
 1

Department Fahrzeugtechnik und Flugzeugbau

Structure and function of the aircraft design
program PrADO

Lionel Salavin

Project

Supervisor: Kolja Seeckt
Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME

Submission date : 19 May 2008

 2

Hochschule für Angewandte Wissenschaften Hamburg
Department Fahrzeugtechnik + Flugzeugbau
Berliner Tor 9
20099 Hamburg

Author: Lionel Salavin
Submission date: 19 May 2008

1. Examiner: Prof. Dr.-Ing. Dieter Scholz, MSME
2. Examiner: Kolja Seeckt

Supervisor: Kolja Seeckt

(c)
Commercial use strictly prohibited.Your request may be directed to:Prof. Dr.-Ing. Dieter Scholz, MSMEE-Mail see: http://www.ProfScholz.deDownload this file from:http://Bibliothek.ProfScholz.de

 3

Abstract

This report is a description of the aircraft design software PrADO. PrADO is the name of an
aircraft pre design and optimisation program, which already proved its capacities in many
projects. The main goal of this report is about helping to understand the functions and
structure of PrADO in order to modify it. Therefore, it provides a description of its main
possibilities, as a short manual of the program, based on previous paper aiming to document
it. As the reports aim to help to understand the structure of the program, it analyzes the
organisation of the different files, which constitute the software. It explains what each kind of
file does for the program and where it is located in the windows folders. The first distinction
between each kind of files shows that the most important files are the Fortran files, which are
organised into modules executable and libraries of functions. Therefore, it is relevant to have
an overview of the first modules and a short description of the most important libraries. Since
this report is part of a cooperation between the HAW and the IFL, which aim to add a
turbofan module in PrADO, it observes in detail every module and each important file of
libraries related to the propulsion. Particular attention is given to the computation of nnthe
turbofan‘s performance.
The end of this report consists of two parts addressed to two different kinds of readers:
 -An Analysis of the methodology needed to understand the program is there for any
new comer to PrADO’s source code.
 -An open discussion on the program is addressed to the PrADO’s programmer to submit
some propositions concerning the coding and the automatic generation of documentation for
PrADO.

 7

DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU

Structure and function of the aircraft design
program PrADO

Task description for a project 2 in accordance with test conventions

Background
PrADO (Preliminary aircraft Design and Optimisation Program) is a program of the institute
for Aircraft Construction and Lightweight Construction of the Technical University of
Brunschwig for the iterative, multidisciplinary design process of airplanes. It consists of a
large number of subroutines, which reflect the contributions of the most important fields of
activity needed in the design. These sub-programs are arranged according to draft problems or
configuration to an overall system and supplemented if necessary by missing analyzers. The
program is used at the HAW in the research project of the Green Freighter
(http://GF.ProfScholz.de).

Task

The existing model is to be examined and documented for the work within PrADO. The
modular structure of the program such as the libraries, the routines and subroutines etc. are to
be described as a basis for later changes and implementation of modules on the part of the
HAW.

The report was written according to German DIN or international standards on report writing.

 8

 Table of Contents

 Page
Abstract ... 3
Declaration ... 6
List of Figures .. 10
List of Tables.. 11
List of Abbreviations.. 12
Terms and Definitions.. 13

1. Introduction ... 14
1.1. Motivation ... 14
1.2. Aim of the project.. 14
1.3. Structure of the project .. 15

2. Generalities about PrADO ... 16
2.1 Program Concept... 16
2.2 The IFL.. 18
2.3 External Programs Needed.. 19
2.4 Main Functions.. 19
2.4.1 Helps Functions... 22
2.4.2 General Design Programs.. 23
2.4.3 Single Modules.. 24
2.4.4 Dealing with Data.. 25
2.5 Graphics/TECPLOT.. 26

3. Description of the global structure .. 27
3.1. Description of the global Organisation ... 27
3.2. Relational Diagrams .. 35
3.3. Modules ... 36
3.4. Global Analysis of the Libraries ... 45
3.5. Analyse of specific Libraries... 47

4. Description of the Data Management System Library 48

5. The Jet Engines in PrADO ... 53
5.1. Jet Engines Modules.. 53
5.2 Jet Engines Libraries ... 57
5.3 Jet Engine Data Bank and Templates.. 71
5.3.1 Data Banks .. 71

 9

5.3.2 Templates Files.. 75

6 Methodology and Description of the GUI... 76
6.1 Methodology ... 76
6.2 Description of the GUI .. 76

7 Discussions.. 79
7.1 Language Discussion... 79

8. Conclusions ... 83

Acknowledgements .. 84
References .. 85
Appendix A SOURCE/MAIN/MD6.FOR .. 86
Appendix B CODE OF LIB/MAIN/MD6 .. 89

 10

List of Figures

Figure 2.1 Schematic structures (from IFL) .. 17
Figure 2.2 Main window of PrADO (from Kiesel 2007) ..18
Figure 2.3 Definition of PrADO Project (from Kiesel 2007) .. 19
Figure 2.4 Help functions (from Kiesel 2007).. 20
Figure 2.5 List of the modules (from Kiesel 2007) ... 21
Figure 2.6 GUI of the third data bank (from Kiesel 2007) ... 23
Figure 2.7 Possibilities with TECPLOT (from Kiesel 2007).. 24
Figure 2.8 Different 3d model generated with PrADO (from IFL)................................... 24

Figure 3.1 Content of the PrADO Folder...25
Figure 3.2 Tree of most important folders and files .. 26
Figure 3.3 Schema of interaction between files by folders.. 27
Figure 3.4 Sample of content of the bin folder ..28
Figure 3.5 Sample of content of the Bin/PRADO_MAIN/MD1 folder............................. 28
Figure 3.6 Structure of the PRADO/BIN folder .. 29
Figure 3.7 Files related to the Fortran compiler... 30
Figure 3.8 Content of a project folder.. 30
Figure 3.9 Structure of the PRADO/SOURCE folder ... 32
Figure 3.10 Relational diagram during execution of PrADO .. 33
Figure 3.11 Interactions between libraries... 46

Figure 5.1 3D model of a jet engine designed with PrADO (from IFL) 51

Figure 6.1 Details of the status monitor... 75

Figure 7.1 Main page of a html file generated with Doxygen ... 79
Figure 7.2 Examples of possibilities with Doxygen .. 79

 11

List of Tables

Table 3.1 List of the data bank ... 28
Table 3.2 Generation of PrADO files ... 32
Table 3.3 Table of libraries by section of concern ... 41
Table 3.4 Table of programs by function ...42
Table 3.5 Descriptions of specific libraries .. 43

Table 4.1 List of the subroutines of the DMS_V2 library and their descriptions 46
Table 4.2 List of the variables of the dms.cmn file with their descriptions 48

Table 5.1 Functions of the TWHP1 subroutine .. 54
Table 5.2 Functions of the TWHP2 subroutine .. 55
Table 5.3 Functions of the TWK… subroutine .. 63
Table 5.4 Functions of the TWK… subroutine .. 55
Table 5.5 Files of the ANTRIEBSANLAGE folder... 71
Table 5.6 Files of the TRIEBWERKS folder ... 71

 12

List of Abbreviations

3D 3 Dimensional
CC Combustion chamber
DB Data Bank
DMS Data Management System
DOC Direct Operational Cost
DOS Disk Operating System
FE Fluid and Energetic
GUI Graphic User Interface
HPC High Pressure Compressor
HPT High Pressure turbine
HTML Hypertext Mark-up language
IFL Institut für Flugzeugbau und Leichtbau
LPC Low Pressure Compressor
LPT Low Pressure turbine
MD Module
PC Personal Computer
PrADO Preliminary Aircraft Design and Optimisation program

 13

Terms and Definitions

Software
Computer software is a general term used to describe a collection of computer programs,
procedures and documentation that perform some tasks on a computer system. The term
includes application software such as word processors which perform productive tasks for
users, system software such as operating systems, which interface with hardware to provide
the necessary services for application software, and middleware which controls and co-
ordinates distributed systems. (www.Wikipedia.org 2008)

Documentation
In general terms, documentation is any communicable material (such as text, video, audio,
etc., or combinations thereof) used to explain some attributes of an object, system or
procedure. It is often used to mean engineering documentation or software documentation,
which is usually paper books or computer readable files (such as HTML pages) that describe
the structure and components, or on the other hand, operation, of a system/product.
A common type of software document frequently written by software engineers in the
simulation industry is the SDF (software documentation folder). While developing the
software for a simulator, which can range from embedded avionics devices to full motion
control systems, the engineer keeps a notebook detailing the development lifecycle of the
project. The notebook can contain a requirements section, an interface section detailing the
communication interface of the software, a notes section to detail the proof of concept
attempts to track what worked or didn't work in solving certain problems, and a testing section
to detail how the software will be tested to prove conformance to the requirements of the
contract. The end result is a detailed description of how the software is designed, how to build
and install the software on the target device, and any known weaknesses in the design of the
software. This document will allow future developers and maintainers of the trainer to come
up to speed on the software design in as short a time as possible and have a documented
reference when modifying code or searching for bugs. (www.Wikipedia.org 2007)

Fortran
Fortran (previously FORTRAN) is a general-purpose, procedural, imperative programming
language that is especially suited to numeric computation and scientific computing. Originally
developed by IBM in the 1950s for scientific and engineering applications, Fortran came to
dominate this area of programming early on, […].
Fortran (a blend word derived from The IBM Mathematical Formula Translating System)
encompasses a lineage of versions, each of which evolved to add extensions to the language
while usually retaining compatibility with previous versions. Successive versions have added
support for processing of character-based data (FORTRAN 77), array programming, module-
based programming and object-based programming (Fortran 90 / 95), and object-oriented and
generic programming (Fortran 2003). (www.Wikipedia.org 2007)

 14

1. Introduction

1.1. Motivation

Today, most aircrafts are based on a very conservative design structure: a simple tail aft
fuselage and simple wings. The jet engines follow the same rules: they mostly use classical
kerosene, a fossil fuel about to deplete in the upcoming decades. However, gasoline price has
kept increasing for twenty years and the increase is going faster and faster: the price for one
barrel of crude oil has passed the symbolic 100$, limit which was unimaginable years ago.
With such economic pressure general aviation will surely suffer and the more pessimistic of
the ecologists are already predicting the end of general aviation in ten years. In fact, if no new
fuel is found and their prediction on fuel reserve turns out to be true, then there might be not
enough kerosene to allow a viable aircraft economy. Much researches is currently being
carried out on the subject and if synthetic fuels seem to be a good short-term answer, new
sources of power are still to be studied. Hydrogen is another solution, implying less green
house effect, but it involves a complete aircraft reconfiguration, which necessitates a complex
analysis of the whole system. Therefore, such exercise needs complex and powerful tools.
Many software are capable of performing single analysis on a particular part but very few
give the opportunity to realise a complete aircraft design with every parameter variation
considered in the global conception and giving answers on the global possibility of a
configuration. PrADO is a powerful tool, which can perform such tasks, and HAW is one of
the universities at the head of the research on hydrogen aircraft design with the Green
Freighter project. In their cooperation, the HAW is currently adding a turbofan module to
PrADO. In order to facilitate the comprehension of the program for other students, this project
has been proposed to explain the structure of this complex assembly, so that following
students will have to spend less time on understanding the program but more on making the
program more complete. In this situation, a description of PrADO’s structure for the HAW
appears not only as a chance to understand the mechanism of Aeronautic conception but also
as a great opportunity to be a small part for the future of aeronautic.

