittsfläche des Rumpfes
- Rumpfoberfläche
- Maximales Abfluggewicht (MTOW)
- Flughöhe
- Reisemachzahl
- (Länge der Reiseflugphase)

Um eine Aussage über die maximale Gleitzahl des Flugzeuges treffen zu können, ist es erforderlich eine Abschätzung der benetzten Oberfläche gegenüber der Flügelfläche zu treffen. Die Gleichung lautet nach Scholz '98:

$$\frac{S_{wet}}{S_W} = \frac{\boldsymbol{p} \cdot d_f^2}{S_W} \cdot \left(\frac{l_f}{d_f} - 1\right) + 2 \cdot \left(1 + \frac{S_H + S_V}{S_W}\right) + \frac{S_N}{S_W}$$

$$(6.1)$$

Die enthaltenen Parameter haben dabei folgende Bedeutung:

 d_f äquivalenter Rumpfdurchmesser, alternativ bezeichnet als $d_{\it effektiv}$

 l_f Rumpflänge, alternativ bezeichnet als l_{rumpf}

 S_w Flügelfläche

 S_{wet} benetzte Fläche

S_H Fläche des Höhenleitwerks

 S_{v} Fläche des Seitenleitwerks

S_N benetzte Fläche der Triebwerksgondeln

Für folgende Terme hat Loftin Durchschnittswerte ermittelt:

$$\frac{S_N}{S_W} = 0.47$$
 und $\frac{S_H + S_V}{S_W} = 0.44$

Werden für den zweiten Term die A3XX Leitwerksflächen mit $S_H = 220m^2$ und $S_V = 124m^2$ eingesetzt, so ergibt sich mit der Flügelfläche $S_W = 780m^2$ genau der von Loftin gemittelte Wert.

Ist das Verhältnis der benetzten Oberfläche zur Flügelfläche bekannt, so kann über folgende Gleichung die maximale Gleitzahl abgeschätzt werden [Skript FE Scholz '98]:

$$\left(L/D\right)_{\text{max}} = 7.5 \cdot \frac{A}{\left(S_{wet}/S_W\right)} + 8 \tag{6.2}$$

Die Streckung A beträgt für den Flügel des A3XX A=8. Mit diesen Werten läßt sich die maximale Gleitzahl mit einfachen Mitteln und in diesem Fall sehr genau bestimmen $((L/D)_{max}=19....20)$.

Mit der Gleitzahl ist nun eine Berechnung des Nullwiderstandsbeiwertes mit folgender Gleichung möglich [Skript FE Scholz '98]:

$$(L/D)_{\text{max}} = 0.5 \cdot \sqrt{\frac{\boldsymbol{p} \cdot \boldsymbol{e} \cdot \boldsymbol{A}}{c_{D,0_{A/C}}}}$$
 (6.3)

Für den Parameter e wählt Loftin den Wert e=0.85 für ein strahlgetriebenes Flugzeug in der Reisekonfiguration. Die Größe $c_{D,0_{A/C}}$ muß nur noch isoliert werden.

Eine Aussage über den Widerstand des Rumpfes läßt sich mit Hilfe von Zusammenhängen nach Torenbeek machen. Torenbeek führt aus, daß für die folgende Formel der Rumpf stromlinienförmig sein soll und der Anstellwinkel gegenüber der Anströmung gleich Null ist. Die Gleichung für den Profilwiderstand des Rumpfes lautet:

$$c_{D,0_{Rumpf}} = c_f \cdot S_{f,wet} \cdot \left(1 + \boldsymbol{j}_f\right) \tag{6.4}$$

Diese Gleichung setzt sich aus folgenden Teilen zusammen:

$$c_f = \frac{0,455}{(\log(\text{Re}))^{2.58}} \tag{6.5}$$

Diese Gleichung nach Prandtl- Schlichting berechnet den Widerstandsbeiwert einer längsangeströmten ebenen Platte. Die Reynoldszahl soll größer als $5 \cdot 10^5$ sein. Die Strömung an der Oberfläche ist turbulent. Die Oberfläche ist hydraulisch glatt.

Die Reynoldszahl Re wird bestimmt nach:

$$Re = \frac{v_{cr} \cdot l_{Rumpf}}{\mathbf{u}} \tag{6.6}$$

mit:

 ${\it u}$ stellt die kinematische Viskosität der Luft dar und ist von der Höhe abhängig v_{cr} ist die Reisegeschwindigkeit in m/s

Der Faktor \boldsymbol{j}_f wird über folgende 3 Gleichungen beschrieben:

$$\mathbf{j}_{f} = \frac{2.2}{\mathbf{l}_{eff}^{1.5}} + \frac{3.8}{\mathbf{l}_{eff}^{3}}$$
 (6.7)

 $\boldsymbol{I}_{\it eff}$ wird über zwei Gleichungen berechnet, gewählt wird das kleinere Ergebnis:

$$\boldsymbol{I}_{eff} = \frac{l_f}{\sqrt{\frac{4}{\boldsymbol{p}} \cdot A_C}} \qquad \text{oder} \qquad \boldsymbol{I}_{eff} = \frac{l_N + l_A}{\sqrt{\frac{4}{\boldsymbol{p}} \cdot A_C}} + 2 \qquad (6.8) \text{ und } (6.9)$$

Das fehlende Maß für $l_{\scriptscriptstyle N}+l_{\scriptscriptstyle A}$ wird bestimmt über:

$$l_N + l_A = 1.6 + \frac{4}{\sqrt{\frac{4}{p} \cdot A_C}}$$
 (6.10)

Mit Hilfe dieser Formeln ist es jetzt möglich eine Aussage über den Widerstand des Rumpfes machen zu können. Der Widerstand des Flügels ist dann die Differenz aus $c_{\scriptscriptstyle D,0}$ und $c_{\scriptscriptstyle D,0_{\scriptscriptstyle Rumpf}}$. der Widerstandsbeiwert wird oftmals in "Drag Counts" angegeben. Der Widerstandsbeiwert wird dazu mit 10000 multipliziert. Die Angabe in "Drag Counts", in der Kurzform d.c. , macht den Widerstandsbeiwert aufgrund der Zahlengröße leichter greifbar.

Durch die Berechnung des Gesamtwiderstandes $c_{D,0_{A/C}}$ ist es auch möglich eine Aussage über den notwendigen Schub der Triebwerke für den Reiseflug zu treffen. Der notwendige (Gesamt-) Schub für den Reiseflug wird berechnet nach:

$$T_{cr} = D_{cr} = \frac{m_{mto} \cdot g}{\left(L/D\right)_{\text{max}}} \tag{6.11}$$

Hier ist vereinfachend angenommen worden, daß sich das Fluggewicht während des Reisefluges nicht ändert. Für das Fluggewicht wird das MTOW angenommen. Solche Annahmen sind legitim, solange Flugzeuge unter diesen gleichen Bedingungen verglichen werden, was hier der Fall ist.

Bild 6.2: Triebwerk des A3XX

Über den notwendigen Reiseschub und dem bekannten spezifischen Schub der Triebwerke läßt sich der Treibstoffverbrauch ermitteln:

$$m_{Kraftstoff} = T_{cr} \cdot SFC \cdot t_{Reiseflug}$$
 (6.12)

Die verwendeten Parameter haben folgende Werte:

 $m_{Kraftstoff}$ Masse des benötigten/ verbrauchten Treibstoffs in \mathbf{kg}

 T_{cr} notwendiger Reiseschub in **N**

 $t_{\text{Re } \textit{iseflug}}$ betrachtete Reiseflugdauer in Stunden **h**

SFC spezifischer Kraftstoffverbrauch angenommen für das RollsRoyce Trent 800 mit

$$SFC_{RR,T_{rent}800} = 0,571 \frac{lb}{lbf \cdot h} \text{ oder } SFC_{RR,T_{rent}800} = 58,2264 \cdot 10^{-3} \frac{kg}{N \cdot h}$$

Der Unterschied im Kraftstoffverbrauch der sich an dieser Stelle ermitteln läßt, ist auch für eine DOC- Rechnung wichtig, bei der Annahme das die fixen Kosten bei den entsprechenden Entwürfen gleich sind und nur Unterschiede bei den variablen Kosten, sprich Kraftstoffkosten vorhanden sind.

Es darf aber nicht vergessen werden, daß die hier ermittelten Werte nur Anhalte sein können, da die Sachverhalte der Strömungsmechanik, besonders bei Entwürfen wie der A350 mit "eckiger Kontur", doch stark vereinfacht werden.

Bild 6.3: Sehr große Triebwerke können zu neuartigen Problemen führen

7 Bewertung von Rumpfquerschnitten

7.1 Grundsätzliches

Nach der Darstellung der Grundlagen für die Berechnung und Bewertung von Rumpfquerschnitten in den voran gegangenen Kapiteln, soll hier die praktische Anwendung an etwa 50 betrachteten Querschnitten beschrieben werden. Die Rumpfquerschnitte sind zu diesem Zweck mit dem erstellten EXCEL- Programm MAP'99 berechnet worden. Allen diesen Querschnitten ist gemein, daß die Nutzlast aus 850 Passagieren besteht. Auf dem Frachtdeck kommen LD3 oder M1 Container zur Anwendung. Die Querschnitte die im ersten Teil dieses Kapitels (bis 7.5.3) behandelt werden, haben alle eine elliptische oder kreisförmige Kontur. Einige aus Kreissegmenten bestehende Rumpfquerschnitte werden in Abschnitt 7.6 vorgestellt.

Die Ergebnisse der Berechnungen werden in diesem Kaptitel 7 dargestellt werden. Die abschließende Bewertung soll folgende Aspekte berücksichtigen:

- MTOW
- Aerodynamischer Widerstand des Rumpfes
- Ausnutzungsgrad der vorhandenen Querschnittsfläche

Die Rumpfquerschnitte sind hier im ersten Teil, wie es auch bei der FEM- Rechnung der Fall gewesen ist, in 3 Gruppen eingeteilt, die sich aufgrund der Anzahl der nebeneinander liegenden Sitze (seat abreast) unterscheiden. Diese Gruppen sind:

- **Gruppe 1,** 18 abreast Sitzanordnung
- **Gruppe 2,** 14 abreast Sitzanordnung
- **Gruppe 3**, 20 abreast Sitzanordnung

Bei allen Entwürfen werden auf beiden Passagierdecks jeweils 2 Gänge verwendet. Die zur Erhöhung des Komforts interessante 3 Gang Konfiguration führt zu sehr großen (Querschnitts) Entwürfen, gerade bei der 20 abreast Sitzanordnung. Da mit den hier vorgestellten Gruppen bereits eine große Bandbreite an Querschnitten dargestellt wird, soll auf die Verwendung der 3 Gang Variante verzichtet werden. In dem erstellten EXCEL- Programm MAP'99 ist es aber möglich, 3 Gang Varianten zu berechnen.

7.2 Gruppe 1, 18 abreast Sitzanordnung

In dieser Gruppe sind folgende Rumpfquerschnitte berechnet worden:

Tabelle 7.1	Rumpfquerschnitte	(Gruppe 1)
-------------	-------------------	------------

rampique sommite (Grappe 1)						
	Betrachtet Rumpfquerschnitte					
Тур	Breite	Höhe	Seitenverhältnis	Container		
18LD3a	6,78 m	8,39 m	0,808	LD3		
18LD3b	7,11 m	8,28 m	0,858	LD3		
18LD3c	7,24 m	8,23 m	0,879	LD3		
18LD3d	7,45 m	8,17 m	0,911	LD3		
18LD3e	7,82 m	8,04 m	0,972	LD3		
18LD3f	6,98 m	8,32 m	0,838	LD3		
18LD3g	7,04 m	8,30 m	0,848	LD3		
18LD3h	7,02 m	8,31 m	0,844	LD3		
18LD3i	6,92 m	8,34 m	0,829	LD3		
18LD3i	8,09 m	8,09 m	1,000	LD3		
18M1a	8,71 m	9,19 m	0,947	M1		
18M1a	9,03 m	9,03 m	1,000	M1		
18M1c	8,25 m	9,42 m	0,875	M1		
18M1d	7,84 m	9,61 m	0,815	M1		
18M1e	7,49 m	9,79 m	0,765	M1		
18M1f	7,17 m	9,95 m	0,720	M1		
18M1g	6,88 m	10,09 m	0,681	M1		
18M1h	6,61 m	10,22 m	0,646	M1		

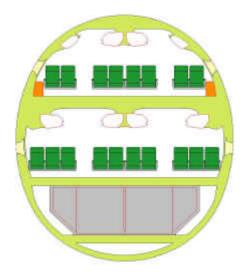


Bild 7.1: 18 abreast Sitzanordnung

Auf dem Frachtdeck werden LD3- oder M1- Container verwendet.

Aus Gründen der Übersichtlichkeit werden Querschnitte die LD3 Container aufnehmen, in der Kurzform "LD3- Variante", z.T. getrennt von der M1- Variante in den Diagrammen dargestellt.

7.2.1 Rumpflänge, -oberfläche und Querschnittsfläche

a) Rumpflänge

 Tabelle 7.2
 Rumpflängen (Gruppe 1)

Rumpflänge über Seitenverhältnis				
Тур	Rumpflänge	Gesamtlänge	Seitenverh.	
18LD3a	69,83 m	73,70 m	0,808	
18LD3i	69,92 m	73,80 m	0,829	
18LD3f	69,96 m	73,80 m	0,838	
18LD3h	69,98 m	73,80 m	0,844	
18LD3g	70,00 m	73,80 m	0,848	
18LD3b	70,04 m	73,90 m	0,858	
18LD3c	70,12 m	74,00 m	0,879	
18LD3d	70,24 m	74,10 m	0,911	
18LD3e	70,45 m	74,30 m	0,972	
18LD3i	70,70 m	74,60 m	1,000	
18M1b	70,77 m	74,60 m	0,620	
18M1h	70,91 m	74,80 m	0,646	
18M1g	71,09 m	74,90 m	0,681	
18M1f	71,27 m	75,10 m	0,720	
18M1e	71,46 m	75,30 m	0,765	
18M1d	71,66 m	75,50 m	0,815	
18M1c	71,86 m	75,70 m	0,875	
18M1a	72,08 m	75,90 m	0,947	
18M1a	72,21 m	76,10 m	1,000	

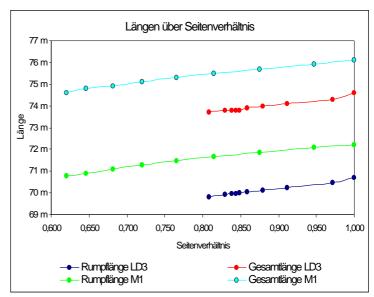


Bild 7.2: Rumpflänge über das Seitenverhältnis (Gruppe 1)

Die Änderungen der Rumpflänge bzw. Gesamtlänge in Abhängigkeit vom Seitenverhältnis sind recht gering. Der Rumpflängenunterschied zwischen der Kreiskontur und der Ellipse mit dem geringsten Seitenverhältnis beträgt 0,87m für die LD3- Variante und 1,44m bei der M1- Version. Werden M1- Container statt LD3- Container verwendet, so vergrößert sich die Rumpflänge um etwa 1,50m.

b) Rumpfoberfläche und Querschnittsfläche

Tabelle 7.3 Rumpfflächen (Gruppe 1)

			pinaonon (C. appc .		
	Fläche über Seitenverhältnis					
Тур		Querschnitts-	Rumpfober-	Seitenver-		
		fläche	fläche	hältnis		
18a		44,7m²	1423m²	0,808		
18b		46,2m ²	1448m²	0,858		
18c		46,8m²	1458m²	0,879		
18d		47,8m²	1473m²	0,911		
18e		49,4m²	1500m²	0,972		
18f		45,6m ²	1439m²	0,838		
18g		45,9m²	1444m²	0,848		
18h		45,8m²	1442m²	0,844		
18i		45,3m ²	1434m²	0,829		
18i		51,4m²	1530m²	1,000		
18M1	а	62,9m²	1701m²	0,947		
18M1	а	64,1m ²	1718m²	1,000		
18M1	b	51,9m ²	1539m²	0,620		
18M1	С	61,0m ²	1674m²	0,875		
18M1	d	59,2m ²	1649m²	0,815		
18M1	е	57,6m ²	1624m²	0,765		
18M1	f	56,0m ²	1601m²	0,720		
18M1	g	54,5m ²	1578m²	0,681		
18M1	h	53,1m²	1557m²	0,646		

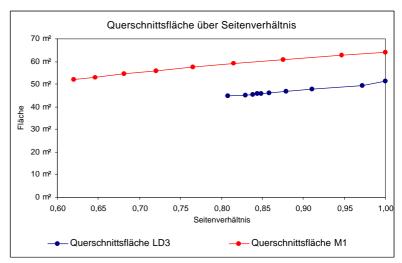
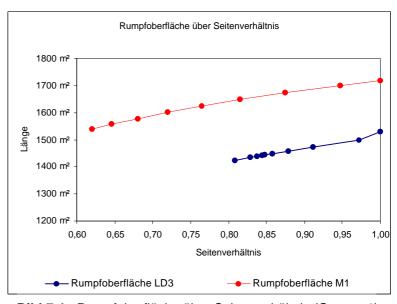



Bild 7.3: Querschnittsfläche über Seitenverhältnis (Gruppe 1)

Bei diesen Parametern ergibt sich ein scheinbar linearer Zusammenhang zwischen dem Seitenverhältnis und der betrachteten Fläche. Die Differenz ist aber stärker ausgeprägt als bei der Rumpflänge. Der Unterschied bei der Rumpfoberfläche für die LD3-Version beträgt 107m² zwischen der Kreiskontur und der Ellipse mit dem geringsten Seitenverhältnis. Bei der Querschnittsfläche beträgt der Unterschied 6,7m².

Für die M1- Variante sind die Unterschiede noch größer. Bei der Rumpfoberfläche sind dies 144m² und bei der Querschnittsfläche 9,8m² Differenz.

Bild 7.4: Rumpfoberfläche über Seitenverhältnis (Gruppe 1)

7.2.2 Strukturmassen, MTOW, Seitenleitwerk und Fahrwerk

a) Massen von Spanten, Stringern, Behäutung und des Oberdecks

Tabelle 7.4	Massen vor	Strukturkom	ponenten ((Gruppe 1)
-------------	------------	-------------	------------	-----------	---

I abone	rit mus	OCII VOII	Otraittai	Komponent	cii (Oluppo 1)			
Massen von Strukturkomponenten								
Тур	Spant	Stringer	Haut	Upper Deck	Seitenverhältnis			
18LD3a	4851 kg	6689 kg	7984 kg	6382 kg	0,808			
18LD3i	4713 kg	6765 kg	8097 kg	6595 kg	0,829			
18LD3f	4646 kg	6798 kg	8146 kg	6687 kg	0,838			
18LD3h	4604 kg	6818 kg	8175 kg	6744 kg	0,844			
18LD3g	4587 kg	6831 kg	8195 kg	6782 kg	0,848			
18LD3b	4514 kg	6864 kg	8258 kg	6879 kg	0,858			
18LD3c	4369 kg	6932 kg	8348 kg	7083 kg	0,879			
18LD3d	4114 kg	7036 kg	8510 kg	7409 kg	0,911			
18LD3e	3583 kg	7218 kg	8801 kg	8019 kg	0,972			
18LD3i	3570 kg	7433 kg	9171 kg	8482 kg	1,000			
18M1h	7879 kg	7620 kg	8764 kg	6172 kg	0,646			
18M1g	7303 kg	7774 kg	8956 kg	6560 kg	0,681			
18M1f	6667 kg	7934 kg	9162 kg	6999 kg	0,720			
18M1e	6293 kg	8103 kg	9384 kg	7496 kg	0,765			
18M1d	5871 kg	8280 kg	9626 kg	8069 kg	0,815			
18M1c	5331 kg	8467 kg	9890 kg	8738 kg	0,875			
18M1a	4593 kg	8664 kg	10183 kg	9530 kg	0,947			
18M1a	4209 kg	8789 kg	10378 kg	10093 kg	1,000			

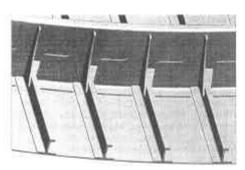


Bild 7.5: Haut, Stringer, Spant

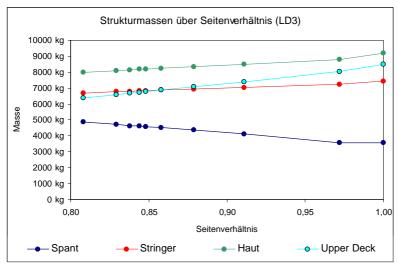


Bild 7.6: Strukturmassen mit LD3- Container (Gruppe 1)

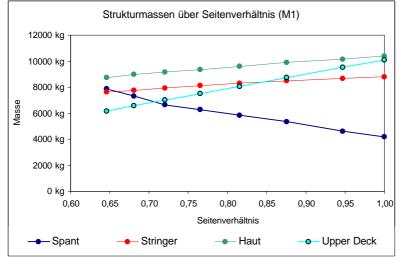


Bild 7.7: Strukturmassen mit M1- Container (Gruppe 1)

Aus Gründen der Übersichtlichkeit werden die LD3- und M1-Variante getrennt betrachtet.