1.2. Aim of the project

Changing a simple parameter in an aircraft can become an extensive and complex project, and
so is it when you try to add a new concept in a program supposed to help in such a work.

This report helps the analytical process of the program. It shows its possibilities and its
structure both on the side of the folders and on the side of the programs: what and where each

 15

file related to the software is. It is also meant as a help to understand the program for
following students who will have to perform the changes in PrADO.
The project is part of a collaboration between the IFL and the HAW where the HAW is
currently trying to add a turbofan module in PrADO. This is why the description of the
program focuses on the engine part of the program.

1.3. Structure of the Project

The main part of the report describes the structure of PrADO including the module system,
the data management system and the turbofan parts.

 Chapter 2 describes the program concept and most of its possibilities in order to

present the possibilities offered by the PrADO.

 Chapter 3 provides a description of the global program in terms of folder

organization as well as in terms of file’s interactions. It includes a description of the
first 14 modules algorithm and of the libraries.

 Chapter 4 is about the data management system. It presents the different

subroutines and how they work.

 Chapter 5 describes more precisely the turbofan part of the software. The

modules algorithm, as well as the libraries, the data and the templates related will be
analysed here.

 Chapter 6 is a description of my analysing methodology. It should help any

newcomer to the program to find how to get the file he is looking for or the possibilities
behind any button.

 Chapter 7 is an open discussion on the possibilities to make more complete an

evolving program description based on other documentations examples.

Appendix A Code of the SOURCE/MAIN/MD6.for files

 Appendix B Code of the SOURCE/LIB/TA2_LIB/MD6.for

 16

2. Generalities about PrADO

A big part of the possibilities and utilizations of PrADO are described in KIESEL 2007:
“Methodisches Entwerfen von Verkehrsflugzeugen mit PrADO” and HEINZE 2001
“Multidisziplinäres Flugzeugentwurfsverfahren PrADOProgrammentwurf
und Anwendung im Rahmen von Flugzeug-Konzeptstudien“. This shortened description
presents the program in English to any newcomer. It shows guidelines for using it to conceive
an aircraft and its basic principles.

2.1 Program Concept

The program PrADO (Preliminary Aircraft Design and Optimisation program) copies the
interconnected, iterative draft process of the technical disciplines involved. It consists of a
multiplicity of subordinated Fortran programs, which are organised in so-called libraries. In
the version available here, there are around 1500 Fortran source files. The libraries represent
the actual system core, since they contain the mathematical process and the model of
conceptions. The draft program divides itself according to the tasks of the conceptions of
airplanes in four levels, which are related with one another all together by a data management

system (DMS) as shown in Figure 2.1.

The DMS creates 15 files thematically arranged, which contain the design variables (e.g.
geometry, aerodynamic factors, masses, etc.) from a “Master Input files” or "specification
files", which contain the data needed for the draft. The operator fills it before he uses PrADO.
The program reads the input values, improves them in iterative steps and overwrites finally
the initial values. Thus, the data always reflect the latest computation. At the end, the data
banks created in such a way describe the desired airplane configuration and its perfomances.
Each program level has its own functions:

The first of the four levels includes the subroutines, which produces the databases of the DMS
out of the specification files of the user. More subroutines serves to display the result of a
computation in form of table or graphics (technical diagram, 3D model of aircraft, etc…) . the
Graphical User Interface, which is programmed in Java, is also in this level. As more detailed
later, the GUI is a java program, which reads a script. Those scripts are written in a very user -
friendly syntax and they can be easily modified through the windows notepad. This part is
more detailed in chapter 6.

The second level contains different mathematic process for an effective optimisation of the
design variables of a specific configuration, which will have other parameter fixed (e.g. the

 17

geometrical configuration, the number of engines.). The aim of this part is the
maximisation/minimisation of specified variable (e.g; the direct operational cost for a liner)
and the verification that the optimised aircraft respect the given limit conditions (e.g; the
distance for landing/take-off).

The actual interdisciplinary design process takes place in the third level. The draft divides
itself into various subtasks (e.g. Determination of airplane geometry, computation of the

aerodynamic characteristics, etc.). The subdivisions are called modules and they reflect all
fields related to the draft. They are executed one by one, and they all computes the so-called
dependant design variables (e.g. fuel mass, static thrust, or MTOW) and exchange data only
with the database. The program executes them iteratively during the draft process until the
dependent design variables converge. From the input values of the user and/or the results of
other draft modules, they compute new current values like e.g. the fuel mass or the static
thrust.

The fourth and thus last level contains the problem-oriented program libraries and forms
thereby the heart of PrADO. These program libraries contain the physical computation
models for determination of the variables of the atmospheric, aerodynamic or again flight
mechanic domain. Thoses subroutines are called in the design modules of the third level.
They contain also a lot of process for the determination of the differents parts mass (e.g.
statistic, FE-process for determination of the wing structure’s mass) or also for description of
the turbojet properties.

The modular concept of PrADO leads to a high flexibility of the application. Design problems
can be quite easily eliminated. In addition, the appropriate modules can be replaced or
inserted. Another advantage is that PrADO can call external programs, which receive then
from it the desired information via a data transfer. 1

1 Subchapter translated from Heinze?, p.2&3

 18

Figure 2.1 schematic program structures (from IFL)

2.2 The IFL

The Institut für Flugzeugbau und Leichtbau was created in 1983 in Brunschwig. In the first
years, the main point of research was the area of slow-speed flight and short start properties.
Above all the development of the slow airplane "zaunkoenig" is to be mentioned here under
the direction at that time of Professor H. WINTERS.

After the readmission of building airplanes in Germany, starting from 1955 the research of
operational strengths with GRP components materials, in particular with gliders, extended the
sphere of activity of the IFL.

Today, the Institute deals with a set of different, but interconnected ranges of topics. On the
one hand and since the eighties, it has been carrying out research on the range of airplane’s
pre development and concepts and on the other hand the development of new lightweight
structures. Its concern in the multidisciplinary optimization of aircraft concepts led them to

 19

develop PrADO. Many projects used it, not only for the main customer Airbus, but also for
many other aviation companies.2

2.3 External Programs Needed

As already mentioned PrADO works in interaction with different external programs and as a
program itself it is generated by the use of different compiler.
Here follows a list of the different program used with the version at disposal:

• As FORTRAN Compiler, Microsoft Compaq Visual FORTRAN 6 is used

• For the Graphical output, TECPLOT 360 (a CFD & Numerical Simulation Visualization
Software) is used

• The calculator and the notepad of the windows accessories list are used at different times
by PrADO

• JAVA, from the firm SUN MICROSYSTEMS, is the language of the GUI program.

2.4 Main Functions

The Main Windows of PrADO consists of one menu, three operational windows and a status-
monitor as fig. 4.1 shows.
The status-monitor shows every program and/or script launched by the main windows. It is
very useful to find out which button calls which subroutine.
The buttons of the middle control panel form the main part of the program control.

2 Subchapter translated from Kiesel 2007, p.14

 20

 Figure 2.2 Main Window of PrADO (From Kiesel 2007)

This chapter explains the possibilities given by this main window.
At first, a project must be defined. If the button „PrADO-Projektdefinition“is clicked, then a
secondary interface (another java window) opens, as fig. 4.4 shows. There two new
possibilities appear for the user. On the one hand, with the button „Letzte GUI-Einstellungen

einlesen“ the last project worked can be loaded again or a new project can be defined with the
second options, „vordefinierte Verzeichnisse“ and „neues Verzeichnis“.. If a new work is to be
started, then the last of the possibilities given (*** NEW *** unten angeben *** NEW ***)
must be selected.

 21

Figure 2.3 Definition of PrADO Project (from Kiesel 2007)

In the next step the file "PrADO-TA2" must be opened. There, one looks for the desired
project file and copies its address. Finally, the complete headline (everything behind the field
address) is selected and the address is passed. The line should look as follows:

• C:\PrADOSYSTEM\PRADO\PROJEKTE\PrADO-TA2\....(Projektname)

Using copy and paste, one can now fill the second line of the inputs windows and validate
with ok.

Thus, the project is defined and PrADO knows the destination folder. It stores all necessary
data, and all project files will now refer to it.3

3 Subchapter translated from Kiesel 2007, p.28

 22

2.4.1 Helps Functions

Figure 2.4 Help functions (from Kiesel 2007)

Within this range, the user finds eight different options, as figure 4.5 shows
With the first button, the “Master Input file” or specification file can be read in. This button
opens a new window permitting to indicate the access to the specification file. It shows also
that the latest project address is correct. If this is the case, then the name of the specification
file is still in the input windows. The user must repeat this procedure and confirm it with
Return.

The second button creates a backup copy. The process principles are the same as for the
previous button. A similar window appears with the request to enter the desired file. After
successful input of the project file, a new file is created.

With the "DMS data bank editor», all known used variables can be displayed, either per data
base or with all data bases altogether. If the user enters e.g. DB1 in the first line and then ticks
the field "variable list of the selected data base", then this window will indicate all variables.
In addition, a text file with additional explanations is stored in the project file.

The button "data conversion" gives the opportunity to convert data files in order to have them
working with external programs such as Tecplot, Nastran, etc...
The button "data computation" opens a new window, which permits specific fuselage variable
computations.
With the button “short protocol”, a compact listing of all important draft data can be
indicated. Similarly functions with the choice of "mission protocol".

 23

The last button of this border treats the specification file through two iteration steps producing
a meaningful solution in a 3D diagram. 4

2.4.2 General Design Programs

There are three kinds of the total draft programs:
- The single analysis
- The parameter variation
- The optimization
 All three presuppose a complete specification file, which does not have to be compellingly
optimal however. Their tasks consist of discovering and improving not meaningful inputs.
They use most diverse mathematical procedures in order to come to the most effective
optimization of free draft variables of the examined configuration. Beyond that, it is the task
of these programs to reach a maximization/minimization of the critical variables and examine
the boundary conditions. The results are collected in the project file. The individual
calculation takes a certain amount of time. For instance, the time needed for a parameter
variation is around 14 hours.5

4 Subchapter translated from Kiesel 2007, p.28
5 Subchapter translated from Kiesel 2007, p.32

 24

2.4.3 Single Modules

6 Subchapter translated from Kiesel 2007,p.32

Figure 2.5 List of the modules (from Kiesel 2007)

Behind these modules hides itself the actual
interdisciplinary design process for the examined
configuration.
The draft activity has been arranged into clear subtasks,
whereby each one stands for a field of activity involved in
the draft. The partitioning was made in so-called draft
modules. They compute the current values of the
dependent draft sizes from the inputs of the user or the
results of other draft modules (e.g. Fuel mass, runway
length, max. take-off weight, etc.). The draft iteration is
finished if the dependent draft variable shows a
convergence. If someone wants to look at geometry of its
fuselage once he has started studying, then the complete
airplane geometry does not have to be designed, but the
program can operate MD1 „requirements “and MD2
„Fuselage geometry “ : only the fuselage will be
computed. Then, with the help of the graphical output
program, the fuselage alone can be represented.6

 25

2.4.4 Dealing with Data

 By clicking on the data bank buttons on the right of the main windows, all design
variables are shown. A new window appears, with more options and with the appropriate
outputs. By use of the GUI „reading DB“, the variables sizes are loaded and represented in
appropriate places. Therefore, by clicking on each data bank, it is possible to examine all
design data. There are some data banks which provide a link to the module they are related to.
They can be executed exactly like on the Main Window.

Figure 2.6 GUI of the third data bank (from Kiesel 2007)

 26

2.5 Graphics/TECPLOT

Figure 2.7 Possibilities with TECPLOT (from

Kiesel 2007)

The pictures below show the possibilities of
graphical output with PrADO.
The three first buttons open new GUIs,
which can represent a history of the
individual total draft programs. The result
takes place in a diagram produced by
TECPLOT.

A complete airplane configuration,
alternatively as 2D or 3D Model, can be
represented with the two following buttons.
The data given by the graphics depends on
the quantity of the modules which where run
before by the program. If one launches for
example only MD1 (requirements) and MD2
(fuselage geometry), then only the fuselage
can be displayed as graphic. 7

Figure 2.8 Different 3D model generated with PrADO (from IFL)

7 Subchapter translated from Kiesel 2007, p.35

 27

3. Description of the global Structure

3.1. Description of the global organisation

Figure 3.1 Content of the PrADO Folder

 The main PrADO folder is in

C:\PrADOSYSTEM\PRADO :

It contains most of the folders
needed to have the principal
PrADO functionality working:

As it can be deduced from this
screenshot, each folder described in
this chapter is directly stored in this
folder.

 28

The following schema shows globally what are the more important folders and files:

Figure 3.2 Tree of most important folders and files

PrADO

BIN

BAT

SOG

PROJEKTE

SOURCE

TEMPLATE

PrADO_MAIN

Batch files (.bat)

PrADO_LBY

Fortran Workspaces
files (.dsw)

82 Modules and main app. folders

73 Libraries folders
Debug&Release

Fortran project files (.dsp)
Executables files (.exe)

Fortran project files (.dsp)
Library files (.Lib)

GUI

SCRIPT_WJVIEW SCRIPT_COMMON Daten

SCRIPT_JAVA Script folders Script files (.scr)

Aircraft project folders Data bank and specification files (.dat)

Java files (.java) and java executable (sog.exe)

LIB

MAIN

COMMON Common files (.cmn)

89 Main source files (.for)

73 Libraries folders Libraries sources files (.for)

15 Templates folders templates files (.dat)
Debug

LIB

Script

legend

Folder

Files

Less important folder

Debug&Release

 29

The following schema explains the interactions and functions of the different folders

Figure 3.3 Schema of interaction between files by folders

A description of each folder can be given as follows:

In PRADO/BAT
It contains macro or batch files launching executable files compiled from the workspace files
(.dsw and .dsp) from the PRADO/BIN folder. Those files can be executed by clicking on
them in windows and are called by the GUI coded in JAVA. For example, clicking on the
md1 button launches the md1.bat, which launches md1.exe, (in
SOURCE/MAIN/md1/md1.exe).
 There area total of 200 batch files 100 are for the Modules, and the others for graphical
display or main options. Here is an example of what they look like. The only difference with
other batch files is in the name of the executable launched.

PROJEKTE
(project files : data bank, specification files and results)

Generates files in
and communicates
with them

Fortran side

SOURCE
(Fortran files)

BIN
(workspaces)

SOG
(Script Oriented Gui)

Calls
read

Gui/Java side

generates

BIN
(executables)

Used during
execution

Calls

BAT
(Batch files)

GUI
(screens)

Used in

 30

@ECHO off
:: ---
:: File: MD1-E.BAT
::
:: Batchdatei zum Ausfuehren des Programms MD1
::
:: ---

:: Springen in das Arbeitsverezeichnis
cd %PrADOHOME%

:: Starten des Anwendungsprogramm
START %PrADOHOME%\BIN\PrADO_MAIN\MD1\md1.exe -PAUSE=JA –
SPRACHE=ENGLISCH

:: ---

As one can see, the %PrADOHOME% directory is known: it is entered as variable at the
installation of PrADO (see KIESEL 2007) and language options are specified here.
These batch files can be modified and read by right clicking on them in windows, and
clicking editing. This will automatically launch the notepad and the text of the batch file
within.
Calling batch files from the GUI to launch executable files is only a solution to the difficulties
of launching directly executable files from the GUI.

In PRADO/BIN

Figure 3.4 Sample of content of the bin folder Figure 3.5 Sample of content of the
Bin/PRADO_MAIN/MD1 folder

 31

Here are “.dsp” and “.dsw” files which can be opened with the Fortran compiler (Microsoft
Compaq Visual Fortran). They are Fortran workspaces and projects. This is a typical
mechanism of Microsoft Visual Studio and compiling C++ project is very similar to this
procedure. Workspaces are created; they include one ore more projects. Each project includes
also one or more source file, external files and libraries. Source files, project files and
workspaces don’t have to be in the same folder as long as the compiler knows where the files
are through the properties of each file in the workspace.
 From a workspace, the possibility is given to compile one or all projects.
 By opening a pre-existent workspace, one can change the Fortran files it involves. Those files
are not located in the BIN folder but in the SOURCE folder as will be further explained later.
The sub-folder of the MAIN folder have executable files (.exe) generated by compilation of
the Fortran file they contain.
On the other hand, in the sub-folder of the LIB folder, library files (.lib) generated by
compilation of the Fortran file are to be found. Those files are used in other projects to
dispose of all the functions defined in the libraries.

 It is important to know that most of the codes doing the computation are not located in the
project of the main folder but in the libraries.

Figure 3.6 Structure of the PRADO/BIN folder

BIN

Project files (*dsp)
Executables (*.exe)

PRADO_MAIN

82 « Main » folders

PRADO_MAIN

73 libraries folders

3 workspaces (*.dsw):
PrADO_TA2
PrADO_LBY
PrADO_GRAFIK

Project files (*dsp)
libraries (*.lib)

 32

Figure 3.7 Files related to the Fortran compiler

In PRADO/PROJEKTE/PrADO-TA2/
Here are the project folders in which are the data banks generated by PrADO. The “Master
input file» or specification file is also here with other folders belonging to each project.

Data bank - Nr. Field
DB 1 Software control

DB 2 Specification

DB 3 Wing

DB 4 Fuselage

DB 5 Horizontal tail

DB 6 Vertical tail

DB 7 Landing gear

DB 8 Propulsion

DB 9 Aerodynamic

DB 10 Masse/Gravity center

DB 11 DOC

DB 12 Flight mechanic

DB 13 LH2-System

DB 14 Fairing

DB 15 Aircraft Geometry

DB 16 Winglet

DB 18 External Tanks

Figure 3.8 Content of a project
folder

DB 19 statistic specification

Table 3.1 List of the data bank

Workspace (PrADO_TA2.dsw)

Source (iguiprado.for)

Project (IGUIPRADO.dsp)

Library (X_ST_PRADO_LBY.lib)

common files(PrADO.cmn)

 33

In PRADO/GUI:
There are 4 folders: SCRIPT_JAVA, SCRIPT_WJVIEW, SCRIPT_COMMON, and Daten.
The SCRIPT_JAVA and SCRIPT_WJVIEW folders are quite similar. They contain scripts
(.scr files) which describes the executable or the interface every button calls. In
”SCRIPT_JAVA”, they call batch files from the BAT folder and in the “SCRIPT_WJVIEW”
folder they call link files (.lnk). The examination of the properties of the link files which
launch the complete PrADO (PrADO TA2-A.lnk) shows that it executes the following line:

C:\WINDOWS\system32\javaw.exe -cp %PrADOHOME%\SOG sog
%PrADOHOME%\GUI\SCRIPT_JAVA\PrADO-TA2\PrADO-TA2-GUI-A.SCR

So from there, it can be observed that three different things are executed: the java machine
(javaw.exe) but also the “sog.exe” executable and the script PrADO-TA2-GUI-A.SCR. From
that and the explanations given by Mr. Heinze, it can be deduced that the script used for the
version of PrADO which is described is in the“SCRIPT_JAVA” folder. The folder with the
link files is useful in another version of PrADO.

The presence of the %PrADOHOME% variable, which is defined at the installation as said in
KIESEL 2007, is to be outlined.

In PRADO /SOG:
SOG stands for “Script Oriented GUI”.
 Here are the java files used for the GUI (graphical user interface). Those files describe the
basic shell of the interface but in fact they just call the real descriptions located in
PrADO/GUI/…
In addition to the java files, there is also the executable (sog.exe) resulting from compilation
of those files.