Bei diesen Diagrammen wird deutlich, daß die Massen von Stringern, Behäutung und Oberdeck mit abnehmenden Seitenverhältnis geringer werden. Im Gegensatz dazu steigt die Spantmasse aber deutlich an. Der Grund hierfür ist das durch den Innendruck hervorgerufene Biegemoment, das mit abnehmendem Seitenverhältnis größer wird.

b) MTOW

Tabelle 7.5 MTOW (Gruppe 1)

7.3	V (Oluppe I)					
MTOW über Seitenverhältnis						
MTOW	Seitenverhältnis					
506357 kg	0,808					
509775 kg	0,829					
511068 kg	0,838					
511823 kg	0,844					
512599 kg	0,848					
514151 kg	0,858					
516579 kg	0,879					
520247 kg	0,911					
525286 kg	0,972					
543438 kg	1,000					
614581 kg	0,646					
613253 kg	0,681					
611564 kg	0,720					
617166 kg	0,765					
623081 kg	0,815					
627997 kg	0,875					
630487 kg	0,947					
634863 kg	1,000					
	OW über Seiten MTOW 506357 kg 509775 kg 511068 kg 511823 kg 512599 kg 514151 kg 516579 kg 520247 kg 525286 kg 543438 kg 614581 kg 613253 kg 611564 kg 617166 kg 623081 kg 627997 kg					

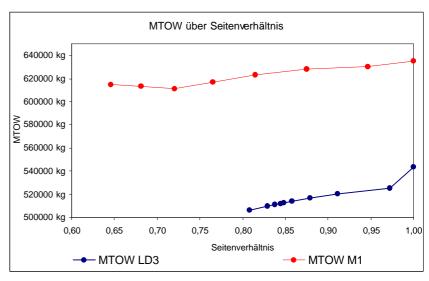
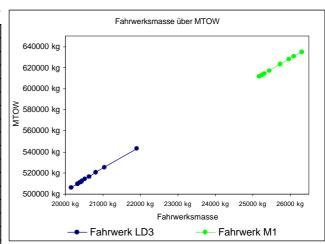


Bild 7.8: MTOW über das Seitenverhältnis (Gruppe 1)

Das MTOW faßt alle Teilmassen zu einem Wert zusammen. Es zeigt in diesem Fall auch, ob ein Rumpfquerschnitt eine gute Kombination aller Teilaspekte darstellt, indem ein möglichst geringes MTOW erreicht wird.


Der Verlauf des MTOW der M1- Variante weist bei einem Seitenverhältnis von etwa 0,72 ein Minimum auf. Dies stellt für die gewählte Nutzlast (850 Passagiere und M1 Container) eine gute Lösung dar, bezogen auf ein niedriges Strukturgewicht.

Bei der LD3- Version ist dieses Minimum nicht erreicht worden. Doch auch hier ist es vorteilhaft, einen Querschnitt mit einem niedrigem Seitenverhältnis zu wählen.

c) Fahrwerk und Leitwerk

Tabelle 7.6 Fahrwerk und Leitwerk (Gruppe 1)

Fahrv	verks- und Le	se über Sei	itenverhältnis	
Тур	MTOW	Fahrwerk	Leitwerk	Seitenverhältnis
18LD3a	506357 kg	20161 kg	10898 kg	0,808
18LD3i	509775 kg	20320 kg	10876 kg	0,829
18LD3f	511068 kg	20380 kg	10867 kg	0,838
18LD3h	511823 kg	20415 kg	10861 kg	0,844
18LD3g	512599 kg	20451 kg	10857 kg	0,848
18LD3b	514151 kg	20524 kg	10848 kg	0,858
18LD3c	516579 kg	20637 kg	10829 kg	0,879
18LD3d	520247 kg	20808 kg	10800 kg	0,911
18LD3e	525286 kg	21044 kg	10749 kg	0,972
18LD3i	543438 kg	21899 kg	10691 kg	1,000
18M1h	614581 kg	25315 kg	10642 kg	0,646
18M1g	613253 kg	25250 kg	10602 kg	0,681
18M1f	611564 kg	25168 kg	10561 kg	0,720
18M1e	617166 kg	25441 kg	10519 kg	0,765
18M1d	623081 kg	25730 kg	10475 kg	0,815
18M1c	627997 kg	25970 kg	10429 kg	0,875
18M1a	630487 kg	26092 kg	10382 kg	0,947
18M1a	634863 kg	26307 kg	10353 kg	1,000

Bild 7.9: Fahrwerksmasse über Seitenverhältnis (Gruppe 1)

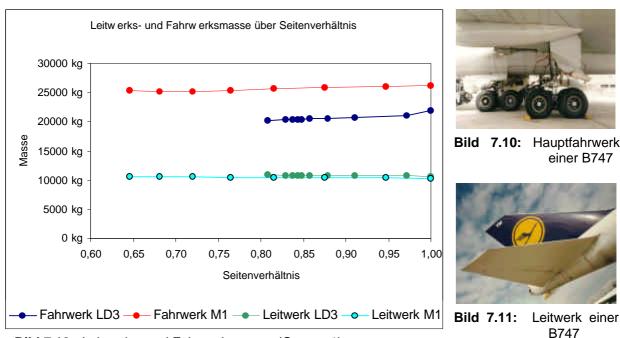


Bild 7.12: Leitwerks- und Fahrwerksmasse (Gruppe 1)

Die Schwankungen, die sich für Fahrwerks- und Leitwerksmasse ergeben, haben nur eine schwach ausgeprägte Abhängigkeit vom Seitenverhältnis.

Beim Fahrwerk macht dies eine Differenz von 1738kg für die LD3- Variante und 992kg für die M1- Version aus. Beim Leitwerk sind die Schwankungen mit 207kg für die LD3- Version und 289kg für die M1- Variante deutlich geringer als beim Fahrwerk. Dies ist verständlich aufgrund der nur geringen Längenänderung (Änderung des Hebelarms) des Rumpfes.

7.2.3 Widerstand des Rumpfes

Tabelle 7.7 Luftwiderstand (Gruppe 1)

Aerodynamik cd über Seitenverhältnis							
	Тур	cd Rumpf	cd gesamt	Oberflä-	Seitenver-		
	•	-		che	hältnis		
	18LD3a	34,91 d.c.	141,29 d.c.	1423 m ²	0,808		
	18LD3i	35,19 d.c.	141,78 d.c.	1434 m ²	0,829		
	18LD3f	35,31 d.c.	141,98 d.c.	1439 m ²	0,838		
	18LD3h	35,38 d.c.	142,11 d.c.	1442 m ²	0,844		
	18LD3g	35,43 d.c.	142,19 d.c.	1444 m²	0,848		
	18LD3b	35,55 d.c.	142,40 d.c.	1448 m²	0,858		
	18LD3c	35,80 d.c.	142,83 d.c.	1458 m ²	0,879		
	18LD3d	36,18 d.c.	143,48 d.c.	1473 m ²	0,911		
	18LD3e	36,84 d.c.	144,62 d.c.	1500 m ²	0,972		
	18LD3i	37,62 d.c.	145,95 d.c.	1530 m ²	1,000		
	18M1h	38,29 d.c.	147,10 d.c.	1557 m ²	0,646		
	18M1g	38,83 d.c.	148,03 d.c.	1578 m ²	0,681		
	18M1f	39,39 d.c.	149,01 d.c.	1601 m ²	0,720		
	18M1e	39,98 d.c.	150,02 d.c.	1624 m²	0,765		
	18M1d	40,60 d.c.	151,07 d.c.	1649 m ²	0,815		
	18M1c	41,24 d.c.	152,18 d.c.	1674 m ²	0,875		
	18M1a	41,92 d.c.	153,33 d.c.	1701 m ²	0,947		
	18M1a	42,34 d.c.	154,06 d.c.	1718 m ²	1,000		

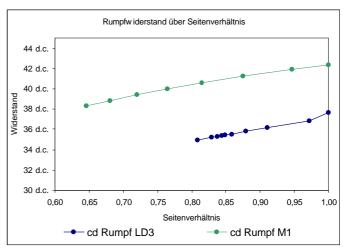
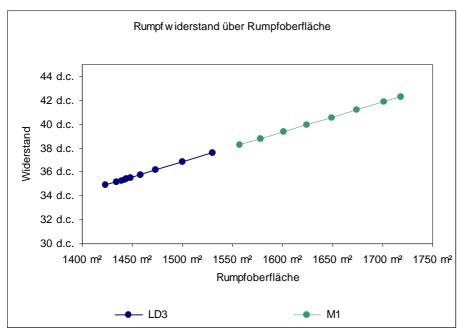



Bild 7.13: Widerstand über Seitenverhältnis (Gruppe 1)

Hier zeigt sich, daß der Widerstand des Rumpfes nahezu linear von der Rumpfoberfläche abhängt.

Die Folge davon ist ein verringerter Widerstand für Entwürfe mit einem hohem Seitenverhältnis und einer geringen benetzten Oberfläche.

Bild 7.14: Widerstand über Rumpfoberfläche (Gruppe 1)

7.2.4 Ausnutzungsgrad der vorhandenen Querschnittsfläche

 Tabelle 7.8
 Ausnutzungsgrade für die einzelnen Teilflächen des Querschnittes (Gruppe 1)

	Seiten-	Upper Deck			Main Deck			Lo	wer Deck		Gesa	mt
Тур	verhält- nis	benötigt	vorhan- den	Index	benötigt	vorhan- den	Index	benötigt	vorhan- den	Index	vorhan- den	Index
18LD3a	0,808	12,3 m ²	15,9 m ²	77%	15,9 m ²	16,6 m ²	96%	6,3 m ²	12,1 m ²	52%	44,7 m ²	80%
18LD3b	0,858	12,3 m ²	16,4 m ²	75%	15,9 m ²	17,4 m ²	91%	6,3 m ²	12,4 m ²	51%	46,2 m ²	78%
18LD3c	0,879	12,3 m ²	16,6 m ²	74%	15,9 m ²	17,8 m ²	89%	6,3 m ²	12,5 m ²	50%	46,8 m ²	77%
18LD3d	0,911	12,3 m ²	16,9 m ²	73%	15,9 m ²	18,3 m ²	87%	6,3 m ²	12,6 m ²	50%	47,8 m ²	75%
18LD3e	0,972	12,3 m ²	17,3 m ²	71%	15,9 m ²	19,2 m ²	83%	6,3 m ²	12,9 m ²	49%	49,4 m ²	73%
18LD3f	0,838	12,3 m ²	16,2 m ²	76%	15,9 m ²	17,1 m ²	93%	6,3 m ²	12,2 m ²	52%	45,6 m ²	79%
18LD3g	0,848	12,3 m ²	16,3 m ²	75%	15,9 m ²	17,3 m ²	92%	6,3 m ²	12,3 m ²	51%	45,9 m ²	78%
18LD3h	0,844	12,3 m ²	16,3 m ²	75%	15,9 m ²	17,2 m ²	92%	6,3 m ²	12,3 m ²	51%	45,8 m ²	78%
18LD3i	0,829	12,3 m ²	16,2 m ²	76%	15,9 m ²	17,0 m ²	94%	6,3 m ²	12,2 m ²	52%	45,3 m ²	79%
18LD3i	1,000	12,3 m ²	18,1 m ²	68%	15,9 m ²	19,8 m ²	80%	6,3 m ²	13,5 m ²	47%	51,4 m ²	70%
18M1a	0,947	12,3 m ²	20,3 m ²	61%	15,9 m ²	21,5 m ²	74%	11,9 m ²	21,1 m ²	56%	62,9 m ²	65%
18M1a	1,000	12,3 m ²	20,5 m ²	60%	15,9 m ²	22,3 m ²	71%	11,9 m ²	21,3 m ²	56%	64,1 m ²	64%
18M1c	0,875	12,3 m ²	19,9 m ²	62%	15,9 m ²	20,4 m ²	78%	11,9 m ²	20,7 m ²	57%	61,0 m ²	67%
18M1d	0,815	12,3 m ²	19,5 m ²	63%	15,9 m ²	19,4 m ²	82%	11,9 m ²	20,3 m ²	59%	59,2 m ²	69%
18M1e	0,765	12,3 m ²	19,2 m ²	64%	15,9 m ²	18,5 m ²	86%	11,9 m ²	19,9 m ²	60%	57,6 m ²	71%
18M1f	0,720	12,3 m ²	18,8 m ²	65%	15,9 m ²	17,7 m ²	90%	11,9 m ²	19,5 m ²	61%	56,0 m ²	73%
18M1g	0,681	12,3 m ²	18,4 m ²	67%	15,9 m ²	17,0 m ²	94%	11,9 m ²	19,1 m ²	62%	54,5 m ²	75%
18M1h	0,646	12,3 m ²	18,0 m ²	68%	15,9 m ²	16,4 m ²	97%	11,9 m ²	18,7 m ²	64%	53,1 m ²	77%

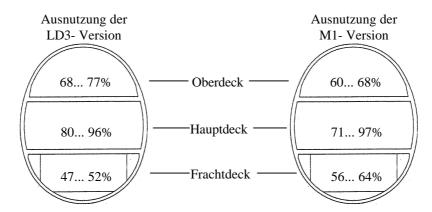


Bild 7.15: Ausnutzung der einzelnen Decks (Gruppe 1)

Bei der Gesamtausnutzung der vorhandenen Querschnittsfläche zeigt sich, daß die LD3-Variante insgesamt von Vorteil ist.

Allgemein verbessert sich der Ausnutzungsgrad, wenn das Seitenverhältnis geringer wird. Die schlechteste Ausnutzung hat jeweils der Kreisquerschnitt bei einem Seitenverhältnis von 1.

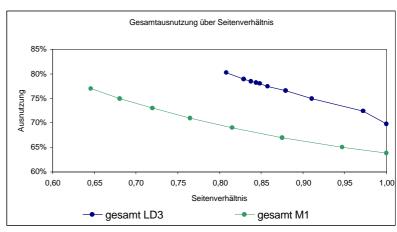


Bild 7.16: Gesamtausnutzung der Querschnittsfläche (Gruppe 1)

Wird der Ausnutzungsgrad für die Decks einzeln betrachtet, so fällt auf, daß die M1- Variante nur im Frachtraum einen besseren Ausnutzungsgrad als die LD3-Version aufweisen kann. In allen anderen Bereichen ist sonst die LD3 Variante im Vorteil.

Die höchsten Ausnutzungsgrade erreicht immer das Hauptdeck. Die Werte dort reichen bis zu einer Ausnut-

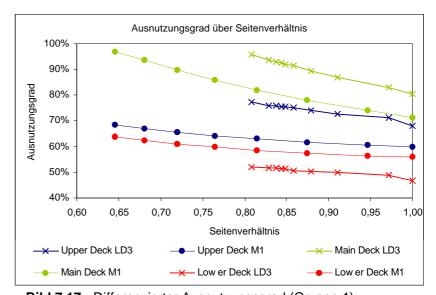


Bild 7.17: Differenzierter Ausnutzungsgrad (Gruppe 1)

zung von 97%. Auf dem Oberdeck können von der LD3- Variante noch Werte bis 77% erreicht werden. Auf dem Frachtdeck werden nur noch Werte bis 64% bei der M1- Version erlangt. Dort wird also, nach dieser Sichtweise, am meisten nicht nutzbares Volumen transportiert.

Es bleibt allerdings in dieser Berechnung unberücksichtigt, daß von den einzubauenden Flugzeugsystemen ein Teil des Frachtraumes gebraucht wird. Die wirklich verfügbare Fläche verringert sich dort also etwas und der Ausnutzungsgrad wird ein wenig besser.

7.3 Gruppe 2, 14 abreast Sitzanordnung

In dieser Gruppe sind folgende Rumpfquerschnitte berechnet worden:

				- /		
Betrachtete Rumpfquerschnitte						
Тур	Breite	Höhe	Seitenverhältnis	Container		
14a	7,42 m	8,17 m	0,908	LD3		
14b	6,95 m	8,33 m	0,834	LD3		
14c	6,55 m	8,46 m	0,774	LD3		
14d	6,19 m	8,58 m	0,721	LD3		
14e	5,88 m	8,69 m	0,676	LD3		
14f	5,59 m	8,78 m	0,636	LD3		
14f	7,99 m	7,99 m	1,000	LD3		

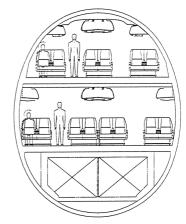


Bild 7.18: 14 abreast Sitzanordnung

In dieser kleinsten (Querschnitts-) Gruppe kommen auf dem Frachtdeck nur LD3 Container in Frage, da der M1- Container aufgrund seiner Größe die Kontur zu nachteilig verändert. Weiter ist diese 14 abreast Sitzanordnung für eine Passagierzahl von 850 nicht geeignet, da sich Rumpflängen von über 80m ergeben. Der Vollständigkeit halber wird diese Konzeption trotz der "Überlänge" berücksichtigt. Für geringere Passagierzahlen (z.B. für die Größe der A3XX-50 mit 608 Passagieren) kann diese Konfiguration durchaus interessant sein.

7.3.1 Rumpflänge, -oberfläche und Querschnittsfläche

a) Rumpflänge

Tabelle 7.10 Rumpflängen (Gruppe 2)

Rumpflänge über Seitenverhältnis					
Тур	Rumpflänge	Gesamtlänge	Seitenver-		
ТУР	rtumphange	Ocsamilarige	hältnis		
14a	85,6 m	89,6 m	0,908		
14b	85,3 m	89,3 m	0,834		
14c	85,0 m	89,0 m	0,774		
14d	84,8 m	88,8 m	0,721		
14e	84,6 m	88,5 m	0,676		
14f	84,3 m	88,3 m	0,636		
14f	85,9 m	89,9 m	1,000		

Ähnlich wie bei Gruppe 1 ist hier nur eine schwache Abhängigkeit zwischen Seitenverhältnis und Rumpflänge vorhanden. Die Differenz bei der Rumpflänge beträgt je nach gewähltem Seitenverhältnis maximal 1,60m.

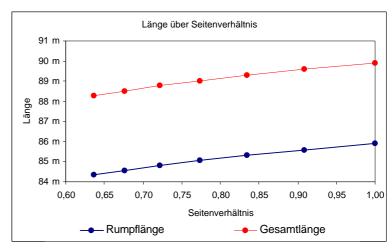
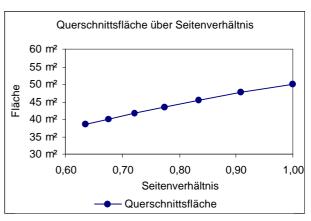
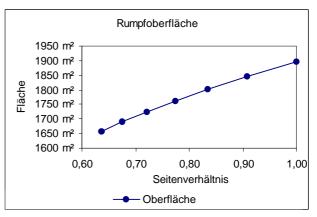



Bild 7.19: Rumpflängen über das Seitenverhältnis (Gruppe 2)

b) Rumpfoberfläche und Querschnittsfläche


Tabelle 7.11 Rumpfflächen (Gruppe 2)

Fläche über Seitenverhältnis					
Тур	Querschnittsflä-	Rumpfober-	Seitenver-		
	che	fläche	hältnis		
14a	47,6 m ²	1846 m²	0,908		
14b	45,5 m ²	1803 m²	0,834		
14c	43,5 m ²	1763 m²	0,774		
14d	41,8 m ²	1725 m²	0,721		
14e	40,1 m ²	1690 m²	0,676		
14f	38,6 m ²	1656 m²	0,636		
14f	50,1 m ²	1895 m²	1,000		

Bild 7.20: Querschnittsfläche über Seitenverhältnis (Gruppe 2)

Die Größenänderungen der Flächen über das Seitenverhältnis sind bei dieser Gruppe 2 ausgeprägter als bei Gruppe 1. Der Unterschied bei der Rumpfoberfläche beträgt etwa 238m² zwischen der Kreiskontur und der Ellipse mit dem geringsten Seitenverhältnis. Bei der Querschnittsfläche beträgt der Unterschied 11,5m².

Bild 7.21: Rumpfoberfläche über Seitenverhältnis (Gruppe 2)

7.3.2 Strukturmassen, Massen, Seitenleitwerk und Fahrwerk

a) Massen von Spanten, Stringern, Behäutung und des Oberdecks

Tabelle 7.12 Massen von Strukturkomponenten (Gruppe 2)

					<u> </u>		
Strukturmassen über Seitenverhältnis							
Тур	Seitenverhältnis	Spant	Stringer	Haut	Upper Deck		
14f	0,636	6412 kg	8339 kg	9070 kg	5069 kg		
14e	0,676	6215 kg	8583 kg	9374 kg	5449 kg		
14d	0,721	5963 kg	8845 kg	9709 kg	5888 kg		
14c	0,774	5651 kg	9127 kg	10081 kg	6398 kg		
14b	0,834	5233 kg	9431 kg	10497 kg	6998 kg		
14a	0,908	4666 kg	9760 kg	10965 kg	7715 kg		
14f	1,000	3980 kg	10135 kg	11529 kg	8630 kg		

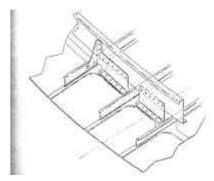


Bild 7.22: Haut, Stringer ,Spant

Auch hier wird verdeutlicht, daß die Massen von Stringer, Oberdeck und Haut abnehmen, wenn das Seitenverhältnis geringer wird. Nur die Spantmasse hat eine dazu gegenläufige Tendenz.