In PRADO/SOURCE:

Figure 3.9 Structure of the PRADO/SOURCE folder

SOURCE

CMN MAIN LBY

*.cmn files *.for files

TA2_LBY

*.for files

72 other Libraries folder

*.for files

 34

There are three folders in PRADO/SOURCE: MAIN, LIB and COMMON
 - CMN is a set of “.cmn” files included by the Fortran subroutines. They contain
variables used commonly by the Fortran programs, so that one line (include *.cmn) creates
the variables contained in the .cmn file. They are equivalent to header files in C++. (CMN
stand for common)

 - MAIN contains the 89 Fortran files corresponding to the project of the Fortran
executable projects of BIN/PrADO_MAIN.

 - LBY contains 73 folders including the 1600 Fortran files related to the 73 Fortran
libraries project located in BIN/PrADO_LBY/

The most important library is TA_LBY as explained later.

 35

3.2. Relational diagrams

The following diagram shows the relations between files when PrADO is executed.

Figure 3.10 Relational diagram during execution of PrADO

Executables (*.exe) in
/BIN/PRADO_MAIN/

Help
(General
applications such
as reading data,
etc..)
Presentation
3d, graphics,
etc...

General Conception

1. Perform an
analyse (EA)
2. Parameter
variation
3. Optimisation

Modules

Run one of the 30
available modules of
computation

Data bank

Direct access to the
databank to
give/modify every
value

Secondary Java
interfaces (sog.exe +.scr
files)

Launch
Gui

Launch
executable

Batch files (*.bat) in
/BIN/PRADO_MAIN/

Main Java interface
(sog.exe +.scr files)

Specification files (.dat)
in /PROJEKTE/aircraft/

Data bank (*.dat) in
/PROJEKTE/aircraft/

read read/write Legend :

 36

The following table shows which source file generates which other file:

Source File Generating
software

Generated files

Java file (*.java) in /SOG/

Java compiler
(refer to IFL for
more information)

Executables (*.exe) in /SOG/

Source file (*.for) in
SOURCE/MAIN/

Microsoft visual
Fortran Compiler

Executables (*.exe) in
/BIN/PRADO_MAIN/

Source file (*.for) in
SOURCE/LBY/

Microsoft visual
Fortran Compiler

Libraries (*.lib) located in
/BIN/PRADO_LBY/
Which perform particular computation

Specification files (.dat) PrADO Data banks
Table 3.2 Generation of PrADO files

3.3. Modules

Modules are the basic computation unit. They will be launched one by one when a single
analysis is performed, but can also be executed individually by clicking in the module section
of the main interface.
 The analysis of the code of those modules (in /SOURCE/MAIN/)shows that they all
have the same structure.

A typical kind of file found in /Main is md6. It can be resumed as follow:

1. Declaration
2. Reading program options
3. Reading databank
4. Call the module/ CALL MD6
5. Set a flag stating that the module worked well or not
6. Generates a list of the in- and output values
7. Saving databanks
8. Pause

 Complete code can be found in appendix MD6
It can be seen that MD6.exe runs a subroutine also called MD6. So it could be thought that the
routine calls itself, but its is in fact calling another subroutine called MD6, which is located in
TA2_LBY.

 37

 SUBROUTINE MD6
Algorithm:

--
 Jet engines geometry (control program)
 --
Description of input:
Description of output:
1. Declaration
2. Information on module
3. Data bank used
4. Reading necessary data from the data bank
5. Installation of the propulsion system

- Jet engine’s conception-
 CALL MD6A - (thermodynamic Data, Dimensions, weight and gravity centre)
 CALL MD6B - Geometry, Arrangement, Weight and gravity centre of the jet engine
 pylon-
DO two times
 CALL MD6C Geometry, Arrangement, weight and gravity centre of the jet engine
 nacelle-
 CALL MD6D Arrangement, weight and gravity centre of the jet engine-
6. Automatic generation of a 3D-propulsion-system

The complete code can be found in appendix B

So it can be seen that it launches four subroutines beginning by md6 : MD6A, MD6B, MD6C,
und MD6D. Each of those files performs a specific computation about jet engines. Those
subroutines are also located in TA2_LBY. For more information about this module, see the
chapter about jet engine conception.

So this is how PrADO modules work: a generic code calls another main subroutine which
calls more specific subroutines. A look at the description and structure of those modules will
help a lot for the understanding of PrADO:

MD1: Specification
MD1 checks and completes the specifications as well as the statistics parameter for initial
values of the conception parameter for the most important design computation, which will be
exactly determined through the iterative process. (Control program)

 38

Algorithm:

 SUBROUTINE MD1
 1. Declarations
 2. Information on module
 3. Data bank used:
 4. Read necessary data from the data bank
 - Read specification of aircraft configuration-
 5. Choice of the computation model
 - If the aircraft is a conventional tail aft aircraft -
 Then CALL MD1A1
 CALL MD1A2
 - If the aircraft is a BWB or flying wing -
 Then CALL MD1A1
 CALL MD1B2
 - If the aircraft is a three-surface-aircraft -
 Then CALL MD1A1
 CALL MD1A2
 - If the aircraft is a Canard type -
 Then CALL MD1A1
 CALL MD1A2
 -If the aircraft is an unmanned tail aft aircraft -
 Then CALL MD1C1
 CALL MD1C2
 -If computation model is unknown -
 ELSE CALL TA2ERR1 (…)

MD2: Fuselage geometry
MD2 is the control program for the fuselage geometry: the specified fuselage type is defined
here to the program and subroutines called here perform the geometry computation.
Algorithm:

 1. Declarations
 2. Information on module
 3. Data bank used:
 4. Einlesen der erforderlichen Daten aus den Datenbanken
 5. Choice of the computational model
 - If the aircraft is a conventional tail aft aircraft, a three surface aircraft, a canard aircraft -
 Then CALL MD2A1
 Else CALL MD2A2
 - If the aircraft is a BWB or a flying wing-

 39

 CALL MD2A1

 CALL MD2B

 ELSE CALL MD2A2
 - If the aircraft is an conventional unmanned tail aft aircraft-
 CALL MD2A2

MD3: Wing geometry
Algorithm:

 1. Declarations
 2. Information on module
 3. Data bank used:
 4. Einlesen der erforderlichen Daten aus den Datenbanken
 5. Choice of the computation model
- If the aircraft is a conventional tail aft aircraft, a three surface aircraft or a canard aircraft-
Then CALL MD3A

 - If the aircraft is a BWB or a flying wing-
Then CALL MD3A
 CALL MD3B

MD4: vertical tail, rudder geometry
Algorithm:

1. Declaration
2. Information on the module
3. Check if a data protocol is defined
4. Constant, no-go criteria
5. Databank used
6. Description of the data bank configuration
7. Reading the data needed from the data bank
- Program control–
- Wing geometry –
- Fuselage geometry –
- Horizontal tail plane - Geometry –
8. Display the inputs
9. Computation model
 9.1 Build the profile data bank and save it
 9.2 Read the vector with the position of the vertical tail plane
 9.3 Compute the plan geometry
 9.3.1 Build the allocation vector
 9.3.2 Span width
 9.3.3 Estimation for the roots depth and save the reference taper ratio

 40

 9.3.4 Data record for the vertical tail plane geometry and save in the data bank

 9.3.5 Root depth
 9.3.6 External depth
 9.3.7 Taper ratio (TAS/TIS)
 9.3.8 Geometrical Reference depth
 9.3.9 Position of the gravity centre of the horizontal tail plane, of the geometrical
angle of attack, and position of the rotation point
 9.3.10 ETA coordinates of the tail plane attachment
 9.4 Position of the coordinate reference system
 9.5 ETA-node (Vector)
 9.6 Position of the geometric neutral point
 9.7 Wetted area
 9.8 Middle maximal relative thickness
 9.9 Middle sweep of the leading edge
 9.10 Middle sweep of the 25%-Line
 9.11 Middle sweep of the 50%-Line
 9.12 Middle sweep of the trailing edge
 9.13 Middle dihedral configuration of the 25%-Line
 9.14 Data record for the vertical tail plane construction and save of the data bank

 9.15 Maximum available tank volume, volume and position of the gravity centre of the
individual tanks
 9.16 Data record for the fixed leading edge elements develop and in the data base store
 9.17 Data record for the trailing edge elements develop and in the database
 9.18 Data set for the form’s construction and save in the data bank
9.1000 Vertical tailplane geometry is processed
10. Display results
11. Automatic generation of a 3D vertical tail plane

MD5: Horizontal tail plane geometry
Algorithm:

1. Declaration
2. Information on modle
3. Check if a data protocol is defined
4. Constant, no-go criteria
5. Data bank used
6. Description of the data bank configuration
7. Read necessary data from the data bank
8. Display results
9. Computation part

 41

MD7: Landing gear geometry

Algorithm:

1. Declaration
2. Information for program module
3. Check if a data protocol is defined
4. Constant, no-go criteria
5. Data bank used
6. Description of the data bank configuration
7. Read necessary data from the data bank
8. Display results
9. Computation part
 9.1 Initial values specify
 9.2 Montage on fuselage
 9.3 Montage on the wing
 9.100 Save results in Data bank
 9.101 Save results in Data bank
 9.102 Global Geometry data of the landing gear
10. Results
11. Automatic generation of a 3D-landing gear - Presentation

MD8: Winglet geometry
This module is having the same algorithm than the horizontal and vertical tail plane module.