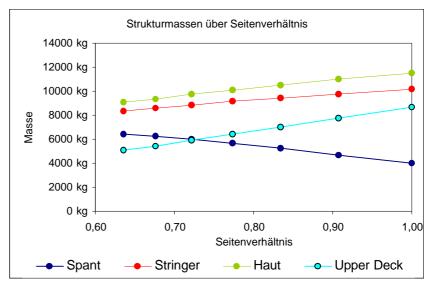


Bild 7.23: Strukturmassen über Seitenverhältnis (Gruppe 2)

b) MTOW

Tabelle 7.13 MTOW (Gruppe 2)

	MTOW über Seitenverhältnis					
Тур	Seitenverhältnis	MTOW				
14f	0,636	592729 kg				
14e	0,676	604911 kg				
14d	0,721	617546 kg				
14c	0,774	630840 kg				
14b	0,834	644129 kg				
14a	0,908	656989 kg				
14f	1.000	672443 ka				

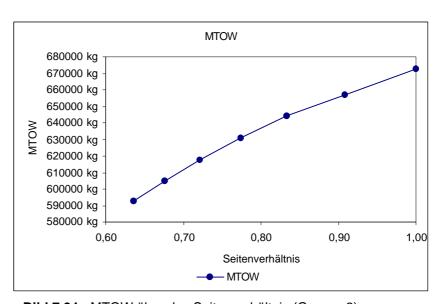


Bild 7.24: MTOW über das Seitenverhältnis (Gruppe 2)

Das MTOW hat hier über das abnehmende Seitenverhältnis eine deutlich fallende Tendenz. Ein Minimum ist aber nicht erreicht worden. Auch bei dieser 14 abreast Sitzanordnung ist es für eine geringe Abflugmasse vorteilhaft, eine Rumpfkontur mit einem geringen Seitenverhältnis zu wählen.

c) Fahrwerk und Leitwerk

Tabelle 7.14 Fahrwerk, Leitwerk (Gruppe 2)

Tabel	rabelle 7.14 raniwerk, Leitwerk (Gruppe 2)						
Massen über Seitenverhältnis							
Тур	Seitenver- hältnis	MTOW	Leitwerk	Fahrwerk			
14f	0,636	592729 kg	8300 kg	24255 kg			
14e	0,676	604911 kg	8271 kg	24844 kg			
14d	0,721	617546 kg	8241 kg	25459 kg			
14c	0,774	630840 kg	8209 kg	26110 kg			
14b	0,834	644129 kg	8174 kg	26763 kg			
14a	0,908	656989 kg	8138 kg	27399 kg			
14f	1,000	672443 kg	8098 kg	28167 kg			

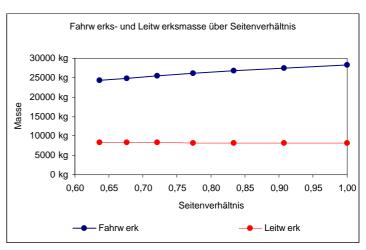
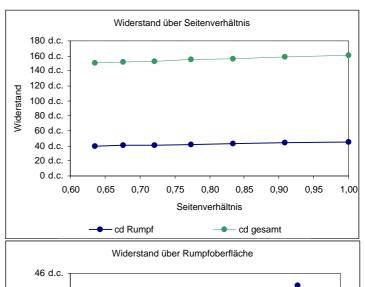


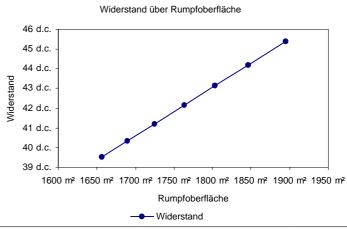
Bild 7.25: Fahrwerks- und Leitwerksmasse (Gruppe 2)

Die Gewichtsdifferenzen betragen für das Leitwerke nur etwa 200kg. dies hängt von der geringen Änderung des Hebelarmes ab. Beim Fahrwerk sind die Unterschiede deutlich größer und betragen 3912kg zwischen dem Kreisquerschnitt und der Ellipse mit dem geringsten Seitenverhältnis.

7.3.3 Widerstand des Rumpfes

Tabelle 7.15 Luftwiderstand (Gruppe 2)

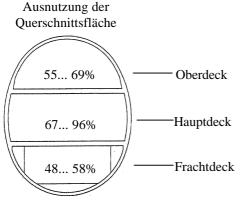

Aerodynamik cd über Seitenverhältnis						
Тур	cd Rumpf	cd gesamt	Oberflä-	Seitenver-		
			che	hältnis		
14f	39,5 d.c.	150,5 d.c.	1657 m ²	0,636		
14e	40,3 d.c.	151,9 d.c.	1690 m ²	0,676		
14d	41,2 d.c.	153,4 d.c.	1725 m ²	0,721		
14c	42,1 d.c.	155,0 d.c.	1763 m ²	0,774		
14b	43,1 d.c.	156,6 d.c.	1803 m ²	0,834		
14a	44,2 d.c.	158,5 d.c.	1847 m ²	0,908		
14f	45,4 d.c.	160,5 d.c.	1895 m ²	1,000		


Der Widerstand des Rumpfes hängt linear von der Rumpfoberfläche ab.

Die Folge ist auch hier ein verringerter Widerstand für Entwürfe mit einem hohen Seitenverhältnis und einer geringen benetzten Rumpfoberfläche.

Bild 7.26: Widerstand über Seitenverhältnis (Gruppe 2)

Bild 7.27: Widerstand über Rumpfoberfläche (Gruppe 2)



7.3.4 Ausnutzungsgrad der vorhandenen Querschnittsfläche

Tabelle 7.16 Ausnutzungsgrade für die einzelnen Teilflächen des Querschi
--

Turn	Seitenver-	L	Jpper Deck			Main Deck			Lower Deck	,	Gesai	mt
Тур	hältnis	benötigt	vorhanden	Index	benötigt	vorhanden	Index	benötigt	vorhanden	Index	vorhanden	Index
14a	0,908	9,6 m ²	16,8 m ²	57%	13,2 m ²	18,2 m²	73%	6,3 m ²	12,6 m ²	50%	47,6 m ²	64%
14b	0,834	9,6 m ²	16,2 m ²	59%	13,2 m ²	17,1 m ²	77%	6,3 m ²	12,2 m ²	52%	45,5 m ²	67%
14c	0,774	9,6 m ²	15,6 m ²	62%	13,2 m ²	16,1 m ²	82%	6,3 m ²	11,9 m ²	53%	43,5 m ²	70%
14d	0,721	9,6 m ²	15,0 m ²	64%	13,2 m ²	15,2 m ²	87%	6,3 m ²	11,5 m ²	55%	41,8 m ²	73%
14e	0,676	9,6 m ²	14,5 m ²	66%	13,2 m ²	14,5 m ²	91%	6,3 m ²	11,1 m ²	57%	40,1 m ²	76%
14f	0,636	9,6 m ²	14,0 m ²	69%	13,2 m ²	13,8 m ²	96%	6,3 m ²	10,8 m ²	58%	38,6 m ²	79%
14f	1,000	9,6 m ²	17,5 m ²	55%	13,2 m ²	19,6 m²	67%	6,3 m ²	13,0 m ²	48%	50,1 m ²	61%

Bild 7.28: Ausnutzung der einzelnen Decks (Gruppe 2)

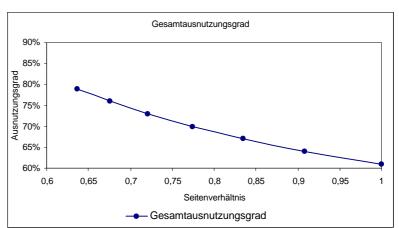
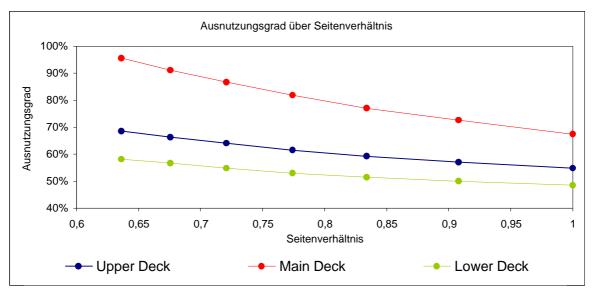



Bild 7.29: Gesamausnutzung der Querschnittsfläche (Gruppe 2)

Bild 7.30: Differenzierter Ausnutzungsgrad (Gruppe 2)

Bei der Ausnutzung der vorhandenen Querschnittsfläche ergibt sich ein ähnlicher Verlauf wie bei Gruppe 1. Allgemein wird der Gesamtausnutzungsgrad besser, wenn das Seitenverhältnis geringer wird.

Für die einzelnen Decks bedeutet dies hier, daß das Frachtdeck mit maximal 58% nur schlecht ausgenutzt werden kann. Die besten Werte werden wieder auf dem Hauptdeck mit bis zu 96% erreicht. Das Oberdeck hat eine Ausnutzung von maximal 69%.

7.4 Gruppe 3, 20 abreast Sitzanordnung

In dieser Gruppe sind folgende Rumpfquerschnitte berechnet worden:

Tabelle 7.17 Rumpfquerschnitt (Gruppe 3)

Betrachtete Rumpfquerschnitte						
Тур	Breite	Höhe	Seitenverhältnis	Container		
20LD3a	8,41 m	8,83 m	0,952	LD3		
20LD3b	8,18 m	8,94 m	0,914	LD3		
20LD3c	7,97 m	9,05 m	0,880	LD3		
20LD3d	7,77 m	9,14 m	0,850	LD3		
20LD3e	7,58 m	9,24 m	0,820	LD3		
20LD3f	7,44 m	9,30 m	0,800	LD3		
20LD3f	8,69 m	8,69 m	1,000	LD3		
20M1a	8,67 m	9,54 m	0,908	M1		
20M1b	8,04 m	9,85 m	0,816	M1		
20M1c	7,51 m	10,11 m	0,742	M1		
20M1d	7,06 m	10,33 m	0,683	M1		
20M1e	6,43 m	10,90 m	0,589	M1		
20M1f	7,76 m	9,99 m	0,776	M1		
20M1g	8,34 m	9,71 m	0,858	M1		
20M1h	8,23 m	9,76 m	0,843	M1		
20M1h	9,26 m	9,26 m	1,000	M1		

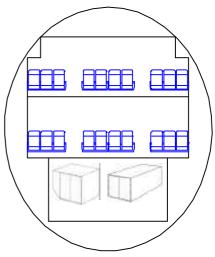


Bild 7.31: 20 abreast Sitzanordnung

Bei den Querschnitten dieser Gruppe werden auf dem Frachtdeck die Containertypen M1 und LD3 verwendet. Aus Gründen der Übersichtlichkeit ist es z.T. auch hier nötig die LD3- Varianten getrennt von den M1- Versionen darzustellen.

7.4.1 Rumpflänge, -oberfläche und Querschnittsfläche

a) Rumpflänge

 Tabelle 7.18
 Rumpflängen (Gruppe 3)

Rumpflänge über Seitenverhältnis						
Тур	Rumpflänge	Gesamtlänge	Seitenverh.			
20LD3a	66,17 m	70,00 m	0,952			
20LD3b	66,07 m	69,90 m	0,914			
20LD3c	65,97 m	69,80 m	0,880			
20LD3d	65,87 m	69,70 m	0,850			
20LD3e	65,77 m	69,60 m	0,820			
20LD3f	65,70 m	69,50 m	0,800			
20LD3f	66,29 m	70,10 m	1,000			
20M1a	66,94 m	70,80 m	0,908			
20M1b	66,62 m	70,50 m	0,816			
20M1c	66,33 m	70,20 m	0,742			
20M1d	66,05 m	69,90 m	0,683			
20M1e	65,79 m	69,60 m	0,589			
20M1f	66,47 m	70,30 m	0,776			
20M1g	66,78 m	70,60 m	0,858			
20M1h	66,73 m	70,60 m	0,843			
20M1h	67,20 m	71,00 m	1,000			

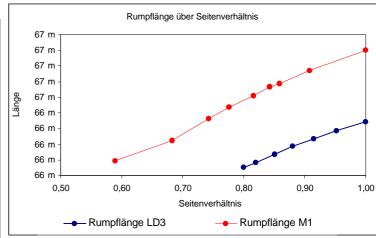


Bild 7.32: Rumpflänge über das Seitenverhältnis (Gruppe 3)

Die Längenänderungen in dieser Gruppe sind ähnlich groß wie bei den anderen Gruppen. Das Maximum beträgt hier 1,40m bei der Rumpflänge der M1- Variante und 0,60m für die LD3-Version.

Werden statt der LD3- Container die größeren M1- Container verwendet, so ist die Längenzunahme mit 0,90m sehr gering.

b) Rumpfoberfläche und Querschnittsfläche

Tabelle 7.19 Rumpfflächen (Gruppe 3)

rabelle 1.13 Rumpinachen (Oruppe 3)							
	Fläche über Seitenverhältnis						
Тур	Querschnitt	Oberfläche	Seitenver-				
			hältnis				
20LD3a	58,3 m ²	1490 m²	0,952				
20LD3b	57,4 m ²	1478 m²	0,914				
20LD3c	56,6 m ²	1467 m²	0,880				
20LD3d	55,8 m ²	1455 m²	0,850				
20LD3e	55,0 m ²	1444 m²	0,820				
20LD3f	54,3 m ²	1436 m²	0,800				
20LD3f	59,3 m ²	1503 m ²	1,000				
20M1a	65,0 m ²	1577 m²	0,908				
20M1b	62,2 m ²	1541 m²	0,816				
20M1c	59,6 m ²	1507 m ²	0,742				
20M1d	57,3 m ²	1476 m²	0,683				
20M1e	55,1 m ²	1446 m²	0,589				
20M1f	60,9 m ²	1524 m²	0,776				
20M1g	63,6 m ²	1559 m²	0,858				
20M1h	63,1 m ²	1553 m ²	0,843				
20M1h	67,3 m ²	1606 m ²	1,000				

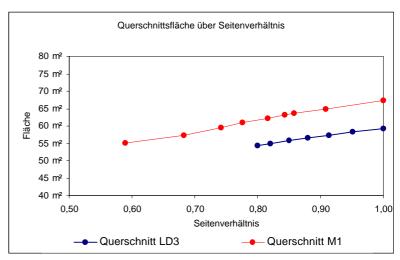


Bild 7.33: Querschnittsfläche über Seitenverhältnis (Gruppe 3)

Die Differenz bei der Größe der Rumpfoberfläche zwischen der Kreiskontur und der Ellipse beträgt 160m² bei der M1- Variante und 67m² für die LD3- Version. Bei der Querschnittsfläche beträgt der Unterschied 12,2 bzw. 5m² für die LD3- Version.

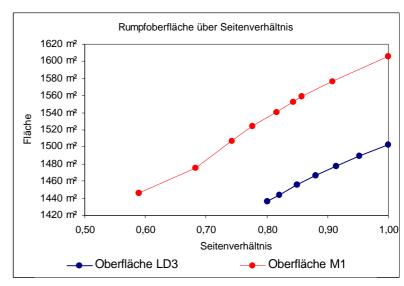


Bild 7.34: Rumpfoberfläche über Seitenverhältnis (Gruppe 3)

7.4.2 Strukturmassen, MTOW, Seitenleitwerk und Fahrwerk

a) Massen von Spanten, Stringern, Behäutung und des Oberdecks

Tabelle 7.20 Massen von Strukturkomponenten (Gruppe 3)

					. (1 /			
	Massen von Strukturkomtonenten							
Тур	Spant	Stringer	Haut	Upper Deck	Seitenverhältnis			
20LD3a	4092 kg	7149 kg	8843 kg	9774 kg	0,952			
20LD3b	4461 kg	7068 kg	8714 kg	9334 kg	0,914			
20LD3c	4772 kg	6989 kg	8591 kg	8932 kg	0,880			
20LD3d	5037 kg	6912 kg	8475 kg	8565 kg	0,850			
20LD3e	5277 kg	6837 kg	8364 kg	8226 kg	0,820			
20LD3f	5438 kg	6778 kg	8278 kg	7972 kg	0,800			
20LD3f	3793 kg	7243 kg	8997 kg	10324 kg	1,000			
20M1a	4985 kg	7764 kg	9328 kg	10142 kg	0,908			
20M1b	5859 kg	7509 kg	8955 kg	8950 kg	0,816			
20M1c	6639 kg	7273 kg	8628 kg	8005 kg	0,742			
20M1d	7702 kg	7053 kg	8338 kg	7233 kg	0,683			
20M1e	9587 kg	6849 kg	8145 kg	6252 kg	0,589			
20M1f	6182 kg	7389 kg	8786 kg	8452 kg	0,776			
20M1g	5465 kg	7634 kg	9135 kg	9509 kg	0,858			
20M1h	5609 kg	7591 kg	9073 kg	9315 kg	0,843			
20M1h	4181 kg	7973 kg	9658 kg	11303 kg	1,000			

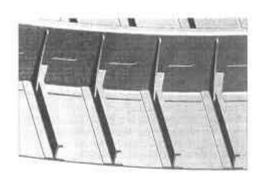


Bild 7.35: Haut, Stringer, Spant

Wie auch bei den anderen Gruppen

wird bei diesen Diagrammen deut-

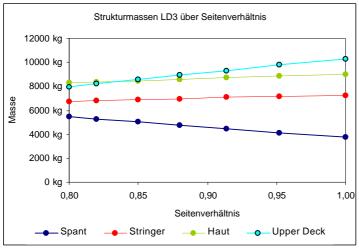


Bild 7.36: Strukturmassen mit LD3- Containern (Gruppe 3)

lich, daß die Massen von Stringer, Behäutung und Oberdeck mit abnehmendem Seitenverhältnis geringer werden. Die Spantmasse steigt deutlich an. Das durch den Innendruck hervorgerufene Biegemoment, ist der

Grund für diese Entwicklung. Mit

abnehmendem Seitenverhältnis wird die Belastung größer.

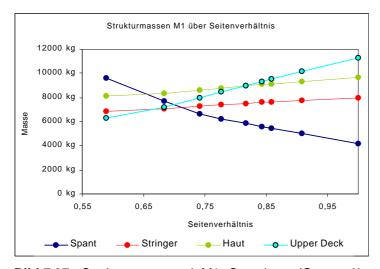


Bild 7.37: Strukturmassen mit M1- Containern (Gruppe 3)

b) MTOW

Tabelle 7.21 MTOW (Gruppe 3)

Tubelle	7121 10110	VV (Gruppe o)					
MT	MTOW über Seitenverhältnis						
Тур	MTOW	Seitenverhältnis					
20LD3a	554839 kg	0,952					
20LD3b	553932 kg	0,914					
20LD3c	552284 kg	0,880					
20LD3d	550110 kg	0,850					
20LD3e	547830 kg	0,820					
20LD3f	545546 kg	0,800					
20LD3f	559404 kg	1,000					
20M1a	605115 kg	0,908					
20M1b	598386 kg	0,816					
20M1c	593569 kg	0,742					
20M1d	598397 kg	0,683					
20M1e	622825 kg	0,589					
20M1f	593980 kg	0,776					
20M1g	602149 kg	0,858					
20M1h	601060 kg	0,843					
20M1h	611089 kg	1,000					

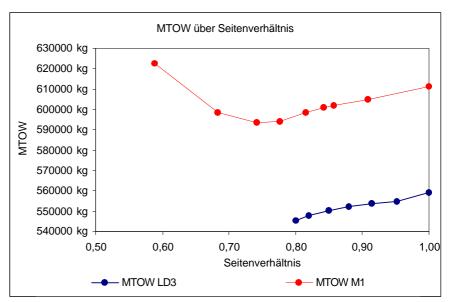
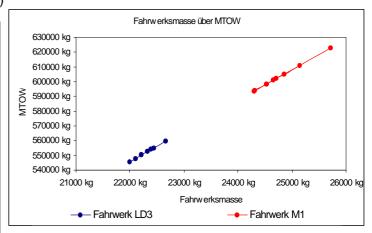


Bild 7.38: MTOW über das Seitenverhältnis (Gruppe 3)


Der Verlauf des MTOW von dem M1- Querschnitt (über das Seitenverhältnis) weist bei einem Seitenverhältnis von 0,776 ein Minimum auf. Dies stellt für die gewählte Nutzlast (850 Passagiere und M1- Container) eine gute Lösung dar, wenn ein möglichst niedriges Strukturgewicht das Ziel ist.