MD9: Fairing geometry
Algorithm:

1. Declaration
2. Information on module
3. Data bank used
4. Read data needed from the data bank
5. Delete data, which this subroutine will recalculate

-fuselage geometry
-masse and gravity centre of the fairing
-Design of the fairing
CALL MD 9A

MD10: Geometry of the LH2 systems
Algorithm:

1. Declaration
2. Information on module
3. Data bank used

 42

4. Reading the data needed from the data bank

5. Design of the LH2 systems:
 -Pylon: CALL MD10A
 -Tank with isolation: CALL MD10B
6. Automatic generation of a 3D model of a 3D tank with its pylon

MD11: Geometry of the aircraft
Algorithm:

1. Declaration
2. Information on module
3. Data Bank used
4. Reading the data needed from the data bank
5. Computation model:
 - If the aircraft is a conventional aircraft, a three surface aircraft a multiple fuselage
aircraft or a canard aircraft then CALL MD11A

- If the aircraft is a BWB or a flying wing then CALL MD11B
- If the aircraft is an unmanned conventional aircraft then CALL MD11C:

MD12: Aerodynamic (control program)
Algorithm:

1. Declaration
2. Information on module
3. Data bank used
4. Reading necessary data from the data bank
5. choice of the computation model : CALL MD12A

MD13: Installation of the aircraft system
Algorithm:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Data dank used
5. Read data
6. Results for control
7. Leading the computation model
7.1. Results for control
7.2. Installation of the air conditioning:
 CALL SYS_ECS_GEN
7.3. Electrical power supply
 CALL SYS_ELE_GEN
7.4. Flight control

 43

 CALL SYS_FCS_GEN

7.5. Hydraulic power supply
 CALL SYS_HYD_GEN
7.6. Landing gear
 CALL SYS_LDG_GEN
7.7. LH2-System
 CALL SYS_LH2_GEN
7.8. LCHx-System
 CALL SYS_LCHX_GEN
7.9. Network installation
 7.9.1. Computation of the requirements
 CALL SYS_NET_GEN
 7.9.2. Computation of the concentrated elements
 CALL SYS_GEN_GEN
 7.9.3. Computation of the properties
 CALL SYS_NET_CAL
7.10. Power withdraw of the jet engine
 CALL SYS_GEN_PWR
8. Monitoring the necessary data from the data bank
9. Display the results

MD14: Installation of the propulsion system
Algorithm:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the of the calculated data
7. Reading necessary data from the data bank
8. Control of value
9. Computation part
 9.0. Fixing the first value and general data
 9.1. Estimation of the critical jet engine in case of jet engine failure
 9.2. Estimation of the thrust need for different flight cases
 - Take-Off with One Engine Out
 - Beginning of Cruise (Mission with Maximum Payload)
 - End of Cruise (Mission with Maximum Payload)
 - End of Cruise (Mission with Maximum Fuel)
 - Landing Approach with One Engine Out
 -Touch-and-Go during Landing

 44

 - Beginning of cruise with one Engine out (Mission with Maximum Payload)
 - Beginning of Cruise with One Engine out (Mission with Maximum Fuel)
 9.3. Estimation of the thrust need according to take off length

9.100. Estimation of the thrust of all jet engines
9.101 Specific fuel combustion in different flight phase (with all jet engines similar)
9.102 Specific fuel combustion in different flight phase (with every jet engine considered
particular)
9.103 New value for the parameter IBATW1
10. Display the results

The chapter about jet engines contains more details upon this subject.

 45

3.4. Global Analysis of the Libraries

73 libraries are located in PrADO/SOURCE/LIB/. Each library has a particular purpose:
Definition of aircraft part geometry, communication with Tecplot or data bank, computation
of performance. Here comes a list sorted by the sections they belong to:

Modules libraries
(3rd level)

various libraries Aerodynamic libraries
(4th Level)

Aircraft Conception
libraries (4th Level°

TA1_LBY
TA2_LBY

ALLG_LBY
GUI_LBY
IF_MDi_LBY
LAST_LBY
O_LBY
OS_DOS_LBY
REIN1_LBY_
SENS_LBY
STR_LBY
TEC_LBY
TERM_LBY
KONV_LBY

AERO1_LBY
AERO2_LBY
AERO3_LBY
AERO4_LBY
AEROH_LBY

FST_SYS_LBY
DOC_LBY
FAR_LBY
FW_LBY
IFL_SYS_LBY
JAR_LBY
SPBE_LBY
FM_LBY
FLIGHT_LBY

Jet engine libraries
(4th level)

Weight libraries
(4th level)

Mathematical libraries
(2nd level)

Data base libraries
(1st level)

TW1_LBY
TW2_LBY
TW3_LBY
TW4_LBY
TW4_LBY
TW5_LBY
TW6_LBY
GEOTW1_LBY

WEIGHT1_LBY
WEIGHT2_LBY
WEIGHT3_LBY
WEIGHT4_LBY

EX_LBY
MATHE_LBY
ITPROG_LBY

DMS_V1_LBY
DMS_V2_LBY

Geometrical libraries (1st level)

2DKURVE_LBY
2DLFZ_LBY
3DAIRPORT_LBY
3DBFZ_LBY
3DMENSCH_LBY
ADS_LBY
GEOEXTK1_LBY
GEOFAIR1_LBY

GEOFL1_LBY
GEOFW1_LBY
GOBJ1_LBY
GEOHL1_LBY
GEOLHTK1_LBY
GEOLHTK2_LBY
GEOQ1_LBY

GEORF1_LBY
GEOSL1_LBY
GEOTW1_LBY
GEOWL1_LBY
IOLIFTINGLINE
GPY1_LBY
GEOH_LBY

Table 3.3 Tables of libraries by section of concern

 46

A common way to describe a program is the diagram showing its source code divided into the
parts which deal with the graphical part, the parts which manage the whole system and the
data. In most programs, all the different part would be :

Graphic Manager Data
Interface : Output :

Tecplot / Fortran Monitor Java
Fortran Libraries Specification file

Data bank files

Table 3.4 Table of program by function

Figure 3.11 Interactions between libraries

Modules

String library

Tecplot library

Tecplot graphic

Data Bank

Data management system
library

Aircraft conception
libraries

Geometrical libraries

GUI Java

GUI
library

Script files

Dos output
Term library

Interact with

 47

3.5. Analyse of specific Libraries

Here comes a small description of the most important library found:

ALLG_LBY: ALLG stands for “Allgemein” meaning General library: it contains 7
commonly used subroutines such as ATMOS, which provide air properties at a given
altitude, or HOEHE, which gives the altitude according to the air density.

FST_SYS_LBY: The aircraft system library provides the subroutines to compute the
performance and characteristic of the aircraft systems, meaning the electrical system, the
hydraulic system, the flight control and the net related to those systems.

IFL_SYS_LBY computes values for more aircraft systems such as the oxygen system, the
APU, the anti-ice system.
DOC_LBY : Direct operational cost are computed by the subroutines of this library

FAR_LBY is the Flight aviation regulation library. It computes some values defined by the
FAR25.
JAR_LBY is the Joint Aviation regulation Library. It computes values defined by the
JAR22. Most of them concern gliders.

FW_LBY contains most of the landing gear subroutines, which will be called in the
landing gear modules (MD7 and MD15)
SPBE_LBY provides programs which permit to compute the gravity centre for an aircraft
configuration according to a given payload case.
FM_LBY is the flight mechanic library .Its subroutines computes value such as the range,
the cruise speed or maneuverability of the aircraft.
FLIGHT_LBY is the flight simulation library. Its subroutines simulate all kind of flight
missions.
GUI_LBY is the Graphical User Interface library. As already seen, the interface part of the
program is taken in charge by a java program, but this library permits the transfer of data
from the program to the data banks.
KONV is the converting library. The subroutines in it permit the translation of files from
one format to another one. This is how the interface to other program such as Tecplot or
Nastran is made.

O_LBY is an Output library. It presents results from particular requests (Optimization, 3d
or 2d graphical generation, List of variables implied, etc...)
OS_DOS_LBY is only one fortran file which contains 17 subroutines allowing to perfom
DOS operations such as opening a file, reading it, getting its name...
It also has 10 useful functions which give the time, the date , etc...
REIN1_LBY is a pack of subroutines helping to model an aircraft cabin

SENS_LBY is the sensitivity library.

 48

STR_LBY is the string management library. The subroutines of the data management
system use them a lot.
TEC_LBY is the Tecplot interface library. Some of them generate files which can be
interpreted by Tecplot as graphic, 2d or 3d Model, e.g. some of them just give titles to the
Tecplot graphics.

TERM_LBY is the monitoring library. It permits to output lines on the output windows. It
contains the subroutine equivalent to the “cout” in C++ or the “System.out.println()” in
Java

Table 3.5 Descriptions of specifics libraries

4. Description of the Data Management System
Library

A particularity of PrADO is its data bank system. For each project of aircraft design, 19 data
bank files are created, which contain all variables related to the aircraft and its design. Here
again, more information can be found in Kiesel 2007, which examine in details the database.
The connection between the Fortran subroutines and those data bank files are made by a
specific library of subroutines located in source/lib/dms_lby and in the latest release, a second
library is added: source/lib/DMS_V2_LBY. No relevant difference has yet been found
between the first and second library, except that in the latest release the folder
DMS_V1_LBY doesn’t have the subroutine db_h2 even if the first release had it and the
DMS_V2_LBY too.
The report will only describe DMS_V2_LBY, as it is the last release of the library. It contains
35 Fortran files. They all begin with “db_...”, and all include the ”dms.cmn” file. They realize
different function such as: saving a specific type of variables, reading another, checking all
variable of a databank, editing one other.
.
Here follows a list of every subroutine of the DMS_V2 library and their descriptions:

db_a6

This subroutine sets all control parameters, which define a variable as optimization size,
back to the value 0.

db_cmd

This subroutine examines the program call after relevant options and converts these in
control parameters and input data for the DMS.

db_del

This subroutine deletes completely the indicated variable from the database.

db_err1

This subroutine sends warnings and error messages

 49

db_h1

This subroutine calls a variable from the data bank. The variable can be a character, an
integer or a real. If the variable does not exist in the data bank, then a return happens
without abnormal termination.

db_h2

 This program gives a list with the variable, which will be used in a module. Those
variables are divided into inputs and outputs variables.

db_r0

Calls of the maximum number of the specified data bases.

db_r1

This program checks how many variables are saved in the NDB data bank.

db_r2

This subroutine checks if the variable already exists in the data bank.

db_r3

This subroutine gives the description of the variable.

db_r4

This subroutine gives the unit of the variable

db_r5

This subroutine determines the field sizes of the variable. If this variable is missing in
the database, the program stops.

db_r6

This subroutines tells if the variable is an optimisation variable or not.

db_r7

This subroutine gives the type of number of the variable.

db_r8

 This subroutine checks, which variable name has the variable specified by the IVAR
number. This variable will be researched in the data bank NDB.

db_r9

 This subroutine determines the field sizes of the variable

db_rc8

This subroutine calls an Integer variable from the data. If this variable is missing in the
database, the program stops.

db_rc9

This subroutine calls an Character variable from the data , if this variable is missing in
the data base, the program send an error code (0= available, 1= missing)

db_ri8

This subroutine calls an Integer variable from the data, if this variable is missing in the
database, the program stops.

db_ri9

 50

This subroutine calls an Integer variable from the data , if this variable is missing in the
data base, the program send an error code (0= available, 1= missing)

db_rr8

This subroutine calls a REAL*8 variable from the data bank. If this is missing from the
data bank, the program stops

db_rr9

This subroutine calls a REAL*8 variable from the databank. If this variable is missing
in the data base, the program sends an error code (0= available, 1= missing)

db_s6

This subroutine saves a control parameter IOP stating if the variable is an optimisation
variable in the data bank. If the variable does not exist in the data bank the program
stops.

db_sc1

This subroutine saves a complete data set of type Character in the database.

db_sc8

This subroutine saves only the data value of an integer value in the database. If the
variable is missing in the database, the program breaks off.

db_si1

This subroutine saves a complete data set of type integer in the database.

db_si8

This subroutine saves only the data value of an integer value in the database. If the
variable is missing in the database, the program breaks off.

db_sr1

This subroutine saves a complete data set of type real *8 in the data bank.

db_sr8

This subroutine saves a complete data set of type real *8 in the data bank. If the variable
is not in the data bank, the program stops.

db_sav

This subroutine creates a back up of the database or reads one.

dmscl2

This subroutine closes the data base and creates a file for every data base

dmscl3

This subroutine closes the data base and creates a general file for all the data base

Dmsed

This subroutine calls a data editor.