Beim LD3- Querschnitt ist dieses Minimum nicht erreicht worden. Auch hier fällt das MTOW mit abnehmendem Seitenverhältnis ab.

c) Fahrwerk und Leitwerk

Tabelle 7.22 Fahrwerk und Leitwerk (Gruppe 3)

MTOW über Seitenverhältnis							
Тур	MTOW	Fahrwerk	Leitwerk	Seitenver-			
				hältnis			
20LD3f	545546 kg	21999 kg	12009 kg	0,800			
20LD3e	547830 kg	22107 kg	11987 kg	0,820			
20LD3d	550110 kg	22215 kg	11958 kg	0,850			
20LD3c	552284 kg	22318 kg	11929 kg	0,880			
20LD3b	553932 kg	22396 kg	11899 kg	0,914			
20LD3a	554839 kg	22439 kg	11869 kg	0,952			
20LD3f	559404 kg	22657 kg	11834 kg	1,000			
20M1e	622825 kg	25717 kg	11982 kg	0,589			
20M1d	598397 kg	24529 kg	11904 kg	0,683			
20M1c	593569 kg	24295 kg	11823 kg	0,742			
20M1f	593980 kg	24315 kg	11782 kg	0,776			
20M1b	598386 kg	24528 kg	11739 kg	0,816			
20M1h	601060 kg	24658 kg	11709 kg	0,843			
20M1g	602149 kg	24710 kg	11695 kg	0,858			
20M1a	605115 kg	24854 kg	11650 kg	0,908			
20M1h	611089 kg	25145 kg	11578 kg	1,000			

Bild 7.39 Fahrwerksmasse über das MTOW aufgetragen(Gruppe 3)

Das Gewicht von Leitwerk und Fahrwerk ändert sich nur wenig. Beim Fahrwerk der M1 Variante gibt es ein schwaches Minimum, was auf den Verlauf des MTOW über das Seitenverhältnis zurückzuführen ist.

Die Differenzen beim Fahrwerk betragen 1422kg bei der M1- Version und 658kg bei der LD3- Variante. Beim Leitwerk beträgt die Differenz etwa 400kg bzw. 175kg für die LD3- Version.

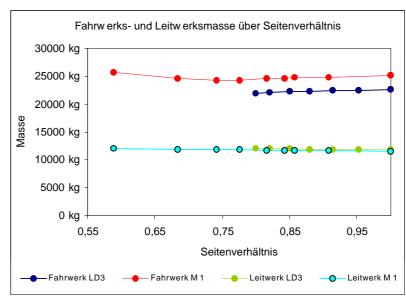
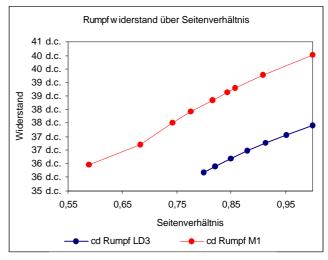



Bild 7.40: Leitwerks- und Fahrwerksmasse (Gruppe 3)

7.4.3 Widerstand des Rumpfes

Tabelle 7.23 Luftwiderstand (Gruppe 3)

	Aerodynamik cd über Seitenverhältnis							
Тур	cd Rumpf	cd gesamt	Oberflä-	Seitenver-				
			che	hältnis				
20ld3a	37,1 d.c.	144,6 d.c.	1490 m ²	0,952				
20ld3b	36,8 d.c.	144,1 d.c.	1478 m ²	0,914				
20ld3c	36,5 d.c.	143,6 d.c.	1467 m ²	0,880				
20ld3d	36,2 d.c.	143,1 d.c.	1455 m ²	0,850				
20ld3e	35,9 d.c.	142,6 d.c.	1444 m²	0,820				
20ld3f	35,7 d.c.	142,3 d.c.	1436 m ²	0,800				
20ld3f	37,4 d.c.	145,2 d.c.	1503 m ²	1,000				
20m1a	39,3 d.c.	148,5 d.c.	1577 m ²	0,908				
20m1b	38,4 d.c.	146,9 d.c.	1541 m ²	0,816				
20m1c	37,5 d.c.	145,4 d.c.	1507 m ²	0,742				
20m1d	36,7 d.c.	144,0 d.c.	1476 m ²	0,683				
20m1e	36,0 d.c.	142,7 d.c.	1446 m ²	0,589				
20m1f	37,9 d.c.	146,1 d.c.	1524 m ²	0,776				
20m1g	38,8 d.c.	147,7 d.c.	1559 m ²	0,858				
20m1h	38,7 d.c.	147,4 d.c.	1553 m ²	0,843				
20m1h	40,0 d.c.	149,7 d.c.	1606 m ²	1,000				

Bild 7.41: Widerstand über Seitenverhältnis (Gruppe 3)

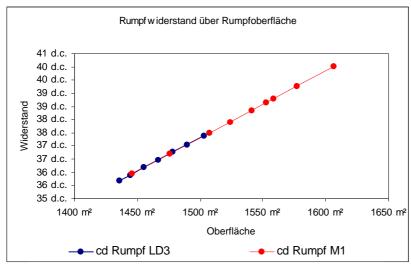


Bild 7.42: Widerstand über Rumpfoberfläche (Gruppe 3)

Entwürfe mit einem hohem Seitenverhältnis und einer geringen benetzten Oberfläche haben den geringsten Widerstand. Auch bei dieser Gruppe 3 ergibt sich (wie erwartet) kein neuer Sachverhalt für den Widerstand des Rumpfes.

7.4.4 Ausnutzungsgrad des vorhandenen Volumens

 Tabelle 7.24
 Ausnutzungsgrade für die einzelnen Teilflächen des Querschnittes (Gruppe 3)

1 450110	<i>,</i> , , , , , , , , , , , , , , , , , ,	aonatzangt	giado i	,, G.O	011120111011	1 0111100	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00 000.00		(0.up	po 0)	
	Seitenver-	Upper D	Deck		Main D	eck		Low	er Deck		Gesa	amt
Тур	hältnis	benötigt	vorhan- den	Index	benötigt	vorhan- den	Index	benötigt	vorhan- den	Index	vorhan- den	Index
20LD3f	0,800	15,0 m ²	20,2 m ²	74%	15,9 m²	18,3 m ²	87%	6,3 m ²	15,9 m ²	40%	54,3 m ²	71 %
20LD3e	0,820	15,0 m ²	20,3 m ²	74%	15,9 m²	18,7 m ²	85%	6,3 m ²	16,0 m ²	39%	55,0 m ²	70 %
20LD3d	0,850	15,0 m ²	20,6 m ²	73%	15,9 m²	19,1 m ²	83%	6,3 m ²	16,1 m ²	39%	55,8 m ²	69 %
20LD3c	0,880	15,0 m ²	20,8 m ²	72%	15,9 m²	19,6 m ²	81%	6,3 m ²	16,2 m ²	39%	56,6 m ²	68 %
20LD3b	0,914	15,0 m ²	21,0 m ²	71%	15,9 m²	20,1 m ²	79%	6,3 m ²	16,3 m ²	39%	57,4 m ²	67 %
20LD3a	0,952	15,0 m ²	21,2 m ²	71%	15,9 m²	20,7 m ²	77%	6,3 m ²	16,4 m ²	38%	58,3 m ²	66 %
20LD3f	1,000	15,0 m ²	21,5 m ²	70%	15,9 m²	21,4 m ²	74%	6,3 m ²	16,5 m ²	38%	59,3 m ²	65 %
20M1e	0,589	15,0 m ²	19,3 m ²	78%	15,9 m²	15,9 m ²	100%	11,9 m ²	19,9 m ²	60%	55,1 m ²	79 %
20M1d	0,683	15,0 m ²	19,6 m ²	77%	15,9 m²	17,5 m ²	91%	11,9 m ²	20,2 m ²	59%	57,3 m ²	76 %
20M1c	0,742	15,0 m ²	20,2 m ²	74%	15,9 m²	18,6 m ²	85%	11,9 m ²	20,9 m ²	57%	59,6 m ²	73 %
20M1f	0,776	15,0 m ²	20,5 m ²	73%	15,9 m²	19,2 m ²	83%	11,9 m²	21,2 m ²	56%	60,9 m ²	72 %
20M1b	0,816	15,0 m ²	20,8 m ²	72%	15,9 m²	19,9 m ²	80%	11,9 m²	21,5 m ²	55%	62,2 m ²	70 %
20M1h	0,843	15,0 m ²	21,0 m ²	71%	15,9 m²	20,4 m ²	78%	11,9 m²	21,8 m ²	55%	63,1 m ²	69 %
20M1g	0,858	15,0 m ²	21,1 m ²	71%	15,9 m²	20,6 m ²	77%	11,9 m²	21,9 m ²	54%	63,6 m ²	69 %
20M1a	0,908	15,0 m ²	21,4 m ²	70%	15,9 m²	21,4 m ²	74%	11,9 m²	22,2 m ²	54%	65,0 m ²	67 %
20M1h	1,000	15,0 m ²	21,8 m ²	69%	15,9 m ²	22,9 m ²	69%	11,9 m ²	22,7 m ²	52%	67,3 m ²	65 %

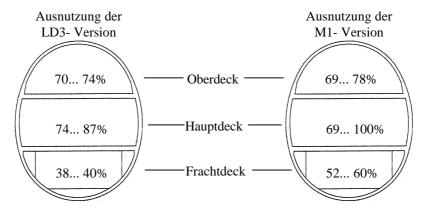
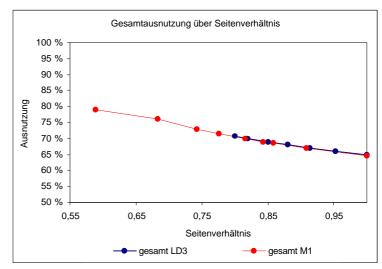



Bild 7.43: Ausnutzung der einzelnen Decks (Gruppe 3)

Bei der Gesamtausnutzung gibt es offenbar nur geringe Unterschiede zwischen den beiden Containervarianten. Allgemein erreicht die M1 Version bei niedrigen Seitenverhältnissen die höchsten Ausnutzungsgrade.

Bild 7.44: Gesamtausnutzung der Querschnittsfläche (Gruppe 3)

Wird der Ausnutzungsgrad für die einzelnen Decks separat betrachtet, so ergeben sich ähnliche Zusammenhänge wie bei den anderen Gruppen.

Kommt auf dem Frachtdeck der M1- Container zum Einsatz, so ergibt sich eine um etwa 15% bessere Ausnutzung als bei der LD3- Variante.

Auf den Passagierdecks gibt es nur geringe Unter-

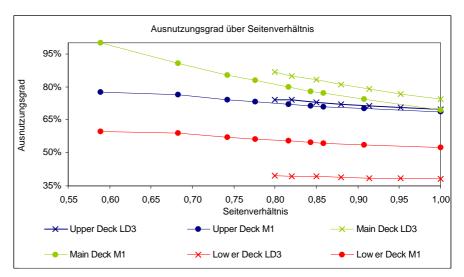


Bild 7.45: Differenzierter Ausnutzungsgrad (Gruppe 3)

schiede zwischen den beiden Versionen. Auf dem Oberdeck sind die Ausnutzungsgrade nahezu identisch. Auf dem Hauptdeck hat die LD3- Variante bei recht hohen Seitenverhältnissen von 1 bis 0,8 einen Vorteil. Bei sehr kleinen Seitenverhältnissen, die nur die M1- Variante erreicht, werden Ausnutzungsgrade bis zu 100% erreicht.

7.5 Zusammenfassende Bewertung aller drei Querschnittsgruppen

In diesem Abschnitt werden das MTOW, der Widerstand des Rumpfes und der Ausnutzungsgrad der vorhandenen Querschnittsfläche für alle drei Gruppen zusammenfassend dargestellt.

7.5.1 Widerstand des Rumpfes

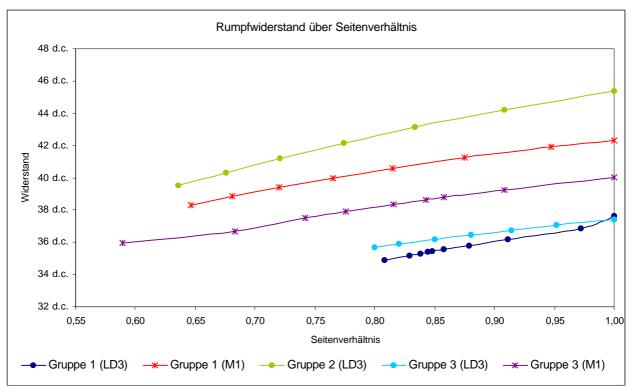


Bild 7.46: Rumpfwiderstand über das Seitenverhältnis für alle drei Querschnittsgruppen

Da der Rumpfwiderstand von der benetzten Rumpfoberfläche abhängt, haben die größeren Rumpfquerschnitte die M1- Container aufnehmen, einen höheren Widerstand als die entsprechenden LD3- Varianten.

Eine Sonderrolle nehmen die Vertreter der Gruppe 2 ein, da sich durch die 14 abreast Sitzanordnung Rumpflängen jenseits von 80m ergeben. Diese sehr große Rumpflänge hat trotz der kleinsten Querschnittsfläche die größte Rumpfoberfläche zur Folge. Dementsprechend groß ist der Widerstand.

Vorteilhaft scheint in dieser Darstellung ein Querschnitt der Gruppe 3 zu sein. So ist der Widerstand beim Transport von M1- Containern deutlich geringer (2d.c.) als bei den Entwürfen der Gruppe 1.

Werden LD3- Container verwendet, ist Gruppe 1 besser geeignet.

7.5.2 Ausnutzungsgrad der vorhandenen Querschnittsfläche

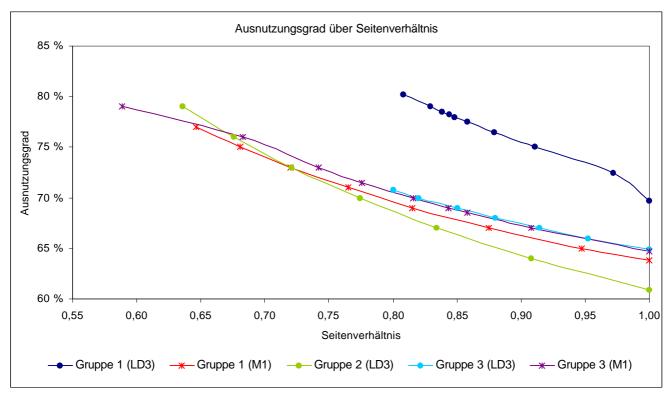


Bild 7.47: Ausnutzungsgrad der Gesamtfläche über Seitenverhältnis für alle drei Gruppen

Der Gesamtausnutzungsgrad ist bei den LD3- Versionen der Gruppe 1 am höchsten. Mit abnehmendem Seitenverhältnis vergrößert sich dieser Vorteil noch. Querschnitte der Gruppe 3 kommen erst bei noch niedrigeren Seitenverhältnissen zu ähnlich hohen Ausnutzungsgraden. Bei der Gruppe 3 gibt es kaum einen Unterschied zwischen der LD3- und der M1- Variante. Gilt es M1- Container zu transportieren, dann ist ein Gruppe 3 Querschnitt vorteilhaft. Querschnitte der Gruppe 2 haben über einen weiten Bereich nur schlechte Ausnutzungsgrade. Erst bei sehr niedrigen Seitenverhältnissen von etwa 0,67 werden diese Querschnitte unter diesem Aspekt interessanter.

7.5.3 MTOW

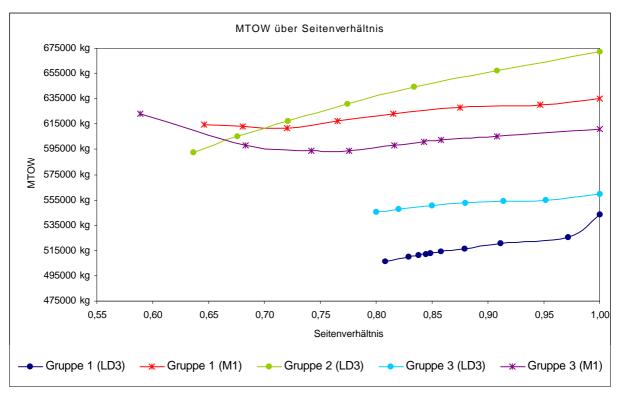


Bild 7.48: MTOW über das Seitenverhältnis für alle drei Gruppen

Bei der Zusammenfassung des MTOW wird deutlich, daß es einen großen Gewichtszuwachs zur Folge hat, wenn statt der LD3- Container die größeren M1- Container transportiert werden sollen.

Die leichteste Lösung einer LD3- Version bietet Gruppe 1. Der Vorteil bei dieser Gruppe ist deutlich und beträgt bis zu 40000kg gegenüber Vertretern der Gruppe 3. Ist es allerdings erforderlich, daß M1- Container transportiert werden sollen, so bietet Gruppe 3 Vorteile.

7.6 Beispiele für nicht kreis- oder ellipsenförmige Rumpfquerschnitte

7.6.1 Grundsätzliches

In diesem Abschnitt werden weitere 5 Querschnitte untersucht, die aufgrund ihrer Form nicht in das Schema der im ersten Teil beschriebenen Rumpfkonturen passen. Diese Querschnitte setzen sich alle aus Kreissegmenten zusammen. Diese Formen setzen deshalb eine separate FEM- Rechnung zur Bestimmung der Biegemomente in Spant und Haut voraus.

Es findet ein Vergleich unter diesen 5 Querschnitten statt. Um die Unterschiede zu elliptischen Rumpfquerschnitten verdeutlichen zu können, wird ein A3XX ähnlicher Ellipsenquerschnitt in Tabellen und Diagrammen mit aufgeführt.

Ellipsenquerschnitt:

Name: 18LD3i, (A3XX*)

Gruppe: 1, (18 abreast Sitzanordnung)

Sitze auf Upper Deck: 8 Sitze auf Main Deck: 10

Anzahl der Gänge: je 2 pro Deck

Container: LD3

Fläche: $45,30 \, m^2$ Umfang: $25,40 \, m$ Höhe: $8,34 \, m$ Breite: $6,92 \, m$

Bild 7.49: Elliptischer Querschnitt der als Referenz dient

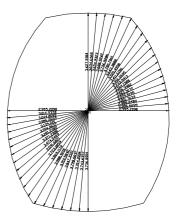
7.6.2 Untersuchte Kreissegmentquerschnitte

a) Name: 14LD3a

Gruppe: 2, (14 abreast Sitzanordnung)

Sitze auf Upper Deck: 6 Sitze auf Main Deck: 8

Anzahl der Gänge: je 2 pro Deck


Container: LD3

 Fläche :
 $37,283 m^2$

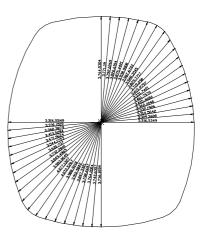
 Umfang :
 22,197m

 Höhe :
 7,363m

 Breite :
 5,990m

Bild 7.50: Segmentquer-schnitt (14LD3a)

b) Name: 18LD3a


Gruppe: 1, (18 abreast Sitzanordnung)

Sitze auf Upper Deck: 8 Sitze auf Main Deck: 10

Anzahl der Gänge: je 2 pro Deck

Container: LD3

Fläche: $42,817 \, m^2$ Umfang: $23,631 \, m$ Höhe: $7,500 \, m$ Breite: $6,632 \, m$

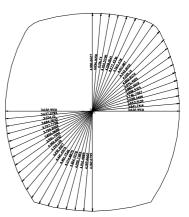
Bild 7.51: Segmentquerschnitt (18LD3a)

c) Name: 18M1a

Gruppe: 1, (18 abreast Sitzanordnung)

Sitze auf Upper Deck: 8 Sitze auf Main Deck: 10

Anzahl der Gänge: je 2 pro Deck


Container: M1

 Fläche :
 $51,522 m^2$

 Umfang :
 25,959 m

 Höhe :
 8,268 m

 Breite :
 7,264 m

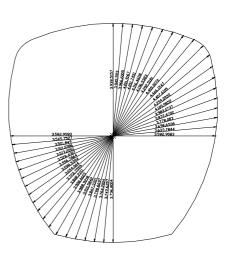
Bild 7.52: Segmentquerschnitt (18M1a)

d) Name: 20LD3a

Gruppe: 3, (20 abreast Sitzanordnung)

Sitze auf Upper Deck: 10 Sitze auf Main Deck: 10

Anzahl der Gänge: je 2 pro Deck


Container: LD3

 Fläche :
 $47,416 m^2$

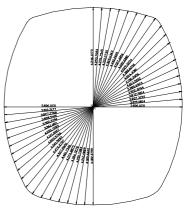
 Umfang :
 24,902 m

 Höhe :
 7,674 m

 Breite :
 7,164 m

Bild 7.53: Segmentquerschnitt (20LD3a)

e) Name: 20M1a


Gruppe: 3, (20 abreast Sitzanordnung)

Sitze auf Upper Deck: 10 Sitze auf Main Deck: 10

Anzahl der Gänge: je 2 pro Deck

Container: M1

Fläche: $55,118 \, m^2$ Umfang: $26,793 \, m$ Höhe: $8,428 \, m$ Breite: $7,612 \, m$

Bild 7.54: Segmentquer-schnitt (20M1a)

7.6.3 Strukturmassen

Tabelle 7.25 Strukturmassen der Segmentguerschnitte

	Strukturma	ssen der Q	uerschnitte	e	
Тур	Seitenverhältnis	Spante	Stringer	Haut	Oberdeck
14LD3a	0,813	6928 kg	7694 kg	7539 kg	5509 kg
18LD3a	0,884	12771 kg	6048 kg	6745 kg	6088 kg
18M1a	0,878	17295 kg	6971 kg	8228 kg	7529 kg
20LD3a	0,933	18327 kg	5693 kg	8355 kg	7854 kg
20M1a	0,903	21851 kg	6399 kg	7987 kg	8364 kg
A3XX*	0,829	4713 kg	6765 kg	8097 kg	6595 kg

Tabelle 7.25 und Bild 7.55 veranschaulichen. wo Probleme bei den aus Kreissegmenten bestehenden Rumpfkonturen entstehen können. Die Masse der Spante beträgt hier z.T. ein Vielfaches des Ellipsenquerschnittes. Die Vorteile, die sonst bei der Masse von Haut, Oberdeck und Stringer vorhanden sein können, werden von der großen Spantmasse zunichte gemacht.