Dmsedd

This subroutine is a data editor, with which the data in the databases can be observed
and changed. The communication will use the standard input and – output canal.

Dmsede

 51

This subroutine is a data editor, with which data can be observed and changed in the
databases. For the dialogue the standard input and - output canal will be used

Table 4.1 List of the subroutines of the DMS_V2 library and their descriptions

The subroutines mostly used in this library are the ones saving and calling variables.
Two good examples are for instance db_ri8 and db_si8, which have the following structure:

db_ri8 is an example of a subroutine reading a variable from the data bank

Declaration
Check if the variable is already saved in the data bank
Variable does not exist in the data bank (Program stops)
Variable exists
 - Variable information
 - checks if the number type is correct
 - checks if the number dimension is correct
Display results

db_si8 is an example of a subroutine saving a variable in a data bank

Declaration
Check if the variable is already saved in the data bank
Variable does not exists in the data bank (Program stops)
Variable exists
 - Old variable is overwritten

 Those two examples use two subroutines: DB_ERR1 in case of program stop and
STR41 if it has to communicate with the data bank. STR 41 comes from the String library
STR_LBY and it might be useful to look at its description: this program determines the
number of the first sign and of the last sign, which is not a blank for a given variable
Example:
VARIABLE = ' TEST ' (8 signs)
 IA = 3 (number of the first sign which is not a blank)
 IE = 6 (number of the last sign which is not a blank))

It gives the opportunity to locate the address of the variable in the data bank files and to make
a copy of it character by character into the program variable.

Many files are interesting to quote here:
dms.cmn in /SOURCE/CMN/ gives a description of variables commonly used in all
subroutines of the DMS library. Here comes a translated version of this description:

 52

Table 4.2 List of the variables of the dms.cmn file with their descriptions

Variable Description

NDBMAX maximum number of manageable data bases

VNAME (IP1) vector with the variable names

VNAME (I): Name of the variable n°I

VEIN(IP1) the vector with the units related to the variables

VEIN(I): Unit of variable n°I

VBES(IP1) the vector with the descriptions to the variables

VBES(I) Description of the variable n° I

VINFO(IP1, ip2) memory array with information on the properties of the variables
 for the variable n°I applies

VINFO(I, 1) Marking whether the variable is an optimization variable

VINFO(I, 2) - Marking on the type of number
 = 1 CHARACTER type
 = 2 INTEGER type

 = 3 REAL type

VINFO(I, 3) Marking of the type of variable = 1 scalar, vector = 2 matrix

VINFO(I, 4) 1.Dimension the variable

VINFO(I, 5) 2.Dimension the variable

VINFO(I, 6) Number of the place in the hypervector, where stands the first element
of the variable. The type of number determines the hypervector.

VINFO(I, 7) Number of the data base, where the variable is put down

VINFO(1,8) Counter, how often the variable was called up

VINFO(1,9): Counter, how often the variable was stored

CHY(IP3) hypervector with stored CHARACTER variables

IHY(IP4) hypervector with stored INTEGER variables

RHY(IP5) hypervector with stored material variables

VNAME1(IP1) backup copy of the vector VNAME

VEIN1(IP1) backup copy of the vector VEIN

VBES1(IP1) backup copy of the vector VBES

VINFO1(IP1, ip2) backup copy of the matrix VINFO

CHY1(IP3) backup copy of the vector CHY

IHY1(IP4) backup copy of the vector IHY

RHY1(IP5) backup copy of the vector RHY

ICDMS1 channel number for input over keyboard

OCDMS0 channel number for display output

IDMSP1 control parameter/language with input and output 1: German 2:
English

IDMSP2 control parameter/error handling 0: Error message is sent, without the
program stops 1: Error message is sent and the program stops

 53

5. The Jet Engines in PrADO

5.1. Jet Engines Modules

Figure 5.1 3D model of a jet engine designed with PrADO (from IFL)

Three modules deals with jet engine in PrADO: MD6, MD14, and MD33

MD6 In the latest version, MD6 call MD6A, B, C or D as already shown in chapter 3.2.

-MD6A computes thermodynamic data, jet engine dimensions, jet engine masses and centre
of gravity. This algorithm is structured as follows:

--
 Jet engine conception
Calculation of: thermodynamic Data
 o Jet engine data
 o Jet engine masse und gravity centre (LKS)
 --
1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Reading necessary data from the data base
7. Monitoring the inputs

 54

8. Computation part
 8.1 Fixing control parameters and initial values
 8.2 Computation model *** Jet engine is given***
 8.3 Computation model *** Model of HEINZE/DECHOW (1991) ***
 CALL TWHP1 (3, …) +CALL VTW1 (1,…)
 8.4 Computation model *** Model of HEINZE/DECHOW (1991) ***
 CALL TWHP1 (3,…) +CALL ZTL2G (…)
 8.5 Computation model *** Model of HEINZE/LEITNER (1999) ***
 CALL TWHP1 (3,…) +CALL ZTL10 (…)
 8.6 Computation model *** Model of MATTINGLY/HEINZE (FAN-LPC-HPC-HPT-
LPT/2006) ***
 CALL TWHP1 (3,…) + CALL TWHP2 (1,…) +CALL ZTL11 (…)
 8.7 Computation model *** Model of MATTINGLY/HEINZE (FAN-HPC-HPT-
LPT/2006) ***
 CALL TWHP1 (3,…) + CALL TWHP2 (1,…) +CALL ZTL12 (…)
 8.900 Computation model is unknown
 9. Display the results

MD6B computes the geometry of the jet engine pylon, its position on the aircraft, the masse
of the pylon and its centre of gravity.

 --
Geometry of the jet engine pylon, position on the aircraft, masse of a single pylon and gravity
centre
 --
1. Declarations
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used:
6. Description of the data set
7. Reading necessary data from the data bank
8. Monitoring the inputs
9. Computation part
 9.1 position of the pylon on the aircraft
 9.2 building the profile data bank save it in the data bank
 9.3 Geometry data of the pylon
 9.4 Mass and gravity centre of a single pylon
10. Monitoring the outputs

 -MD6C computes the geometry of the jet engine nacelle, its position on the aircraft, the
masse of the nacelle and also its centre of gravity.

 55

--
Geometry of the nacelle, position on the aircraft, masse of a single nacelle and gravity centre
 --
1. Declarations
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used:
6. Description of the data set
7. Reading the data from the data bank
8. Monitoring the inputs
9. Computation part
 9.1 Geometry data of the nacelle
 9.2 Position of the nacelle on the aircraft
 9.3 Geometrical data of the nacelle for aerodynamic computation
 9.4 Masse and gravity centre of the nacelle
10. Monitoring the outputs

 -MD6D deals with the position of the jet engine on the aircraft, the masse of every jet
engine and the results of the centre of gravity

--
Position of the jet engine on the aircraft : mass and gravity centre of the single jet engine
 --
1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the data set fixed
7. Reading the necessary data from the data bank
8. Monitoring the inputs
9. Computation part
9.1 Position of the jet engine on the aircraft
10. Display the results

As outlined in orange, most of those subroutines call then directly general subroutines to
compute the results, for example, for MD6A: TWHP1, or TWHP2 .

MD14 focuses on the performance of the jet engine

MD14 does the calculations concerning the necessary thrust of each jet engine in specified
cases.

 56

 The case considered is:
- Thrust needed during take off.
- Thrust needed for the beginning of the cruise
- Thrust needed at the end of the cruise
- Thrust needed at approach flight
- Thrust needed during an interrupted landing

MD33 is more oriented on the performance characteristics of the jet engines. It computes

the
-Maximal thrust
-Specific Fuel Consumption
- Thrust moment (Yaw, Roll und Pitch) (chocked, all jet engines working, reference point:
nose)
 - Thrust angle/Nicken (chocked, all jet engines working)
-NOx-Emissions characteristics
- CO-Emissions
 - HC-Emissions
Algorithm:

1. Declaration
2. Information on module
3. Data bank used
4. Read the necessary data from the data base
5. Calculation of the jet engine performance characteristics
 -jet engine model is known: CALL VTW1
 -jet engine model = HEINZE/DECHOW (1991), jet engine configuration = HPC-
HPT
 CALL TWKEN2 (IAUS(IMODUL),1)
 -jet engine model = HEINZE/DECHOW (1991),
 jet engine configuration =FAN-HPC-HPT-LPT,
 CALL TWKEN2 (IAUS(IMODUL),2)
 -jet engine model = HEINZE/LEITNER (1999),
 jet engine configuration =FAN-LPC-HPC-HPT-LPT,
 CALL TWKEN2 (IAUS(IMODUL),10)
 -jet engine model = MATTINGLY/HEINZE(2006),
 jet engine configuration =FAN-LPC-HPC-HPT-LPT,
 CALL TWKEN2 (IAUS(IMODUL),11)
 Jet engine model is unknown : send an error flag.

 57

5.2 Jet Engines Libraries

There are seven pre-existent jet engine libraries: TW1_LBY, TW2_LBY, TW3_LBY,
TW4_LBY, TW5_LBY, TW6_LBY and GEO_TW1.

TW1_LBY: This jet engine library contains the subroutines computing most of the things
related to the jet engines in PrADO. It contains 30 subroutines.

Tdat is an interface for jet engine simulation and it computes requested data

1. Declaration
2. Information on module
3. Reading necessary data from the data bank
4. Choice of the computation
 4.1. Computation for an ersatz jet engine
 - Thrust CALL TDAT001
 - SFC CALL TDAT002
 - Thrust moment CALL TDAT003
 - Gas emission CALL TDAT004
 - Thrust moment (pitch, yaw, roll) CALL TDAT005
 4.2. Computation for a given jet engine and a given kind of fuel
 - Thrust CALL TDAT101
 - SFC CALL TDAT102
 - Gas emission CALL TDAT103
 4.3. Computation for a chosen jet engine and given kind of fuel
 - Thrust CALL TDAT201
 - SFC CALL TDAT202
 - Gas emission CALL TDAT203
 - Thrust angle CALL TDAT204
 - Thrust moment CALL TDAT205
 4.4 Computation for a chosen jet engine and a flight phase
 - Thrust CALL TDAT301
 - SFC CALL TDAT302
 - Gas emission CALL TDAT303
 - Thrust angle CALL TDAT304
 - Thrust moment CALL TDAT305
 4.5. Computation of general values for a propulsion system and a defined flight phase
 - Thrust CALL TDAT401
 - Temporary Specific Fuel consumption CALL TDAT402
 - Temporary Gas emission CALL TDAT403
 - Thrust moment CALL TDAT404

 58

 4.99. Help function

 Estimation of the critical jet engine in operational conditions

 CALL TDAT1001
 4.100 Computation mode is unknown (send error)

It would be useless to detail the structure of each subroutine called in tdat since they all have
the same one:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Leading computation
 Setting initial values
 Saving inputs
 Calling data from the data bank
 Loop on the jet engine
 - Determination of the jet engine type (TWPH1(3…
 - Determination of the fuel for the chosen jet engine type
 - Call jet engine model and computes researched data
 If model = TL2 CALL TL2
 If model = ZTL2 CALL ZTL2
 If model = ZTL10 CALL ZTL10
 If model = ZTL11 CALL ZTL11
 If model = ZTL12 CALL ZTL12
Saving data

TWHP1 and TWHP2 (TriebWerk HilfsProgram) are programs aiding to deal with
information about the kind of jet engine and the kind of fuel which is used.
Depending on the first parameter given to the TWHP subroutine you can compute many
different things and this program is used in different points of the program (MD6A and
TL2G)

So TWHP1 can perform 5 different tasks, and therefore its input and output are different
according to the task accomplished:

1 Read the number of the jet engine types

Input :none Output: Number of the jet engine

2-give a designation for every jet engine

Input :
None

Output:
Designation of the jet engine type 1
Designation of the jet engine type 2
…

 59

Table 5.1 Functions of the TWHP1 subroutine

TWHP2 performs 8 different tasks with different inputs and outputs:

Designation of the jet engine type n

3-give the jet engine type of a specified jet engine

Input :
Number of the jet engine

Output:
Designation of the jet engine type

4-give the jet engine identifier.

Input :
None

Output:
1. Identifier of the jet engine type

5-give the operating conditions of a specified jet engine in a specified flight case.

Input :
1. Number of the jet engine
2. Designation of the flight phase

Output:
1. Designation of the jet engine type

1-Give the kind of fuel used for the conception of the airplanes

Input :
Designation of jet engine type

Output:
Kind of fuel used for this draft case

2-give the number of the fuel used for a specified jet engine

Input :
Designation of jet engine type

Output:
Designation of the jet engine type

3-Indices of every kind of fuel used for a specified aircraft

Input :
Designation of jet engine type

Output:
Designation of fuel type 1
Designation of fuel type 2
…
Designation of fuel type n

4-give density of the fuel chosen

Input :
Designation of fuel type

Output:
Density

5-give the specific calorific value of a chosen fuel

Input :
Designation of fuel type

Output:
Specific calorific value

6-give the adiabatic exponent and the heat capacity of the air incoming

Input :
Designation of fuel type

Output:
Adiabatic value (air)
Heat capacity (air)

7-give the adiabatic exponent and the heat capacity of the exhaust air

Input :
Designation of fuel type

Output:
Adiabatic value (exiting air)

 60

Table 5.2 Descriptions of the TWHP2 subroutines

TWKEN2 (for TriebWerkKENnfelds)
 This subroutines compute jet engine performance characteristics:
 - Maximal thrust
 - Specific Fuel consumption (with throttling)
 - NOx-Emissions
 - CO-Emissions
 - HC-Emissions
 - H2O-Emissions
Its algorithm is as follows:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the data set
7. Display results
8. Calculation of the jet engine performance characteristics
 8.0. Erase data in the data bank
 8.1. Read data from the data bank
 8.2. Define support for the performance characteristic
 8.3. Compute the performance characteristics and save them in a file
 8.4 Data set of the jet engine performance characteristics and save it in the PrADO data
bank
 8.99 redefine the control parameter
9. 9. Display results

TW2_LBY: This contains 6 subroutines. Most of them are computation models for different
types of jet engines or more precise models.

- TL2 computes for a TL- jet engine the temporary thrust, momentary thrust, the throttle
degree, consumption and the necessary static thrust in all flight attitudes with a simple
approximation method considering a cyclic thermodynamic process.
Algorithm:

Declaration
Initializing output value

Heat capacity (exiting air)

8-give the fuel used in a specified flight case for a specified jet engine

Input :
Number of jet engine
Designation of flight case

Output:
Designation of the fuel type

 61

Data bank used

Checking the input

 Reading values from the data bank
 - Specific calorific value of the fuel
 - Static thrust
 - Maximal turbine entry temperature
 - Global compressor ratio in take off phase
 - Isentropic ratio in the entry
 - Isentropic ratio in the compressor
 - Isentropic ratio in the turbine
 - Isentropic ratio in the nozzle
 - Ignition capacity of the fuel
Display the input
-Presentation of the data
 -Computation of the throttle degree

 -Air data in case of ground proximity
-Atmosphere data in considered flight case
-Computing thrust ratio
 Computing G
 Computing G0
 Computing the temporary thrust to Static thrust
 Computing the temporary thrust STW
 Computing the specific fuel consumption
 Iteration of the mass flow ratio until 0.1%
Display the outputs (debriefing)

TL2G (Jet engine Geometry)
This subroutine computes geometrical Dimensions for a TL – jet engine
Algorithm:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the data set fixed
7. Reading necessary data from the data base
 - Static thrust
 - bypass ratio
 Name of the file with the jet engine lines
 - Jet engine identifier
 - Masse correction factor

 62

8. Output control (beginning)
9. Computation part
 - Maximal jet engine diameter
 - Maximal jet engine length
 - Data set for the presentation of the jet engine contour
 - Initial value
 - Opening reading canal
 - Building jet engines line
 - Closing reading canal
 - Saving in the data bank
 - Jet engine mass
 - Gravity centre position (Hypotheses: gravity centre of the jet engine = gravity centre
of the jet engine volume)
100. Output control (End)

VTW1
This subroutine reads data of a given jet engine
Algorithm:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the computed data set used
7. Reading geometrical data, mass and gravity centre
 - Reading needed data
 -Name of the file with the jet engine data
 -Jet engine identifier
 - Weight Correction Factor

ZTL2 Computes for a twin spool jet engine (Zweistrom Triebwerk Leistungen) the
temporary thrust, momentary thrust, the throttle degree, consumption and the necessary static
thrust in all flight attitudes with a simple approximation method considering a cyclic
thermodynamic process.
Algorithm:

Declaration
Initialization of result variable
Databank used
Checking the entry
 - control parameter concerning the jet engine type
 - control parameter concerning the fuel type

 63

Reading data from the data bank

 Lower fuel heat value CALL TWHP2
 jet engine static thrust
 Maximal turbine entry temperature
 Bypass ratio
 General compressor ratio of the compressor during take off case
 Isentropic efficiency of the entry
 Isentropic efficiency of the fan during the take off case
 Isentropic efficiency of the fan during the cruise flight case
 Isentropic efficiency of the compressor
 Isentropic efficiency of the nozzle
 Ignition capacity of the fuel

Output control-INPUT
Presentation of the data
 - Computation of the throttle grad
 - Air properties in ground properties
 - Atmosphere data

ZTL2G
This subroutine computes geometrical Dimensions for a twin spool jet engine
Algorithm:

1. Declaration
2. Information on module
3. Check if a data protocol is defined
4. Constant
5. Data bank used
6. Description of the computed data
7. Reading necessary data
 - Static thrust
 - Bypass ratio
 - name of the file with specification of the jet engine lines
 - Identifier of the jet engine type CALL TWHP(4, ...
 - Weight Correction Factor/Propulsion CALL HWE2
8. Output control (Initialization)
9. Computation part
 - Maximal jet engine diameter
 - Maximal Fan diameter
 - Maximal gas generator diameter
 - Maximal jet engine length
 - Length of the fan part
 - Length of the gas generator part

 64

 - data set for the presentation of the jet engine contour

 - Value for initialization
 - Opening reading canal
 - build jet engine lines
 - Twin spool jet engine
 - Fan
 - Gas generator
 - TL jet engine
 - Complete jet engine
 - Opening reading canal
 - Saving data
 - Jet engine weight
 - Gravity centre
100. Displaying results values

TW3_LBY: is composed of 19 subroutines, called in twken subroutines. They serve

geometrical purpose as well as performance computation .The ztl11 and ztl12 series are more
like jet engine’s performance model similar to the TW2_LBY.

TWH1:
This subroutine helps to compute flow data.
It has nine computation modus:
The three first modus concern the general temperature, pressure, density with the static
temperature and the mach number as input and the 4th,5th and 6th modus gives the general
value with the static one given.
The 7th gives the general density with the general pressure and temperature given.
The 8th computes the MFP parameter with the flow mach given and the 9th does the inverse.

TWH2A: produce a matrix describing geometrically the jet engine contour using the number
of the cut, the x-coordinate of the first and second cut, the diameter of the first and second cut.

TWH2B: produces a matrix describing geometrically the jet engine contour using a lot of
very detailed input. It is advisable to go in the subroutine to see everything needed.

TWH3A produces a matrix describing geometrically the nacelle using the max IWERT(1)
maximal nacelle length, the maximal jet engine diameter, maximal density of the nacelle and
a dimensionless description of the nacelle cut characteristics.

TWH3B does the same as twh3a but it takes the contour from a template files.

The TWK series:

 65

There are seven subroutines beginning with “twk”. Each is concerned with a particular jet
engine part and each has different modus permitting it to compute general variables.