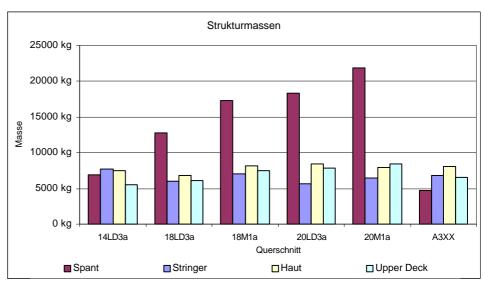


Bild 7.55: Strukturmassen der Segmentquerschnitte

7.6.4 Masse von Leitwerk, Fahrwerk und der Rumpfstruktur

Leitwerl	k, Fahrwerk	und Rumpf	strukturmasse
Тур	Leitwerk	Fahrwerk	Rumpfstrukturmasse
14LD3a	8380 kg	22622 kg	54928 kg
18LD3a	11091 kg	26758 kg	63096 kg
18M1a	10818 kg	35756 kg	79991 kg
20LD3a	12461 kg	35788 kg	80050 kg
20M1a	12160 kg	40877 kg	89173 kg
A3XX*	10876 kg	20320 kg	50247 kg

Tabelle 7.26
Leitwerks-, Fahrwerks- und Rumpfstrukturmasse der
Segmentquerschnitte

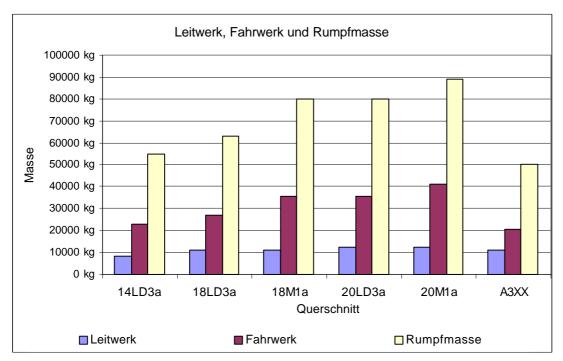


Bild 7.56: Leitwerks-, Fahrwerks- und Rumpfstrukturmasse der Segmentquerschnitte

Bei der Leitwerksmasse gibt es Vorteile für sehr lange Rümpfe. Durch den großen Hebelarm können die Leitwerke kleiner und somit leichter ausfallen.

Die Rumpfmassen werden stark von der Spantmasse geprägt. So haben die Querschnitte mit den größten Spantmassen auch die größten Rumpfstrukturmassen.

Die Fahrwerksmasse ist eine Funktion der Rumpfmasse bzw. des MTOW 's. Ein schweres Flugzeug braucht, allein aus der Anschauung heraus, ein großes und damit schweres Fahrwerk.

7.6.5 Widerstand des Rumpfes

	Widerstand des Ru	umpfes
Тур	Widerstand des Rumpf	Widerstand des Flugzeuges
14LD3a	37,37 d.c.	148,89 d.c.
18LD3a	32,57 d.c.	139,45 d.c.
18M1a	36,03 d.c.	145,49 d.c.
20LD3a	31,62 d.c.	137,34 d.c.
20M1a	34,34 d.c.	142,10 d.c.
A3XX*	35,19 d.c.	141,78 d.c.

Tabelle 7.27
Widerstand des Rumpfes
und des Gesamtflugzeuges für alle Segmentquerschnitte

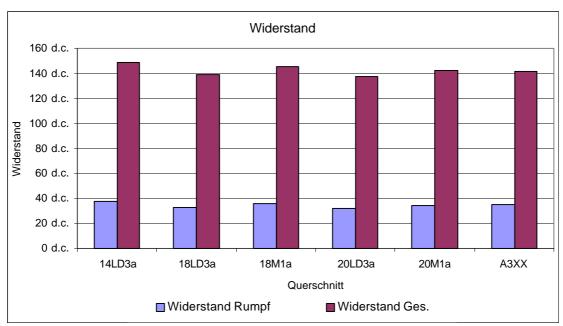


Bild 7.57: Gesamtwiderstand und Rumpfwiderstand der Segmentquerschnitte

Da der Widerstand des Rumpfes (bei der Berechnung in dieser Arbeit) in der Hauptsache von der benetzten Oberfläche (des Rumpfes) abhängt und die Form der Rumpfkontur nur bedingt mit einfließen kann, gibt es hier Vorteile für die Segmentquerschnitte. Bei diesen Querschnitten kann die Kontur besser an die Form der Nutzlastbox angepaßt werden. Die Folge sind kleinere Rumpfoberflächen. Die Konsequenz davon sind geringere Widerstände.

7.6.6 Ausnutzungsgrad der Querschnittsfläche

Ausnutzu	ıngsgrad der v	orhanden Que	erschnittsfläche	Э
Тур	Upper Deck Ausnutzung	Main Deck Ausnutzung	Lower Deck Ausnutzung	Querschnitt Ausnutzung
14LD3a	79 %	89 %	61 %	82 %
18LD3a	84 %	97 %	54 %	84 %
18M1a	76 %	88 %	69 %	79 %
20LD3a	79 %	91 %	58 %	81 %
20M1a	83 %	84 %	65 %	80 %
A3XX*	76 %	94 %	52 %	79 %

Tabelle 7.28
Differenzierte Ausnutzungsgrade der Querschnittsflächen für alle
Segmentquerschnitte

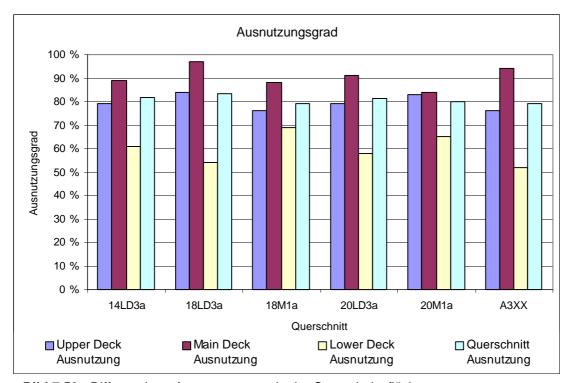


Bild 7.58: Differenzierte Ausnutzungsgrade der Querschnittsflächen

Der Vorteil der Segmentquerschnitte bei der Ausnutzung der zur Verfügung stehenden Querschnittsfläche, liegt in der Möglichkeit die Rumpfkontur gut an die Anforderungen der einzelnen Decks anpassen zu können.

Die Ausnutzungsgrade der hier beschriebenen Querschnitte sind alle größer als bei dem elliptischen Referenzquerschnitt. In einem Segmentquerschnitt wird also am wenigsten nicht nutzbares (totes) Volumen transportiert.

7.7 Zusammenfassung des Kapitel 7

Die Entscheidung welche Sitzanordnung die optimale ist, wird auch stark von den Anforderungen an den Unterflurbereich beeinflußt. So hat die Wahl der Containergröße sehr große Auswirkungen auf den Gesamtentwurf.

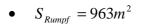
Kommen nicht kreisförmige oder elliptische Querschnittsformen zum Einsatz, so ergeben sich Vorteile bei dem Ausnutzungsgrad der vorhandenen Querschnittsfläche. Die benetzte Oberfläche des Rumpfes ist kleiner, was positive Auswirkungen auf den Widerstand des Rumpfes hat. Das Problem, daß sich bei diesen Querschnitten ergibt, ist die hohe Strukturmasse, insbesondere die der Spante.

Die vorhandenen Biegemomente in einem aus Kreissegmenten bestehenden Querschnitt (wie sie hier untersucht worden sind) sind sehr viel größer als die eines elliptischen oder kreisförmigen Querschnittes. Dementsprechend steigt auch die Masse der Spante auf ein Maß, daß nicht mehr tolerierbar ist.

Auch diese Berechnungen können nur einen Teil des ganzen Feldes möglicher Lösungen darstellen. So sind auch andere Lösungen in Form von alternativen Bestuhlungen denkbar. Nach der Entwicklung des Verfahrens zur Bestimmung der Sachverhalte in dieser Arbeit dürfte aber dies den Rahmen sprengen.

Vergleich der hier entwickelten Arbeitsmethode mit Glei-8 chungen des Flugzeugentwurfs

8.1 Grundsätzliches


In diesem Kapitel soll anhand zweier Flugzeugmuster überprüft werden, welche Unterschiede zwischen den gebräuchlichen Gleichungen des Flugzeugentwurfes und dem hier in der Diplomarbeit entwickelten Verfahren vorhanden sind.

Als Referenzflugzeuge sollen hier die A340-300 und die A3XX-100 gelten.

a) A340-300:

 $b_{Rumpf} = h_{Rumpf} = 5,64m$

 $l_{Rumpf} = 63,20m$, aus einer 3- Seiten Ansicht ermittelt

 $m_{Rumpf} = 25800kg$ Bezogene Daten

 $v_{Dive} = 228 \, m/s$



Bild 8.1: Airbus A340

b) A3XX-100:

•
$$b_{Rumpf} = 6.95m$$

$$\bullet \quad h_{Rumpf} = 8,47m$$

 $l_{Rumpf} = 69,90m$

 $S_{Rumpf} = 1470m^2$

 $m_{Rumpf} = 54000kg$ Bezogene Daten

 $v_{Dive} = 228 \, m/s$

Die Daten entsprechen dem Status 8

Bild 8.2: Airbus A3XX

Die einzelnen Rechenverfahren werden nur kurz vorgestellt. Abschließend wird eine zusammenfassende Bewertung vorgenommen.

Da die hier dargestellten Gleichungen zur Berechnung von Verkehrsflugzeuge mit einem Passagierdeck entwickelt worden sind, wird für die A3XX die Masse des Oberdecks zu den Ergebnissen dazuaddiert. Die in Klammern gesetzten Gewichtsangaben stellen im Gegensatz das Ergebnis der Berechnung ohne Berücksichtigung der Masse des Oberdecks dar.

8.2 Vorstellung der einzelnen Verfahren

8.2.1 Statistikgleichung D 8.7 (1) nach **Marckwardt:**

$$m_{Rumpf} = 5,65 \cdot \left(\frac{b_{Rumpf} + h_{Rumpf}}{2} \cdot l_{Rumpf}^2\right)^{0.837}$$
 (8.1)

(Alle Längen werden in Metern eingegeben)

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 24847 \text{ kg}$, Abweichung 3,8%

A3XX $m_{Rumpf} = (40810 \text{ kg}) 47405 \text{kg}$, Abweichung 20,5%

Quelle: Vorlesung Flugzeugentwurf an FH- Hamburg

8.2.2 Statistikgleichung D 8.7 (2) nach **Marckwardt:**

$$m_{Rumpf} = 13.9 \cdot S_{Rumpf} \cdot \log(0.0676 \cdot S_{Rumpf}) \tag{8.2}$$

(Die Flächen werden in Quadratmetern eingegeben)

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 24275 \text{ kg}$, Abweichung 6,3%

A3XX $m_{Rumpf} = (40810 \text{ kg}) 47405 \text{kg}$, Abweichung 13,9%

Quelle: Vorlesung Flugzeugentwurf an FH- Hamburg

8.2.3 Statistikgleichung D 8.7 (3) nach **Marckwardt:**

$$m_{Rumpf} = 0.67 \cdot S_{Rumpf}^{0.456} \cdot \left(\frac{b_{Rumpf} + h_{Rumpf}}{2}\right)^{0.729} \cdot l_{Rumpf}^{0.649} \cdot v_{Dive}^{0.622}$$
(8.3)

mit
$$v_{Dive} = 217 \, m/s \cdot M_{MO} + 30 \, m/s$$
 (8.4)

und mit

 v_{Dive} ist die Sturzfluggeschwindigkeit als EAS

 $M_{\scriptscriptstyle MO}$ ist die maximale Betriebsmachzahl

(Alle Längen werden in Metern eingegeben)

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 23420 \text{ kg}$, Abweichung 10,2%

A3XX $m_{Rumpf} = (38083 \text{ kg}) 44678 \text{kg}$, Abweichung 20,9%

Quelle: Vorlesung Flugzeugentwurf an FH- Hamburg

8.2.4 GD- Methode:

$$w_f = 20,86 \cdot \left(\frac{\overline{q_{Dive}}}{100}\right)^{0,283} \cdot \left(\frac{w_{TO}}{1000}\right)^{0,95} \cdot \left(\frac{l_f}{h_f}\right)^{0,71}$$
(8.5)

mit:

• w_f : Rumpfmasse in **lb**

• W_{TO} : MTOW in **lb**

ullet l_f : Rumpflänge in ${f ft}$

ullet Rumpfhöhe in **ft**

• $\overline{q_{\scriptscriptstyle Dive}}$: Staudruck bei $v_{\scriptscriptstyle Dive}$ in **psf** ,

mit
$$\overline{q_{Dive}}[psf] = \frac{\mathbf{r}[kg/m^3]}{2} \cdot v_{Dive}[m/s] \cdot \frac{1}{47,880259}$$

• Als Reiseflughöhe werden 11 km angenommen

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 26614 \text{ kg}$, Abweichung 3,1%

A3XX $m_{Rumpf} = (42889 \text{ kg}) 49484 \text{kg}$, Abweichung 9,1%

Bei dieser Gleichung wird vorausgesetzt, daß eine Schätzung für das MTOW vorliegt.

Quelle: Raymer

8.2.5 Rumpfmasse nach **Torenbeek**:

$$m_{Rumpf} = 0.23 \cdot \sqrt{v_{Dive} \cdot \frac{l_H}{b_{Rumpf} + h_{Rumpf}}} \cdot S_{Rumpf,benetzt}^{1,2}$$
(8.6)

mit folgenden Zuschlägen:

+8%	für eine Druckkabine	(Σ)	()	
+4%	für Triebwerke am Rumpfheck	()	Wahl der zutreffen-
+7%	für ein Hauptfahrwerk, daß am Rumpf befestigt ist	()	den Optionen. Hier
-4%	wenn der Rumpf keinen Fahrwerksschacht enthält	()	markiert durch (X)
+10%	für ein Frachtflugzeug mit verstärktem Boden	(ر(

mit:

 $l_{\scriptscriptstyle H}$: Hebelarm des Höhenleitwerks,

mit der Annahme $l_H = 0.45 \cdot l_{Rumpf}$

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 22661 \text{ kg}$, Abweichung 13,8%

A3XX $m_{Rumpf} = (33861 \text{ kg}) 40456 \text{ kg}$, Abweichung 33,5%

Quelle: Torenbeek '88

8.2.6 Verfahren nach **Schneider:**

$$m_{Rumpf} = \left(m_{mto} \cdot n_{Br} \cdot 10^{-3}\right)^{0.3549} \cdot \left(\frac{l_{Rumpf}}{10 \cdot l_{H}}\right)^{0.5816} \cdot \left(v_{Dive} \cdot 10^{-2}\right)^{0.28084} \cdot \left(\frac{l_{Rumpf}}{d_{Rumpf}} \cdot \left(\frac{1}{2}\right) \cdot \boldsymbol{p}\right)^{-0.4259} \cdot S_{Rumpf}^{1.145} \cdot \left(\boldsymbol{p} \cdot l_{Rumpf}\right)^{-0.9269} \cdot n_{TW}^{0.3745} \cdot 268,5$$

$$(8.6a)$$

Diese Gleichung ist für die Anforderungen in diesem Fall zusammengefaßt worden.

mit:

 n_{TW} : Anzahl der Triebwerke

 l_H : Hebelarm des Höhenleitwerks,

mit der Annahme $l_H = 0.45 \cdot l_{Rumnf}$

 n_{Br} : Das Lastvielfache beträgt $n_z = 3,75$

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 22843 \text{ kg}$, Abweichung 12,9%

A3XX $m_{Rumpf} = (47903 \text{ kg}) 54498 \text{ kg}$, Abweichung 0,9%

Quelle: LTH Gewichte

8.2.7 Verfahren nach **Boeing '69**:

$$w_B = 0.456 \cdot S_f^{1.271} \tag{8.7}$$

mit:

 W_B : Masse des Rumpfes in **lb**

 S_f : benetzte Oberfläche des Rumpfes in $\mathbf{ft^2}$

Für die Musterflugzeuge ergeben sich:

A340 $m_{Rumpf} = 26269 \text{ kg}$, Abweichung 1,8%

A3XX $m_{Rumpf} = (44970 \text{ kg}) 51565 \text{ kg}$, Abweichung 4,7%

Quelle: Boeing

8.2.8 Methode nach **Burt- Phillips:**

$$m_{Rumpf} = 2.23 \cdot \left(m_{Haut} + m_{Stringer} + m_{Spant} \right) + \Delta m_{Rumpf}$$
(8.8)

$$m_{Haut} = 0.0635 \cdot S_{Rumpf}^{1.07} \cdot v_{dive}^{0.743}$$
(8.9)

$$m_{Stringer} = 0.0142 \cdot S_{Rumpf}^{1.45} \cdot v_{Dive}^{0.39} \cdot n_{br}^{0.316}$$
(8.10)

$$m_{Spant} = 0.19 \cdot \left(m_{Haut} + m_{Stringer} \right) \tag{8.11}$$

$$\Delta m_{Rumpf} = 16.2 \cdot S_{Boden}^{1.04}$$
, gilt nur bei Frachtflugzeugen (8.12)

Gleichnung (8.12) wird in diesem Zusammenhang nicht verwendet

Für die Musterflugzeuge ergeben sich:

A340
$$m_{Rumpf} = 24902 \text{ kg}$$
, Abweichung 3,6%

A3XX
$$m_{Rumpf} = (41920 \text{ kg}) 48515 \text{ kg}$$
, Abweichung 11,3%

Quelle: Unterlagen der Vorlesung Flugzeugentwurf an der FH- Hamburg

8.2.9 Modifiziertes Verfahren nach dieser Diplomarbeit

Für die Musterflugzeuge ergeben sich:

A340
$$m_{Rumpf} = 26195 \text{ kg}$$
, Abweichung 1,5%

A3XX
$$m_{Rumpf} = 50247 \text{ kg}$$
, Abweichung 7,5%

8.3 Abschließende Beurteilung der Verfahren

Tabelle 8.1 Rumpfmasse A340

I abelle	6.1 Kumpiin	asse A340
	Rumpfmasse des A3	40-300
Kapitel	Verfahren	Abweichung
8.2.1	Marckwardt (1)	3,8%
8.2.2	Marckwardt (2)	6,3%
8.2.3	Marckwardt (3)	10,2%
8.2.4	GD. Methode	3,1%
8.2.5	Torenbeek	13,8%
8.2.6	Schneider	12,9%
8.2.7	Boeing	1,8%
8.2.8	Burt- Phillips	3,6%
8.2.9	Dipl. Arbeit	1,5%

Tabelle 8.2Rumpfmasse A3XX

Ī	Rumpfmasse des A3X	X-100
Kapitel	Verfahren	Abweichung
8.2.1	Marckwardt (1)	20,5%
8.2.2	Marckwardt (2)	13,9%
8.2.3	Marckwardt (3)	20,9%
8.2.4	GD. Methode	9,1%
8.2.5	Torenbeek	33,5%
8.2.6	Schneider	0,9%
8.2.7	Boeing	4,7%
8.2.8	Burt- Phillips	11,3%
8.2.9	Dipl. Arbeit	7,5%

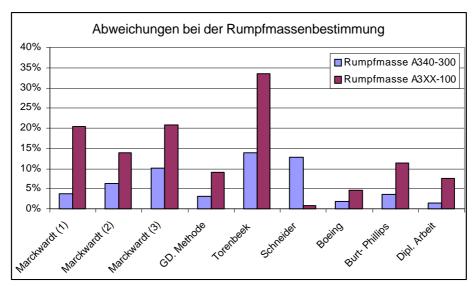
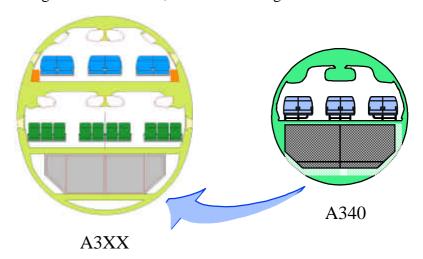



Bild 8.3: Abweichungen der einzelnen Rechenverfahren

Diese Überprüfung an den zwei Beispielflugzeugen zeigt wie groß die Abweichungen der Ergebnisse werden können, wenn die Rumpfform wie beim A3XX elliptisch wird.

Um der zwei Deck Konfiguration gerecht zu werden, müssen alle Ergebnisse um den Ge-

wichtsbetrag des Oberdecks korrigiert werden. Überraschend gut treffen die Verfahren von Boeing und Schneider bei dieser Stichprobe die Sachverhalte. Inwieweit dies auch auf andere Entwürfe zutrifft, kann mit dieser Rechnung nicht gesagt werden.

Bild 8.4: Bei den Berechnungen ergeben sich Unterschiede, die mit der Rumpfform zusammenhängen

Die Untersuchung zeigt aber, daß Formeln die für Verkehrsflugzeuge wie die A340 mit einem Kreisquerschnitt gut geeignet sind, bei Entwürfen einer A3XX deutliche Fehler machen. Eine Anpassung an diese neue Flugzeuggeneration ist also angebracht.

Das Ergebnis der Berechnungen aus den Zusammenhängen dieser Arbeit hat einen Fehler von etwa 7,5% bei der Massenprognose des A3XX. Die Genauigkeit ist aber dennoch zufriedenstellend vor dem Hintergrund des Aufwandes für eine Diplomarbeit. Es ist klar, daß die Rechengenauigkeit mit dem Umfang der Eingangsparameter und dem Ausmaß der Detailrechnungen korreliert. Bei anderen Berechnungen sind ähnlich genaue Resultate erzielt worden.

9 Zusammenfassung und Ausblick

In dieser Ausarbeitung sind gemäß der Aufgabenstellung eine ganze Anzahl von Rumpfquerschnitten untersucht und hinsichtlich ihrer Eigenschaften bewertet worden. Zentraler Punkt bei der Bewertung ist hierbei die zu erwartende (Struktur-) Masse. Weiter sind die Ausnutzung der vorhandenen Rumpfquerschnittsfläche durch die Nutzlast und die aerodynamischen Eigenschaften des Rumpfes von Bedeutung gewesen.

Um diese Bewertung für sehr viele Querschnitte durchführen zu können, ist es erforderlich gewesen eine Methode zu entwickeln, das diesen Bewertungsvorgang standardisiert ermöglicht. Dieses Verfahren ist mit MAP'99 angedacht und in dieser Arbeit auch angewendet worden. Da die Erstellung dieses Rechenverfahrens fast schon einen eigenen Bestandteil dieser Arbeit ausmacht und viel Zeit aufgewendet werden mußte, soll es im Anhang näher vorgestellt werden.

Es sind Rumpfquerschnitte mit einer 14 abreast Sitzanordnung bis zu einer 20 abreast Sitzanordnung untersucht worden. Auf dem Frachtdeck sind jetzt übliche Container des Typs LD3und bisher im Unterflurbereich nicht übliche M1- Container berücksichtigt worden. Der überwiegende Anteil der betrachteten Rumpfkonturen ist elliptisch (mit unterschiedlichen Seitenverhältnissen), es sind aber auch abweichende Querschnitte (Segmentquerschnitte) untersucht worden.

Diese Berechnungen können aber nur einen Teil der ganzen Bandbreite möglicher (Rumpf-) Konfigurationen berücksichtigen. So sind auch andere Lösungen in Form von alternativen Bestuhlungen, Komfortfaktoren und Querschnittsgeometrien denkbar.

Nach der Entwicklung des Verfahrens zur Bestimmung der Sachverhalte dieser Arbeit, hätte dies aber mit Sicherheit den zeitlichen Rahmen gesprengt.

Bei den erzielten Ergebnissen lassen sich Tendenzen feststellen, die besagen, daß Querschnitte mit kleinem Seitenverhältnis (kleiner als beim A3XX) in Bezug auf den Widerstand, die Aus-

nutzung der vorhandenen Querschnittsfläche und des Strukturgewichtes von Vorteil sind. Sollen auf dem Frachtdeck die größeren M1- Container eingesetzt werden, sind Querschnitte mit einer 20 abreast Sitzanordnung gut geeignet, da hier im Unterflurbereich große Flächen zur Verfügung stehen. Allgemein ist aber immer ein höheres MTOW die Folge, wenn der M1-Container zum Einsatz kommt.

Es ist mit den Ergebnissen dieser Arbeit aber nicht möglich <u>den</u> optimalen Rumpfquerschnitt zu ermitteln. Dies liegt daran, daß das zu untersuchende Feld in dieser Ausarbeitung sehr groß ist. Themenbereiche, die das Kabinenlayout mit bestimmten Komforteigenschaften, die Strukturkonstruktion mit eingeschlossener FEM- Rechnung, den Flugzeugentwurf und die Aerodynamik des Rumpfes umfassen, sind zu einem Verfahren zusammengefaßt worden. Dies ist nur auf einem Niveau möglich, das dem angemessenen Arbeitsaufwand für eine Diplomarbeit entspricht. Eine Vertiefung der einzelnen Teilbereiche kann also nur punktweise erfolgen.

Die hier erzielten Ergebnisse sollten daher vielmehr als Anhalte gelten und können Impulse für weiterführende Arbeiten geben. Insbesondere bei der Entwicklung eines geeigneten FEM- Modells oder alternativer Verfahren zur Belastungsermittlung ist noch reichlich "Luft" vorhanden.

Literaturverzeichnis

Airbus 1999a AIRBUS: Briefing 1/1999, Airbus Homepage

(http://www.airbus.com) 1999

Airbus 1999b AIRBUS: Briefing 3/1999, Airbus Homepage

(http://www.airbus.com) 1999

Airbus 1999c Commandments for Cabin Layout (A340), ATA 25. Daimler-

Crysler Aerospace Airbus, Abt. EXP, Hamburg Finkenwerder

1999

Airbus Homepage URL: http://www.airbus.com

Boeing 1968 THOMAS, S.: Weight Prediction Manual Class I, Washington,

1968

Boeing Homepage URL: http://www.boeing.com

Braunburg 1991 Braunburg, Rudolf.: Der Pilot. München: Callwey, 1991

Burgner 1994 BURGNER, Norbert: Mut zur Größe. In: Flug Revue 1994, Nr.9,

S. 26-30

Burgner 1996 BURGNER, Norbert: Airbus-Gigant kommt 2003. In: *Flug Revue*

1996, Nr.8, S.24-27

Cathay Pacific Homepage URL: http://www.cathaypacific.com

Dobrzynski 1996 Dobrzynski, Werner: Fahrwerkslärm. In: Flug Revue 1996,

Nr. 3, S. 64-65

FAR 25 U.S. DEPARTMENT FOR TRANSPORTATION, FEDERAL AVIATION

ADMINISTRATION: Federal Aviation Regulations. Part 25:

Transport Category Airplanes, 1998

Flieger Magazin 1998 FLIEGER MAGAZIN: Rodscher Zwo. Top Special, 1998

Flüh 1997 Flüh, H.: Skript zur Vorlesung Finite Element Methode. Ham-

burg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik,

Vorlesungsskript, 1997

Flüh 1998 Flüh, H.: Skript zur Vorlesung Strukturkonstruktion. Hamburg,

Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik, Vorle-

sungsskript, 1998

Garnatz 1997 GARNATZ, Peter: Skript zur Vorlesung Strukturkonstruktion.

Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtech-

nik, Vorlesungsskript, 1997

Hamburg Aktuell Hamburg Aktuell. Verschiedene Ausgaben der DaimlerCrysler

Aerospace Airbus Werkszeitung von 09.1999 bis 01.2000

Hemker 1992a HEMKER, Heinrich: Fahrwerkstechnik: Auf die Kohle kommt es

an. In: Flug Revue 1992, Nr.3, S. 75-77

Hemker 1992b HEMKER, Heinrich: Fahrwerkstechnik: Entwicklung für höchste

Belastung. In: Flug Revue 1992, Nr.7, S. 74-77

JAR 25 JOINT AVIATION AUTHORITIES: Joint Aviation Requirements.

JAR-25 : Large Aeroplanes

Kokorniak 1992 Kokorniak, M.: Erarbeitung von Gestaltungsrichtlinien für die

Rumpfauslegung von Großraumverkehrsflugzeugen mit drei Nutzlastebenen, Berlin, TU Berlin, Fachbereich Luft- und Raum-

fahrttechnik, Diplomarbeit, 1992

LTH-Gewichte 1986 ARBEITSKREIS GEWICHTE (AGE): Luftfahrttechnisches Hand-

buch. Band: Gewichte. Ottobrunn: Industrieanlagen- Betriebs-

gesellschaft (IABG), 1986

Lufthansa Homepage URL: http://www.lufthansa.com

Marckwardt 1997 MARCKWARDT, K.: Skript zur Vorlesung Flugzeugentwurf.

Hamburg, Fachhochschule Hamburg, Fachbereich Fahrzeugtech-

nik, Vorlesungsskript, 1997

Morgenstern 1996 Morgenstern, Karl: Kommen die Superjumbos. In: Aero Inter-

national 1996, Nr.8, S.30-34

Müller 1998 MÜLLER, Claudio.: Flugzeuge der Welt, Stuttgart : Motorbuch,

1998

Plath 1990 PLATH; MORGENSTERN: Airbus A320/ A321, Stuttgart: Motor-

buch, 1990

Plath 1987 PLATH, PENNER: Airbus International, Stuttgart: Motorbuch,

1987

Roskam II 1989 Roskam, J.: Airplane Design. Bd. 2: Layout Design of Cockpit,

Fuselage, Wing and Empennage: Cutaways and Inboard Pro-

files. Ottawa, Kansas 1989

Roskam V 1990 ROSKAM, J.: Airplane Design. Bd. 5 : Class I Method for Es-

timating Airplane Component Weights, Class II Method for Estimating Airplane Component Weights, Fuselage Weight Esti-

mation. Ottawa, Kansas 1990

Schmidt 1997 SCHMIDT; LÄPPLE; KELM: Advanced Fuselage Weight Estima-

tion for the New Generation of Transport Aircraft. Seattle:

SAWE, 1997

Schmolla 1994 SCHMOLLA, T.: Untersuchungen zur Rumpfstruktur in einem

Normalschnitt des Systemrumpfes für ein zukünftiges Großraumflugzeug, Hamburg, Fachhochschule Hamburg, Fachbereich

Fahrzeugtechnik, Diplomarbeit, 1994

Scholz 1998 SCHOLZ, Dieter: Skript zur Vorlesung Flugzeugentwurf. Ham-

burg, Fachhochschule Hamburg, Fachbereich Fahrzeugtechnik,

Vorlesungsskript, 1998

TLAR A3XX Top Level A/C Requirements for A3XX, Draft I 18.12.96, Abt.

EXP, DaimlerCrysler Aerospace Airbus, Hamburg Finken-

werder, 1999

Torenbeek 1982 TORENBEEK, E.: Synthesis of Subsonic Airplane Design, Delft:

Delft University Press, 1982

Walter 1997 WALTER: Airbus A3XX Herausforderung für die Ingenieure. In:

Aero International 1997, Nr. 8, S.57-61

Wiesner 1995

WIESNER, J.; HILGERS, R.: Rumpfkonfiguration von Großraum-flugzeugen, DaimlerCrysler Aerospace Airbus, Abt. EXP, Hamburg Finkenwerder, 1999

Anhang A 1 Excel- Programm MAP'99

A 1.1 Grundsätzliches zu MAP'99

In diesem Teil des Anhanges wird das im Rahmen dieser Arbeit erstellte EXCEL- Programm MAP'99 näher beschrieben. Dies geschieht anhand einer Darstellung der Programmschritte mit Berechnungswerten der A3XX-100 sowie der A340-300.

Da das Programm ein Hilfsmittel für diese Arbeit ist, hat die Richtigkeit der Berechnungen im Vordergrund gestanden. Deshalb erscheint die Darstellung etwas "unaufgeräumt" (sie ist aber zweitrangig).

Da im Hauptteil dieser Arbeit die Gleichungen und Zusammenhänge, die sich in MAP'99 wiederfinden, bereits erklärt worden sind, wird an dieser Stelle auf nähere Erläuterungen verzichtet.

A 1.2 Möglichkeiten und Grenzen von MAP'99

MAP'99 bietet die Möglichkeit mit wenigen Eingangsgrößen eine vereinfachte Massenberechnung für den Flugzeugrumpf durchzuführen. Außerdem werden die aerodynamischen Eigenschaften beurteilt. Ursprünglich nur für Flugzeuge des Typs A3XX mit zwei Passagierdecks konzipiert, ist es durch eine Erweiterung mit gewissen Einschränkungen möglich, Muster der *Single Aisle* oder bisherigen *Wide Body Familie* zu berechnen. Dies wird anhand des zweiten Beispieles A340-300) noch erläutert.

Geht es um kreisförmige- oder elliptische Rumpfquerschnitte so sind schnelle Aussagen möglich. Gilt es aber z.B. aus Kreissegmenten zusammengesetzte Querschnitte zu berechnen, so ist es unerläßlich eine FEM- Rechnung durchzuführen. Über die FEM- Rechnung muß das Biegemoment in Spant und Haut bestimmt werden. Um die Geometrie ausreichend genau berechnen zu können, muß die Kontur in Form von 72 Punkten betrachtet werden. Da die Rümpfe zu einem vertikalen Längsschnitt symmetrisch sind bedeutet dies eine manuelle Eingabe von 36 Konturpunkten. Diese Rumpfquerschnitte erfordern daher einen erhöhten Arbeitsaufwand bei der Berechnung.

An die Grenzen stößt MAP'99, wenn es um große Genauigkeiten geht. An dieser Stelle machen sich die zur Berechnung notwendigen Vereinfachungen bemerkbar. Abweichungen können sich durch die Art des gewählten FEM- Modells und die angenommenen Lastannahmen ergeben.

Gesamtübersicht zur Seite "MAP'99"

Hier werden Ergebnisse dargestellt nach dem Verfahren der Diplomarbeit

In diesem Bereich werden allgemeine Daten dargestellt. Weiter beinhaltet dieses Feld Ergebnisse, die mit gebräuchlichen Formeln des Flugzeugentwurfes ermittelt werden.

In diesem Bereich wird die Nutzlastbox definiert. Weiter werden allgemeine Daten benötigt, wie z.B. das zulässige Lastvielfache, das Gewicht je Passagier usw.

Mit diesem Feld wird die Ellipse mit zwei verschiedenen Verfahren berechnet. Das Ergebnis dieser Rechnung wird dort dargestellt.

Fermiolicació clam Filaran umontacurt Recommend to the MAPAS Bestimmung der Teilmassen 20L D3f Kreisfor Figures belong the soon Coertificarrisobdio Plache Querschnitt [m^2]: 51,4 m1 45.3 m¹ 51.4 m 45.3 m¹ Nahir? 42,8 m 42.0 PD/2 Mg in Triger **HI**0 Exposit Dank bit interpenden Oberfläche, Zylindr.[m^2]: 1530 m¹ 1434 m¹ 1327 m¹ 1530 m 1434 m¹ 1327 m1 Länge Rumpf [m]: 70,7 m 69,9 m 69,0 m 70,7 m 69,9 m 69,0 m Viewerichten Verfahren zu balls Bare dinung worteness It Bear Tracks on Fläche Box [h ^2] 35,8 m! 35,8 m 35,8 m1 35,8 m1 35,8 m1 35,8 m1 Massanbemcoming Finor Panes Ausnutzung Fläch 69,7% 79,0% 83,6% 69,7% 79,0% 83,6% Box zu Kreis [%]: Masse D8,7(1) 40529 ka 37759.ka 34741 kg Katingnamentungs Leibowksmasso Masse D8.7(2) 12073 kg 38883 kg 35388 kg Brote das Masse D8.7(3) 37379 kg 40456 kg 33841 kg Ciriemintum Alako leck Hillor Masse GD-Method 525to 61340 kg 60006 kg 63629 kg 21 201 Main Breile Marrocks Treatment Charges December (Ibe O'settertun Torenbeck Ih =0.5*L Rumpi 36782 kg 34832 kg 32784 kg 66th Authority Schneider Ih =0,5°L Rumpf 27928 kg 25631 kg 23135 kg eron Excelle ZOIL. 88 Boeing 2. Verfahren 47305 kg 43558 ha 39481 kg Abschätzung des MTOW aus einer gegebenen Summmasse: 15331 kg Boeing aus LTH 21106 kg 18143 kg Rumofaeometrie 40657 kg | 35951 kg 44988 kg | 43684 kg | 58132 kg Burt-Phillips vereinfacht 44063 kg CONTRACTOR CONTRACTORS. - promounnett NAME AND ADDRESS OF 540000 1540000° 540002 Rechteck Höhe h: 7,50 7,50 Gewiditte Rumpifmannen Rechteck Breite b: 6,63 7,05 6,63 7,60 Districtly sear Manney were provided in 8,34 PROPERTY AND INCIDENCE. Ellipse Höhe h: 8,34 Ellipse Breite b: 6.92 LD = 1,9 m 6,92 Statuticas Mastawae schieben 4.043 Radius [m]: 4.0 Hardister (loger@misuff) Umfang [m]: 25,4 25,4 24,076 Kreisquerschnitt Ellipsenguerschnitt Segmentquerschnitt Zuschlag für UD - Floor: 8482 kg 6595 kg 6088 kg 8482 kg 6595 kg 6088 kg 44022 kd 41119 k 3471 k 11.5% 20334 kg Zuschlag für Fahrwerk: 21899 kg 27338 kg 21899 kg 20334 kg 27338 kg Zuschlag für Leitwerk: 10876 kg 11091 kg 10691 kg | 10876 kg 81221 kg 75139 kg 79376 kg 86904 kg | 82364 kg | 103342 kg 100,002 92,512 97,732 Konturberechnung der Definition der Nutzlast Ellipse Pain agierboreich Frachibereich Anciel der Passinglere Container im Frankraum: Hipsarmodol | Carellagfür UD. floor E Zanablag für UD . Plane C Zeraklas für UD : Flass · LD3: Mann Roupf - UD:

D Zonoblag für Fabrureb: Paraul Upper Deck C WIT 120,000 Marw instance der Scheinfleung D Zausblag für Fahrurek: D Zausblag für Leilwerk: D Zanablas für Pabrurel Parcanit Matin Deok: contain appare O Zonablag für Leilureb: O Zanables für beilureb: Anordnung der Container NUMBER OF THE PARTY AND ADDRESS OF Größer weith and Contraction Upday Deck 79,0% Denomicate. יתנצמינים אמצמינים Classics Tings* Classics* quer Augusterania and 79.0% bet kyt. Gings auf dem Main Deck D Shick Exquer Cimdix Miller der Elline: 20ma21 5 30ma21 8.341 m Emilia do Elpas 6,921 m unthrechnittliches 100 STORY OF C A300 North C A300 Rands Diversioned:

Hier können Optionen für die Berechnung von Oberdeck, Fahrwerk, Leitwerk und das MTOW festgelegt werden. Die Grundlagen werden im Hauptteil dieser Arbeit erläutert

Spezielle Kabinenabmessungen werden hier definiert (Höhe im Gang, Höhe über dem Außensitz,...,). Hier sind normalerweise keine Änderungen notwendig

Hier werden die Größenordnungen und Verhältnisse der Teilmassen dargestellt. Es kann weiter kontrolliert werden ob die ermittelte Kon-

tur die Nutzlastbox

auch komplett um-

schließt

Bild A1.0: Gesamtübersicht der Seite "MAP'99"

A 1.3 Beispiel 1

Dieses Berechnungsmuster bezieht sich auf den A3XX-100.

Schritt 1, Festlegen der einzelnen Parameter

Die Berechnungen beginnen immer auf der Seite "MAP'99" mit der Festlegung einiger Parameter (siehe auch Bild A1.0). In dem dargestellten Feld (Bild A1.2) werden die entsprechenden Optionen gesetzt: Die Eingabe erfolgt durch das "Anklicken" des entsprechenden Feldes und der Eingabe des gewünschten Wertes. Bei der Anzahl der Sitze nebeneinander auf den einzelnen Decks erfolgt dies durch das "Anklicken" des im Bild A1.1 dargestellten Kombinationsfeldes. Dieser 1. Schritt definiert die Kontur der Nutzlastbox.

Bild A1.1: Kombinationsfeld

Bild A1.2: 1.Schritt, Festlegung der Parameter

Schritt 2, Berechnung der Ellipsenkontur

Die Berechnung der Ellipse kann über zwei Wege erfolgen. Ist die Option "Ellipsenmodul" aktiv, dann wird die passende Ellipse über eine relativ schlichte Methode berechnet und übernommen. Diese Vari-

ante ist nicht sehr genau.

Deshalb sollte die Ellipse mit der zweiten Option "Verwendung der Solverlösung" bestimmt werden. Dieses Verfahren ist sehr zuverlässig. Hier wird auf den EXCEL- Solver zurückgegriffen (siehe Bild A1.3). Dies erfordert eine bestimmte Vorgehensweise, damit es nicht zu Konflikten mit den in MAP'99 verwendeten Makros kommt.

Der weitere Ablauf ist folgender:

- 1. Eingabe des gewünschten Ausnutzungsgrades. Kleine Werte (ca. 50%) entsprechen einer Kreiskontur. Hohe Werte (ca. 80%) ergeben eine elliptische Form.
- Setzen der Option "Ellipsenmodul". Dies beschleunigt die Rechnung erheblich. Dann "klickt" man in ein beliebiges Feld auf der Seite, damit in der EXCEL Kopfzeile alle Felder wieder aktiv werden. Ansonsten funktioniert der Solver nicht.

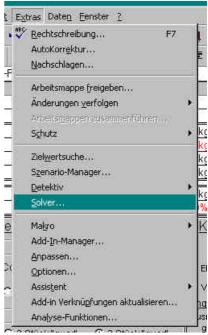
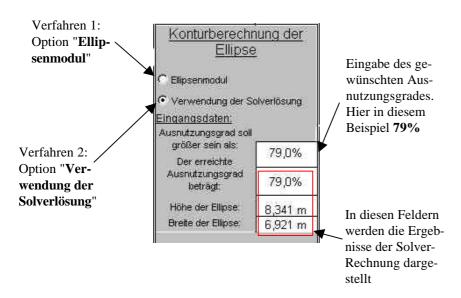
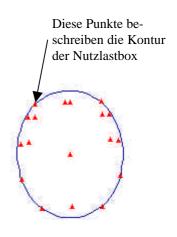


Bild A1.3: Der Excel Solver

- 3. Aufrufen des Solvers (siehe Bild A1.3) und dann auf das Feld "Lösen" klicken. Die Rechnung startet jetzt.
- 4. Ist die Rechnung abgeschlossen sollte die Option "**Verwendung der Solverlösung**" wieder aktiviert und das Ergebnis kontrolliert werden. Dies ist möglich anhand der dargestellten Kontur (siehe Bild A1.4). Die dargestellten roten Dreiecke beschreiben dort die Kontur der im 1. Schritt festgelegten "Nutzlastbox". Die berechneten Abmessungen der Ellipse werden jetzt automatisch weiter verwendet.

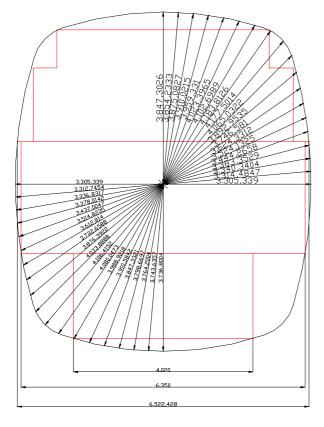
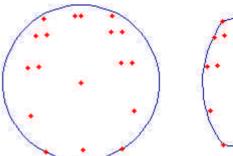

Bild A1.5: Schritt 2, Berechnung der Ellipsenkontur

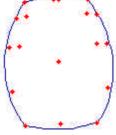
Bild A1.4: Kontrolle der Rechnung ob die Nutzlastbox vollständig umschlossen wird

Ist die Rumpfkontur nicht elliptisch sondern kreisförmig, so sind keine "extra-" Rechnungen an dieser Stelle notwendig.

Geht es um einen anderen beliebig geformten Rumpfquerschnitt, so läßt sich die Kontur nicht automatisch berechnen. Es ist dann nötig die Kontur wie in Bild A1.6 dargestellt, über Konturpunkte einzugeben. Hier sind dann 36 Werte (als Radien) einzugeben (siehe Bild A1.7).

Bild A1.7: Bei einem beliebigen Querschnitt müssen die Punkte als Radius eingegeben werden


Bild A1.6: Für die Segmentquerschnitte ist die Eingabe der Konturpunkte erforderlich (als Radius). Die Eingabe erfolgt in Metern.


0	3,764
5	3,771
10	3,792
15	3,826
20	3,875
25	3,938
30	3,987
35	3,948
40	3,829
45	3,715
50	3,615
55	3,531
60	3,461
65	3,405
70	3,362
75	3,332
80	3,314
85	3,309
90	3,316
95	3,336
100	3,368
105	3,413
110	3,471
115	3,544
120	3,63
125	3,732
130	3,849
135	3,983
140	4,077
145	4,072
150	3,988
155	3,91
160	3,847
165	3,798
170	3,746
175	3,743
180	3,736

Winkel

r von phi

An der Darstellung für den Kreis- und Segmentquerschnitt läßt sich überprüfen, ob die Nutzlastbox vollständig umschlossen wird.

Bild A1.8: Hier kann überprüft werden ob die Nutzlastbox vollständig umschlossen wird

Schritt 3, Berechnung der Querträgermasse des Oberdecks

Die Berechnung findet auf der Seite "Querträger" statt. Auch hier müssen vor dem Beginn der Berechnung bestimmte Optionen gesetzt werden. Die Parameter im Bild A1.9 brauchen normalerweise nicht verändert werden. Dies betrifft nur die grau unterlegten Felder.

Bei den Sitzschienen stehen mit dem *Narrow- Body* und dem *Wide Body* Profil zwei Möglichkeiten zur Verfügung. Der *Wide Body* Typ ist wegen der geringeren Querschnittsfläche leichter als der *Narrow Body* Typ und wird deshalb in diesem Beispiel gewählt.

Bild A1.9:
Kennwerte des Oberdecks. Die grau unterlegten Felder werden normalerweise nicht verändert

Lastviellaches	
Anzahl Pax	8
Gewicht je Pax	100 kg
Länge Querträger	6,45 m
Kraft auf	47072 N
Querträger	47.07.2
Linienlast	7298 - N
auf Querträger	7230 7#
Biegemoment an	25301 Nm
der Einspannung	20001 14111
Erforderliches	84337 mm ³
Widerstandsmoment	0400t (IIII)
Profilfläche	1785 mm²
Spantteilung	660 mm
Querträger-	31,1 kg
masse	900 69
Seat Track Fläche	540 mm²
Anzahl der Seattracks	13
Gewicht der Seattracks	12,2 kg
Fläche Boden	4,26 m²
Gewicht	
Floor Panels	14,9 kg
Masse Floor Panel je m^2	3,5 kg
Zusatzgewicht für Anpassung	0,0 kg

Lastvielfaches

Bei der Berechnung der Querträgermasse muß entschieden werden, ob sich der Träger in der Option "Außensitz zu Außensitz" an der Kontur der Nutzlastbox orientiert und dort auch (für die Berechnung) endet, oder in der zweiten Option "Reale Länge bis zur Außenkontur" der Träger bis zur äußeren Rumpfkontur reicht. In dieser Arbeit ist diese zweite Option gewählt worden (siehe Bild A1.10).

Es ist möglich für die Querträgergeometrie Grenzen festzulegen (siehe Bild A1.11). Die dort angegebenen Werte haben sich bei der A3XX Rechnung bewährt. Bei der Berechnung wird jetzt ein möglichst leichter Querträger in den festgelegten Grenzen ermittelt

Jetzt kann die Berechnung gestartet werden. Nach der Wahl des Querschnittes (wie in Bild A1.10 dargestellt) muß ein beliebiges

Feld angeklickt werden, damit die EXCEL- Kopfleiste wieder aktiv ist. Starten des Solvers, wie dies im ersten Schritt dargestellt worden ist.

Ist das Ergebnis bekannt, ist es nötig die Werte per Hand in die entsprechenden Felder einzutragen (siehe Bild A1.12).

Ergebnisse dieser Berechnungen sind:

- Geometrie des Querträgers
- Masse des gesamten Oberdecks
- Masse der Teilkomponenten

	Länge	Masse
C Kreis	7,86 m	3000
C Ellipse	6,74 m	ненес
 Segment 	6,45 m	58,23 kg
	ntmasse Opp	1
Gesar Kreis	ntmasse Opp Ellip	er Deck Segment
	T	1

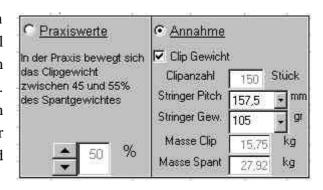
Bild A1.12: Die Werte müssen von Hand eingetragen werden

<u>Länge</u>	des Quertra	<u>igers</u>
 Reale Länge b 	is zur Rumpfko	intur
CAMPAGE TO STREET THE PARTY OF		
C Annahme Auß	ensitz zu Auß	ensitz
C Annahme Auß	ensitz zu Auß Länge	ensitz Masse
C Annahme Auß C Kreis		
	Länge	

Bild A1.10: Option für die Länge des Querträgers und Art des zu berechnenden Querschnittes

Abmessi	ıngen	Gre	nzen
Querträge	erprofil	min	max
hь	10	10	20
b	30	30	60
h	300	50	300
s	4,70	2	10
alle Angabe	n in mm	alle Anga	ben in mm
ys	150	Länd	ae des Qu

Bild A1.11: Festlegung von Grenzen bei der Querträgergeometrie


Schritt 4, Berechnung der Spantmasse

Auf der Seite "Spant und Clip" sind viele Optionen vorhanden, die hier erklärt werden sollen. Die eigentliche Berechnung des Beispiels wird deshalb an das Ende gestellt.

Masse des Clip

Hier ist es möglich zwischen zwei Verfahren zu wählen. Die Masse des Clip kann einmal mit Praxiswerten bestimmt werden. In diesem Fall wird die Option "**Praxiswerte**" gesetzt. Der prozentuale Anteil der Clipmasse am Spantgewicht kann durch das Anklicken der Pfeiltasten verändert werden (siehe Bild A1.13).

Ist die zweite Option "Annahme" aktiv, so werden Sachverhalte der A340 verwendet. Auch hier stehen bei der Stringerteilung und beim Clipgewicht Alternativen zur Verfügung. Bei der Stringerteilung gibt es einen

Bild A1.13: Beim Clipgewicht gibt es zwei Verfahren. Es stehen für die Clipmasse und die Stringerteilung Alternativen zur Verfügung.

Wert von 125mm. Dieser sollte nur für Flugzeuge der *Single Aisle Familie* verwendet werden. Bei diesem Beispiel gelten die in Bild A1.13 gewählten Einstellungen.

Spantteilung

Hier kann zwischen drei Optionen gewählt werden. 21 Zoll gelten für die jetzt aktuellen Airbusmuster. 25 Zoll bzw. 26 Zoll werden bei der A3XX angewendet.

Bei diesem Beispiel wird ein Spantabstand von 26 Zoll gewählt.

Bild A1.14: Mögliche Spantteilungen

Festlegung von Grenzen für die Spantgeometrie

In den in Bild A1.15 dargestellten Feldern werden sinnvolle Ober- und Untergrenzen für die Spantgeometrie festgelegt. Die Untergrenzen sollten sich dabei an den existierenden Airbusflugzeugen orientieren. Die Untergrenze für die Hautstärke wird dabei automatisch über die Kesselformel bestimmt und sollte hier <u>nicht</u> verändert werden. die Obergrenze ist aber frei wählbar.

Abmessungen		Grenzwerte	
		Min	Max
HSpant :	185,6	60	250
Hstringer !	35,0	30	35
HBärdel :	15,0	8	15
SSpane .	1,6	1,6	7
SHaut!	2,308	2,23	5,00
Bspane :	36,5	20	50

Bild A1.15: Grenzen für die Spantgeometrie

Berechnung der Spantmasse

Es muß entschieden werden, ob die Spantmasse oder die Gesamtmasse (**nur hier** ist damit die Summe aus Spant- und Hautmasse gemeint) möglichst gering sein soll. Die sinnvollere Option in diesem Zusammenhang ist die in Bild A1.16 gewählte "**Gesamtmasse minimieren**". Die weiteren Optionen sollen anhand Bild A1.17 näher erklärt werden.

Bild A1.16: Mögliche Zielsetzungen

C Spantmasse minimieren

Gesamtmasse minimieren

11A1111 P. 11A111 P. 11A11	1.40	E	EIII ZEELA	Discours a contract constant
Werf Betrag	Kreis	Ellipse(SKO)	Ellipse(FEM)	C Segment
Innendruck	2763,6	15621,0		€ Ellipse
Fußboden	11709,8	11069,5627		HISTORY OF
Summe	11823,5	20668,9	33150,8	42065930
CONTRACT		2	3	-
Werf	Kreis	Ellipse(SKO)	Ellipse	(FEM)
Wert	2763,62	15620,96	Seitenve	
Wert	11709,83	11069,56	0,83	30
Summe	11823,5	20668,9	33150,8	Zuwachs-
Rumpflänge	70,70	69,92	69,92	faktor
Umfang	25,40	24,08	24,08	2,80
Summe,	0,0	0,0	3315	
Boden	0,0	0,0		
Innendruck,	0,0	0,0		
Rumpflänge	0,0	0,0	69,92	
Umfang 🛺	0,0	0,0	24,1	08
Option :	3	EllipseFEM		13
Umfang ::	24,08		1	1
Rumpflänge:	69,92		3	33.7
Summe W	33150,8		1	J
W :	0,0		1	
W art Drank :	0,0	() () ()		
100.00	1	2	3	4
Werf	Innendruck	Fußboden	Summe	Max- Wert
Wert	0,0	0,00	33150,8	0,0
gewählt	0,00	0,00	33150,84	0,00
Option:	3			
Hautanteil:	0%			
W :	33150,8			

Wenn ein Segmentquerschnitt berechnet werden soll, wird diese Option auf "Segment"gesetzt. Für Ellipsen und Kreisquerschnitte wird "Ellipse" gesetzt. In diesem Beispiel wird "Ellipse" gewählt.

Zur Berechnung eines Segmentquerschnittes ist es notwendig an dieser Stelle das mittlere Biegemoment in Nmm aus der FEM- Rechnung anzugeben.

An dieser Stelle wird entschieden, welcher Rumpfquerschnitt berechnet werden soll. Hierbei werden drei Fälle unterschieden:

- Kreisquerschnitte (1)
- Ellipsenquerschnitte (3)
- Segmentquerschnitte (3)

Wird eine (2) eingegeben, dann erfolgt die Berechnung der Ellipse nach bestimmten Zusammenhängen aus der Strukturkonstruktion. Diese Methode ist ungenau, da sie auf Kreisquerschnitte ausgerichtet ist. Die Option (2) ist deshalb hier **nicht** geeignet. Für das Beispiel wird Option (3) gewählt.

ist es hier möglich die Belastungen aus dem Innendruck und den Passagierlasten auf den Spant getrennt zu betrachten. Dies ist allerdings für Ellipsen- und Kreisquerschnitte nicht möglich. Die Einstellung sollte also unverändert bleiben, um Fehler zu vermeiden.

Im Beispiel ist hier Option (3) gesetzt.

Diese Option sollte nur in Sonderfällen geändert werden. Für Kreisquerschnitte

Bild A1.17: Wahl von Optionen als Vorbereitung für die Spantberechnung

Als nächstes kann der Solver auf bekanntem Weg aufgerufen werden, mit dem Anklicken des Feldes "Lösen" startet die Rechnung. Die Iterationen die hier durchgeführt werden sind sehr umfangreich, deshalb dauert die Rechnung etwas länger. Es kann daher vorkommen, daß das voreingestellte Zeitlimit von 100 Sekunden für die Rechnung überschritten wird. In diesem Fall wird gefragt, ob die Rechnung fortgesetzt werden soll. Dies sollte getan werden, da der Rechengang schon fast am Ende steht.

Abmessungen		Grenzwerte	
		Min	Max
HSpant :	185,6	60	250
Hstringer !	35,	30	
HBärdel :	15,0	8	15
SSpane .	1,6	1,6	7
SHaut!	2,308	2,23	5,00
BSpane :	36,5	20	50

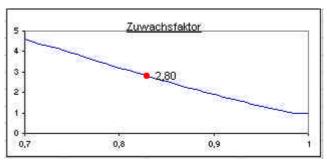
Bild A1.18: Damit startet die Iteration mit dem oberen Grenzwert

Es hat sich als vorteilhaft erwiesen, vor der Rechnung in

dem in BildA1.18 markiertem Feld den <u>oberen</u> Grenzwert einzugeben. Dies bewirkt, daß die Iteration bei diesem Wert von "oben" beginnt. Es hat sich gezeigt, daß die Spantmassen dadurch geringer werden.

Ist das Ergebnis bekannt, ist wieder Handarbeit bei der Übertragung der Ergebnisse notwendig. Die Lösungen für Hautstärke und Spantmasse werden in die entsprechenden Felder eingetragen (siehe Bild A1.19).

Bild A1.19: Übertragen der Ergebnisse von Hautstärke und Spantmasse


Es empfielt sich, die Berechnung für den Segmentquerschnitt nach dem Kreis- und Ellipsenquerschnitt durchzuführen.

Folgende Ergebnisse liefert diese Seite:

- Geometrie des Spantes
- Hautstärke
- Masse eines Spantes
- Masse aller Spante im Rumpf
- Masse der Clips
- Darstellung des Zuwachsfaktors für die Belastung des

Ellipsen- bzw. Segmentquerschnittes durch das Biegemoment gegenüber dem (Referenz-) Kreisquerschnitt (siehe Bild A1.20). Hier ist die Belastung im Ellipsenquerschnitt 2,8 mal so hoch wie im vergleichbaren Kreisquerschnitt.

<u>Abmessungen</u>		<u>Grenzwerte</u>	
		Min	Max
Hspant :	185,6	60	250
Hstringer :	35,0	30	35
Haardel :	15,0	8	15
SSpant :	1,6	1,6	7
SHaut :	2,308	2,31	5,00
Bspant :	36,5	20	50
b _m :	73,0		S1 8
Randfaser- abstand :	128,2	105/04/5605	ntmasse nieren
σ _{0,2 ω} ς	300	♠ ass	se
Rho 2024	2,7	rn pirr	nieren
20746,97	7 Kg		
Masse S	pant:	Ma	se ges:
28,45		44.	1 kg
Spantmass Rump			ia se ges in of
3012 kg		47	13
	Spant	mas ₇	A ut
Kreis		0 k	2,45 mm
Ellipse	471	3 kg	2,31 mm
Segment	1277	71 kg	2.23 mm

Bild A1.20: Zuwachsfaktor der Belastung durch das Biegemoment für den Ellipsenquerschnitt

Schritt 5, Berechnung der Stringermasse

Auf der Seite "Haut und Stringer" kann die Stringermasse über zwei Verfahren bestimmt werde. Es gibt die Möglichkeit die Stringermasse über Praxiswerte zu bestimmen. Der prozentuale Massenanteil kann hier noch variiert werden.

Ist die Option "**Burt- Phillips**" gesetzt, wird die Stringermasse über entsprechende Formeln berechnet (im Hauptteil dieser Arbeit vorgestellte). In der Diplomarbeit ist mit dieser Option gearbeitet worden (siehe Bild A1.21).

Bild A1.21: Verschiedene Verfahren zur Bestimmung der Stringermasse

Diese Seite beinhaltet außerdem Übersichten über die Hautstärke in Abhängigkeit des Umlaufwinkels, der Stringermasse und übrige bis jetzt erzielte Ergebnisse.

Schritt 6, Berechnung der Leitwerks- und Fahrwerksmasse sowie des MTOW

Zu diesem Zweck wird die Seite "MAP'99" aufgerufen. Die Berechnung geht sehr zügig und ist mit wenigen Mausklicks erledigt. Bild A1.22 zeigt, welche Optionen für dieses Beispiel gesetzt worden sind.

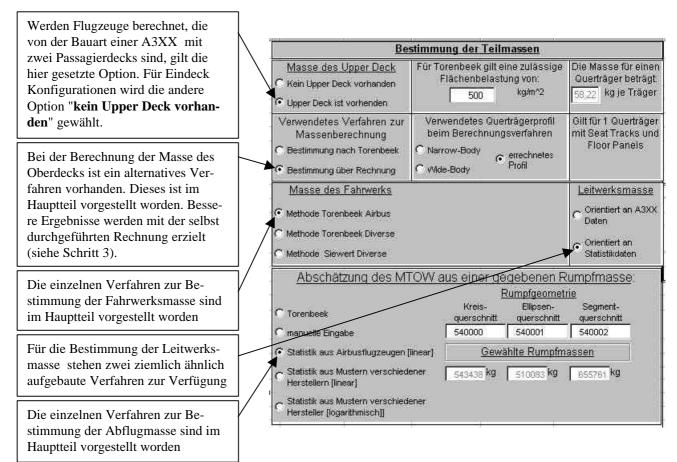


Bild A1.22: Leitwerks- und Fahrwerksmasse, MTOW

Schritt 7, Berechnung der aerodynamischen Eigenschaften

Auf der Seite "**Aerodynamik I**" kann der Widerstand des Rumpfes und einige grundlegende Flugleistungsdaten berechnet werden. Es sind hier zwei nahezu identische Blätter vorhanden. Der einzige Unterschied besteht darin, daß einmal das errechnete MTOW benutzt wird und einmal das MTOW manuell eingegeben werden muß. Je nachdem welcher Fall gewünscht ist, wird das entsprechende Blatt aktiviert (siehe Bild A1.23).

Die Optionen die auf der Seite "Aerodynamik I" zur Verfügung stehen definieren eine *Reise-flughöhe*, eine *Reisemachzahl* und die *Reiseflugdauer* (siehe Bild A1.23). Weiter lassen sich auch die *Flügeldaten* verändern. Ist das Flugzeug vom Typ A3XX so sollten diese Daten beibehalten werden.

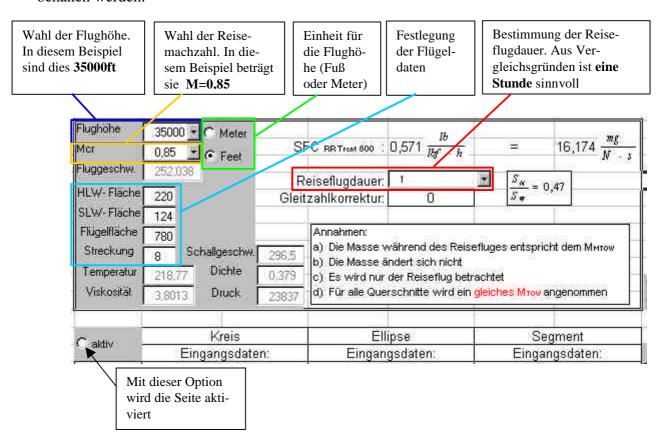


Bild A1.23: Annahmen für die aerodynamische Beurteilung des Entwurfes

Schritt 8, Ausgabe des Ergebnisprotokolles

Wird die Seite "Ausgabeblatt" aufgerufen, so finden sich dort alle relevanten Ergebnisse in einer ausführlichen Zusammenfassung. Der Ausdruck besteht aus zwei Seiten. Auf der ersten Seite werden sämtliche Rechenergebnisse festgehalten. Auf der zweiten Seite werden die gewählten Optionen aufgeführt. Bild A1.24 (Seite 143) stellt eine solche Ausgabeseite mit den Ergebnissen für das Beispielflugzeug dar. Bild A1.25 (Seite 144) stellt eine Übersicht über die gewählten Optionen dar

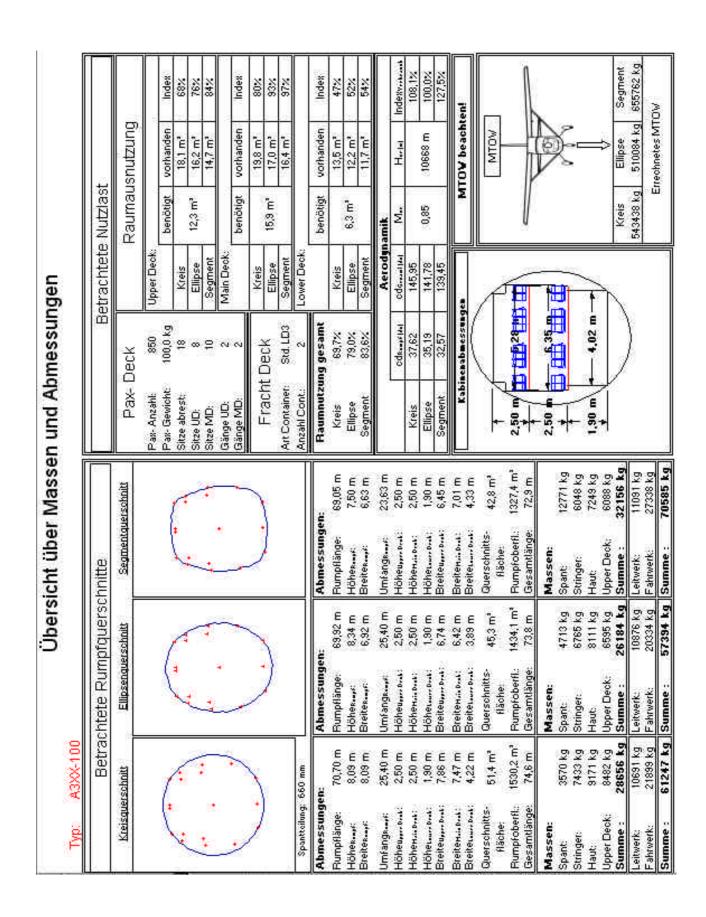


Bild A1.24: Ausdruck des Ausgabeblattes für Beispiel 1 (A3XX-100)

Grundsā	tzliches	Spantber	rechnung	
Höhe des Lower Deck Konturberechnung	1,9 m	Das Clipgewicht wird bestimmt nach :	Getroffer	en Annahmen
der Ellipse	Solverlösung	Die Clips wiegen	4444	des Spantes
Wahl der Flugzeugfamilie	A3XX Familie	Es soll minimiert werden	Gesamtmasse	
Lastvielfaches n.	3,75	Stringerpitch		157,5
Geschwindigkeit Vo	228	1 Clip wiegt		105
Deckenhöhe über dem	1,65 m		rmasse	V-025
Außensitz auf dem Upper Breite des Außensitzes	- CANADOS	Die Stringermasse wird bestimmt nach:	Burt-Phillips	
auf dem Upper Deck	0,53 m	Die Stringermasse beträgt	1000	der Haut
Upper	Deck			
Ein Upper Deck ist	vorhanden			
Die Massenbestimmung erfolgt über:	Eigene Rechnung			
Das Querträgerprofil ist	selbst berechnet worden			
Das Sitzschienenprofil ist	ein Wide Body Profil			
Für die Querträgerlänge wird angenommen:	reale Länge bis Haut			
Flächenbelastung für Torenbeek:	Angabe nicht relevant]		
Fahr	verk]		
Verwendete Methode:	Torenbeek Al			
Leitwerk	smasse	1		
- 7777 0 500 0 500	34772333744			
Orientierung an	Statistikdaten			
1240. 20				

Bild A1.25: Ausdruck des Ausgabeblattes mit den Informationen über die gewählten Optionen für Beispiel 1 (A3XX-100)

A 1.4 Beispiel 2

Dieses Beispiel bezieht sich auf die A340-300.

Durch Beispiel 1 sind die relevanten Teile von MAP'99 bereits vorgestellt worden. Im Beispiel 2 werden die relevanten Unterschiede zwischen beiden Berechnungen beschrieben.

Da das Beispielflugzeug über einen kreisförmigen Rumpf und nur über ein Passagierdeck verfügt wird die Berechnung kürzer als beim ersten Beispielflugzeug sein.

Schritt 1, Festlegen der einzelnen Parameter

Die Berechnungen beginnen wieder auf der Seite MAP'99 mit der Festlegung einiger Parameter (siehe auch Bild A1.26). Diese sind gegenüber Beispiel 1 nur wenig verändert. Mit Hilfe dieser Angaben ist die Nutzlastbox definiert.

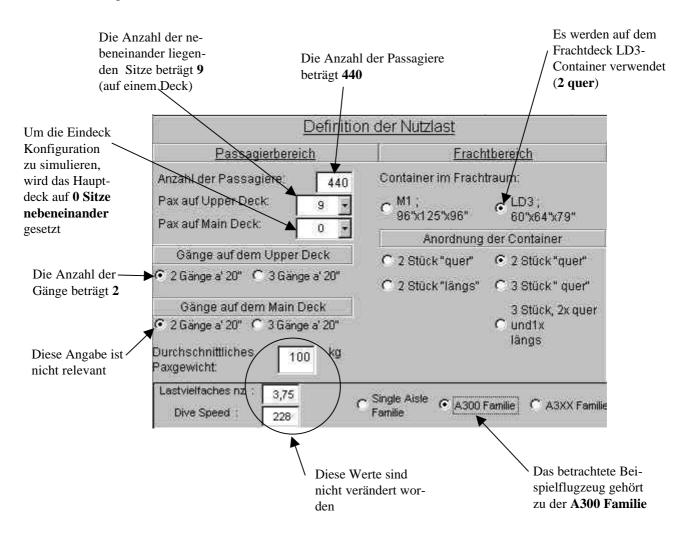
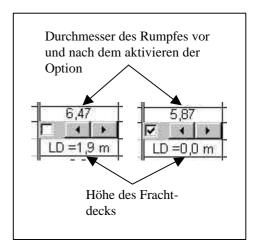


Bild A1.26: 1.Schritt, Festlegung der Parameter

Schritt 2, Berechnung der Kreiskontur


Da die Kreiskontur ohne zusätzliche Solver- Rechnungen erfolgt, ist der Aufwand an dieser Stelle etwas geringer. Der Rumpfdurchmesser der A340-300 beträgt (wie bei allen aktuellen Airbus *Wide Bodies*) 5,64m. Für die Kreiskontur wird aber durch MAP'99 ein Durchmesser von 6,47m berechnet. Dieser Wert ist somit viel zu hoch. Hier macht sich bemerkbar, daß das Programm ursprünglich für den A3XX geschrieben worden ist. Ein Weg den Durchmesser zu reduzieren, besteht darin die Höhe des Frachtraumes zu verringern. Mit Bild A1.27 wird gezeigt, wie dies auf einfache Weise erfolgen kann. Durch das Anklicken der Pfeiltasten kann die

Höhe des Frachtraumes in 10cm Stufen verändert werden. Eine Anpassung an bekannte Rumpfdurchmesser ist so möglich.

Auch wenn in diesem Fall die gewünschten 5,64m um 0,23m verfehlt werden, so ist die Abweichung noch in tolerierbaren Grenzen. Mit diesem Wert wird die weitere Berechnung durchgeführt.

Bild A1.27:
Der Rumpfdurchmesser kann durch diese Option an bekannte Daten

angepaßt werden

Schritt 3, Berechnung der Querträgermasse des Oberdecks

Dieser Arbeitsschritt entfällt!

Schritt 4, Berechnung der Spantmasse

Der Rechengang auf der Seite "Spant und Clip" ist der gleiche wie bei Beispiel 1. Die Spantteilung wird allerdings auf 21 Zoll herabgesetzt (siehe Bild A1.28).

Als Grenzwerte für die Spantgeometrie sind die in Bild A1.29 dargestellten Werte gewählt

worden.

Mit den auf der folgenden Seite dargestellten Einstellungen (in Bild A1.31), kann jetzt für die Kreisform der Spant berechnet werden.

Spantteilung	2)	
€ 21 Zoll	gewäh	lt :
C 26 Zoll	0.5334	m
C 25 Zoll		

Bild A1.28: Die Spantteilung wird für den A340 auf 21 Zoll gesetzt

Abmessungen		zwerte
-		Max
80,0	80	250
30,0	30	35
8,0	8	15
1,6	1,6	7
1,776	1,78	5,00
20,0	20	50
	80,0 30,0 8,0 1,6 1,776	Min 80,0 80 30,0 30 8,0 8 1,6 1,6 1,776 1,78

Bild A1.29: Folgende Grenzen für die Spantgeometrie werden festgelegt

Der Solver kann aufgerufen werden und die Rechnung wird gestartet.

Die Ergebnisse müssen wieder, wie in Bild A1.31 gezeigt, übertragen werden.

Abmessungen		Grenzwerte		
	55%	Min	Max	
Hspane :	80,0	80	250	
Hstringer :	30,0	30	35	
Heardol :	0,8	8	15	
SSpant:	1,6	1,6	7	
SHaut ;	1,776	1,78	5,00	
Bspant :	20,0	20	50	
b _m :	40,0			
Randfaser- abstand :	59,2		tmasse nieren	
σ _{0,1ω} ;	300	rass	e .	
Rho 2024	2,7	7 inimieren		
11415,07	7 Kg			
Masse S	pant:	M ss	se ges:	
10,20	kg		49 kg	
Spantmass Rump		Spanti R	nsse ges npf	
1168	kg	25	kg	
	Spant	rasse	Haut	
Kreis	257	5 kg	1,78 mm	
Ellipse	471	3 kg	2,31 mm	
Segment	1277	1 kg	2,23 mm	

Bild A1.31:Übertragung der Ergebnisse in die entsprechenden Felder

Werf Betrag	Kreis	Ellipse(SKO)	Ellipse(FEM)	C Segment
Innendruck	1176,9	12616,9		Ellipse
Fußboden	4473,0	5733,37988	10000000000	Company of the Park Company
Summe	4614,3	11191,2	12937,4	42065930
MW 23	1	2	3	
Werf	Kreis	Ellipse(SKO)	Ellipse	(EEM)
Wert	1176,91	12616,93	Seitenve	
Wertra	4473,02	5733,38	0,8	30
Summe	4614,3	11191,2	12937,4	Zuwachs-
Rumpflänge	61,10	64,03	64,03	faktor
Umfang	18,45	24,08	24,08	2,80
Summe	4614,3	0,0	0,0)
Boden,	4473,0	0,0	250	
Innendruck,	1176,9	0,0		
Rumpflänge.	61,1	0,0	0,0	10
Umfang	18,4	0,0	0,0	0
Option :	1	Kreis		1
Umfang :	18,45	1100000	F	7
Rumpflänge:	61,10		1	- 1
Summe W	4614,3			J
W .ef Bades :	4473,0		1	
W	1176,9			
Werf	1	2	3	4
8000000	Innendruck		Summe	Max- Wert
Wert	1176,9	4473,02	4614,3	4473,0
gewählt	0,00	0,00	4614,25	0,00
Option:	3			
Hautanteil:	0%			
W :	4614,3			

Bild A1.30: Vorbereitungen zur Spantberechnung

Schritt 5, Berechnung der Stringermasse

Gegenüber Beispiel 1 gibt es hier keine Unterschiede (siehe Bild A1.32).

Bild A1.32: Verschiedene Verfahren zur Bestimmung der Stringermasse

Schritt 6, Berechnung der Leitwerks- und Fahrwerksmasse sowie des MTOW

Zu diesem Zweck wird wieder die Seite MAP'99 aufgerufen. Bild A1.33 zeigt welche Optionen in diesem Zusammenhang gewählt worden sind.

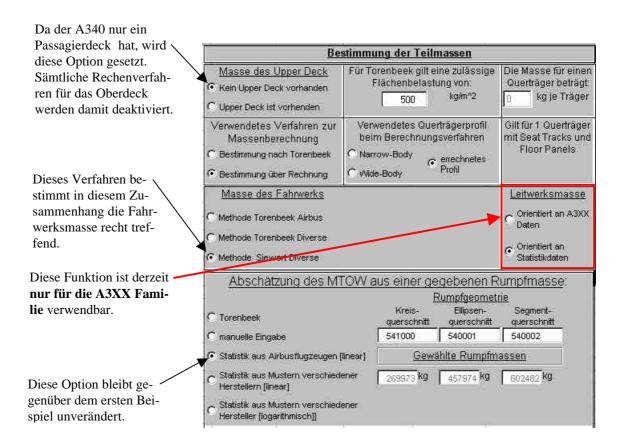


Bild A1.33: Bestimmung der Leitwerks- und Fahrwerksmasse sowie des MTOW

Schritt 7, Berechnung der aerodynamischen Eigenschaften

Hier gibt es einige Unterschiede die in Bild A1.34 dargestellt werden. Für die Flügeldaten werden die entsprechenden A340 Werte eingesetzt. Der spezifische Verbrauch des Triebwerks ist ungenau, da nur die Daten für das CFM 56-3 verfügbar gewesen sind. Zum Einsatz kommt aber das CFM 56-5C4.

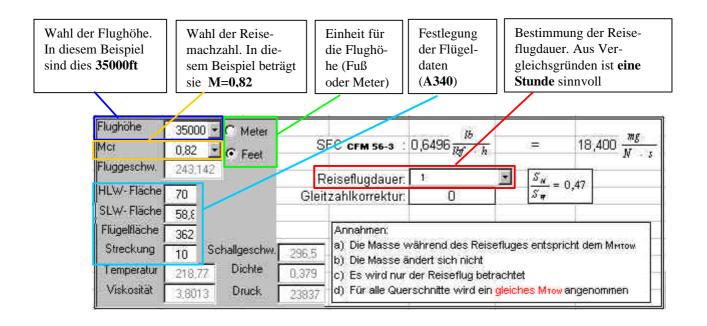


Bild A1.34: Annahmen für die aerodynamische Beurteilung des Entwurfes

Schritt 8, Ausgabe des Ergebnisprotokolles

Hierbei ist zu beachten, daß nur die Daten für den Kreisquerschnitt aussagekräftig sind, da die übrigen Querschnitte nicht berechnet worden sind (weil sie hier nicht relevant sind). Unbrauchbare Werte sind weiter bei der Leitwerksmasse, der Raumausnutzung und der Darstellung der Kabinenabmessungen zu finden. Der Grund hierfür liegt, wie bereits gesagt, daran, daß MAP'99 ursprünglich nur für den A3XX konzipiert worden ist. In Bild A1.35 (auf der folgenden Seite) wird durch die roten Markierungen verdeutlicht, welche Rechenergebnisse verwendet werden können.

Die Ausführungen über MAP'99 sind bewußt knapp gehalten. Der Benutzer sollte sich über die beschriebenen Beispiele hinaus mit dem Ausprobieren einzelner Funktionen mit MAP'99 bekannt machen und ggf. Verbesserungen vornehmen.

Hiermit endet die Beschreibung von MAP'99.

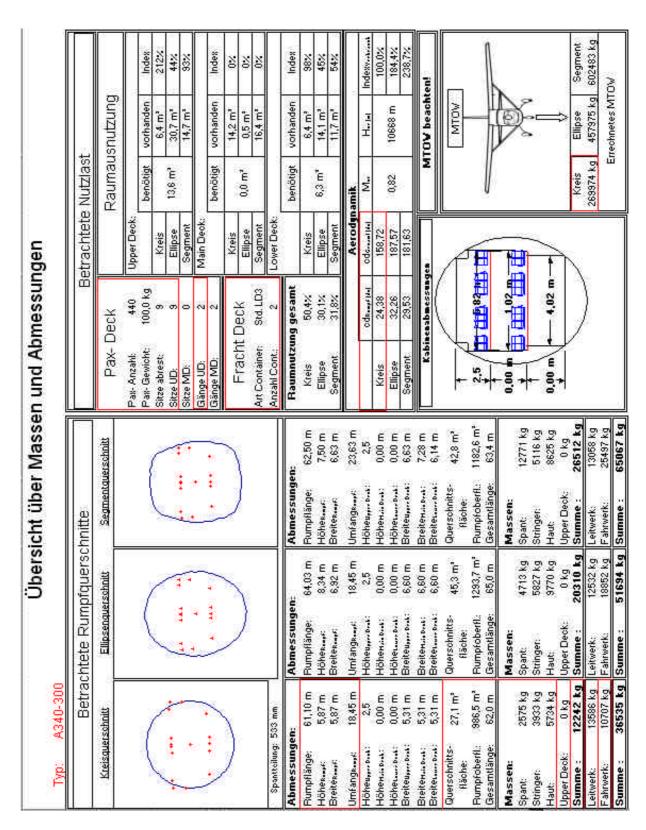


Bild A1.35: Ausdruck des Ausgabeblattes für Beispiel 2 (A340-300)

Übersicht der gewählten Optionen Grundsätzliches Spantberechnung Höhe des Lower Deck Das Clipgewicht wird Getroffenen Annahmen bestimmt nach : Die Clips wiegen Konturberechnung Solverlösung der Ellipse des Spantes Wahl der Flugzeugfamilie Wide Body Fam.(A300 etc.) Gesamtmasse Es soll minimiert werden Lastvielfaches n. Stringerpitch 157,5 Geschwindigkeit Vo... Deckenhöhe über dem 228 1 Clip wiegt 105 Stringermasse 1,65 m Außensitz auf dem Upper Breite des Außensitzes Die Stringermasse wird Burt-Phillips bestimmt nach: 0,53 m Die Stringermasse beträgt auf dem Upper Deck der Haut Upper Deck Ein Upper Deck ist nicht vorhanden Die Massenbestimmung Eigene Rechnung erfolgt über: Das Querträgerprofil ist selbst berechnet worden Das Sitzschienenprofil ist ein Wide Body Profil Für die Querträgerlänge wird angenommen: Flächenbelastung für Angabe nicht relevant Torenbeek: Fahrwerk Verwendete Methode: Siewert Leitwerksmasse Orientierung an Statistikdaten

Abschätzung des MTOV

Airbusflugzeuge linear

Verwendete Methode:

Bild A1.36: Ausdruck des Ausgabeblattes mit den Informationen über die gewählten Optionen für Beispiel 1 (A340-300)