Twk1 : Entry

1. Computation of the general temperature at the end of the entry

2. Computation of the general pressure at the end of the entry

3. Computation of the general density at the end of the entry

4. Front surface of the flow channel�

5. External diameter

6. Length

7. Computation of the flow mach (MFP parameter is given)

8. Computation of the front surface of the entry and computation of the front surface of the
undisturbed flow from the atmosphere data

Twk2 : Compressors (Fan, low pressure compressor, high pressure compressor)

1. Computation of the general temperature at the end of the compressor

2. Computation of the general pressure at the end of the compressor

3. Computation of the general density at the end of the compressor

4. Computation of the number of the compressor’s stage and of the efficiency pressure ratio
per compressor stage

5. Computation of the compressor ratio

6. Front surface of the flow channel

7. External diameter

8. Length

9. Weight

10. Weight of the holding frame

11. Computation of the general temperature at the end of the compressor (with the
polytropic ratio)

12. Computation of the isentropic efficiency

13. Computation of the pressure ratio

14. Computation of the temperature ratio

15. Front surface of the flow channel (with the external diameter and the bypass ratio given)

16. Computation of the flow mach number (MFP parameter is given)

17. Computation of the temperature ratio (with the pressure ratio given)

Twk3 : Junction part

1. Computation of the general temperature at the end of the junction part

2. Computation of the general pressure at the end of the junction part

3. Computation of the general density at the end of the junction part

4. mach number of the flow�

 66

Twk4 : Convergent thrust nozzle

1. Computation of the critical pressure ratio in nozzle entry

2. Computation of the general pressure in the nozzle entry

3. Computation of the static pressure in the nozzle entry

4. Computation of the mach number in the nozzle entry

5. Computation of the speed in the nozzle entry

6. Computation of the static temperature in the nozzle entry

7. Computation of the flow mach number

8. Front surface of the flow channel

Twk5 : Combustion chamber

1. Computation of the general pressure at the end of the combustion chamber

2. Computation of the general density at the end of the of the combustion chamber

3. Computation of fuel mass flow

4. Length

5. Weight

6. Computation of the mach flow with MFP parameter given

7. Front surface of the flow channel

Twk6 : Low and high pressure turbine

1. Computation of the general temperature at the end of the turbine

2. Computation of the general pressure at the end of the turbine

3. Computation of the general density at the end of the turbine

4. Computation of the number of the turbine’s stage and of the efficiency pressure ratio per
turbine stage

5. Front surface of the flow channel

6. External diameter

7. Length

8. Weigh

9. Weight of the holding frames

10. Computation of the general pressure at the end of the turbine(with the polytropic ratio
given)

11. Computation of the isentropic efficiency

12. Computation of the pressure ratio

13. Computation of the turbine performance

14. Computation of the flow mach number (MFP parameter is given)

15. Computation of the Temperature ratio

16. Computation of the maximal RPM (with the maximal peripheral velocity on the rotor

 67

tip)

17. Computation of the maximal RPM (with the maximal tension in rotor given)

Twk7 : Mixer

1. Computation of the general pressure at the end of the combustion chamber

2. Computation of the general density at the end of the of the combustion chamber

3. Computation of fuel mass flow

4. Length

5. Weight

6. Computation of the flow mach number with MFP parameter given

7. Front surface of the flow channel

Table 5.3 Functions of the TWK… surboutines

As already said, ZTL subroutines from the TW3 library are more like computation model.

ZTL11
 This subroutine computes for a twin spool jet engine the thrust, the throttle degree and the
needs for a given flight point with a standard fuel consumption under consideration of a
thermodynamic cycle process. The geometry, the weight and the gravity centre of the jet
engine is determined afterward.
Algorithm:

Declaration
No Go criteria
Initializing the output values
Data bank used
Reading the data from the data bank
 Static thrust
 Static thrust from the jet engine design
 Flight mach with the jet engine design point
 Flight altitude for the jet engine design point
 Thrust for the jet engine design point
 Checking the computation modus and pass
 Display results
Design of the jet engine
 Computation of the maximal turbine temperature entry
 Design of the jet engine CALL ZTL11D
 Computation of the jet engine thrust for the design point CALL ZTL11OFF
 Computation of the jet engine thrust at the ground CALL ZTL11OFF
 Scaling the thrust to the design point
 Checking the variation
 Saving value of the static thrust at the design point

 68

Computing the jet engine performance data
 Constructing the value of the maximal jet engine entry temperature
 Display results

ZTL11D
This subroutine leads the design of the jet engine for the following configuration:
FAN-LPT- HPT-CC-HPT-LPT
Hypothese:
 - Definition of the cyclic process
- Computation of the jet engine geometry
 - Computation of the jet engine’s mass and gravity centre

Input value
Control parameter
Design point of the jet engine
Air and fuel properties
Jet engine data
Entry data
Fan data
Junction data (stage 2)
Nozzle data (stage 2)
Low-pressure compressor data
High-pressure compressor data
Combustion chamber data
High-pressure turbine data
Data of the second mixer
Low-pressure turbine data
Junction data (stage 1)
Plug data
Nozzle data (stage 1)
Jet engine stage data
Mass and gravity centre
Output value

Declaration
Definition of the data bank used
Reading data from the data bank
Computation of the missing data
Monitoring the input
Computation model
 Plane 0: undisturbed flow
 Air properties

 69

 Mach number
 Velocity
 Mass flow
 General temperature CALL TWH1 (1,…)
 General pressure CALL TWH1 (2,…)
 Plane 1: flow in the jet engine entry
 Mass flow
 Mach number
 General temperature
 General pressure
 Surface CALL TWK1(8…)
 External diameter CALL TWK1 (5…)
 Plane 2: flow between the entry and the FAN
 Mach number
 Mach flow
 General temperature CALL TWK1(1,…)
 General pressure CALL TWK1(2,…)
 Surface CALL TWK2(2,…)
 External Diameter CALL TWK2(7,…)
 Plane 3: flow behind the fan
 Mass flow
 General temperature CALL TWK2(11,…)
 General pressure CALL TWK2(2, …)
 Isentropic efficiency CALL TWK2 (12,…)
 Fan performance CALL TWK2(5,…)
 Temperature ratio
 External diameter
 Surface
 Number of the compressor stage wit its compressing ratio
 Mach number
 Plane 7s: flow behind the junction and before the nozzle
 Mass flow
 General temperature CALL TWK3(1,..;)
 General pressure CALLTWK3(2,…)
 Plane 9s : Flow behind the nozzle II
 Mass flow
 General temperature
 Critical pressure ratio CALL TWK4(1,…)
 General pressure CALL TWK4(2,…)
 Static pressure at the nozzle end CALL TWK4(3,…)
 Static temperature at the nozzle end CALL TWK4(6,…)
 Mach number at the nozzle exit CALL TWK4(4,…)

 70

 Velocity at the nozzle exit CALL TWK4(5,…)
 Surface CALL TWK4(8,…)
 (As it can be seen the structure is very detailed, and as it is relatively similar for the next
plane, if more information is needed, one should give a look at the file itself)
 Plane 3 ‘ ‘ V , flow before the LPC
 Plane 3 ‘ ‘ Flow between the LPC and the HPC
 Plane 3 : flow before the HPC
 Plane 3: Flow behind the HPC
 Plane 3a : flow before the combustion chamber
 Plane 4 flow behind the combustion chamber
 Plane 4a Flow behind the first mixer and before the HPT
 Plane 4b flow behind the HPT and before the second mixer
 Plane 4c flow behind the second mixer and before the LPT
 Plane 5 flow behind the LPT and the second junction
 Plane 7 flow behind the junction and before the nozzle
 Plane 9 flow behind the nozzle 1
MFP parameter in the nozzle exit
Performance data
Iteration on the mass flow to determine the needed thrust
RPM limitation from the maximal speed at the blade tip
RPM limitation due to the centrifugal force
Jet engine Entry component
Jet engine comoment FAN
Jet engine comoment Low pressure turbine
Junction between LPC and HPC
Jet engine comoment High pressure turbine
Jet engine comoment Combustion chamber
Junction between the combustion chamber and the HPT
Jet engine comoment HPT
Junction between the HPT and HPT
Jet engine comoment low pressure turbine
Jet engine component junction part / mixer
Plug
High Pressure stage
Low Presssure stage
Jet engine
Geometrical description
(Description of each jet engine parts)
Display the results

ZTL11OFF has almost the same structure for the same objectives.

 71

The ZTL12 subroutines (ZTL12, ZTL12D and ZTL12OFF) follows the same schemes as
ZTL11 one.
Those files are definitely the ones which would be interesting to copy and change for
someone who would like to add a new jet engine and would be interested in giving very
detailed results pages on the jet engine design.

TW4_LBY: is empty (The small info text in the folder indicates that it should be similar to

TW3_LBY).

TW5_LBY: this library provides 3 subroutines for CO, NoX, Hc emission

TW6_LBY: this library provides 19 subroutines for nacelle geometry computation.

GEOTW1_LBY: this library provides 8 subroutines for the jet engine geometry

computation.
The main subroutine is called geotw and it has a lot of sub options which call other
subroutines (similarly to tdat in TW1_LBY)

5.3 Jet Engine Data Bank and Templates

5.3.1 Data Banks

Here follows a small description of the jet engine’s data bank (DB 8). There are 145 variables
saved.

Variable Unit Description

IMD14P1
Control parameter/Estimation of the thrust needed while flying in the
critical altitude (1 Jet engine out)

IMD14P2
Control parameter/Estimation of the thrust needed at the beginning of
the cruise flight (Flight with maximal payload)

IMD14P3
Control parameter/Estimation of the thrust needed at the end of the
cruise flight (Flight with max. Payload)

IMD14P4
Control parameter/Estimation of the thrust needed at the end of the
cruise flight (Flight with max. fuel)

IMD14P5
Control parameter/Estimation of the thrust needed in landing flight (1
Jet engine out)

IMD14P6
Control parameter/Estimation of the thrust needed by a missed
approach during landing

IMD14P7
Control parameter/Estimation of the thrust needed for the respect of the
start track length

IMD14P8
Control parameter/Estimation of the thrust needed at the beginning of
the cruise flight (Flight with max. payload /1 jet engine out)

IMD14P9
Control parameter/Estimation of the thrust needed at the beginning of
the cruise flight (Flight with max. payload /1 jet engine out)

 72

ISTW Control parameter/Method/Jet engine performance
IPTW1 Control parameter (1:GummiTW,2:fixed Jet engine)

IPTW2 Control parameter/ Jet engine type
DATITW1 File Name/Jet engine geometry

DATITW2 File Name/Jet engine nacelle geometry
DATITW3 File Name/Jet engine pylon geometry
DATITW4 File Name/Data for predefined jet engine

NTW Number of jet engines
SOTW N Jet engine static thrust (Ma=0,H=0 km)
BYPASS Bypass ratio

T3GMAX K Maximale Turbin Entry Temperatur
DELTAT3G K Temperatur decrease in cruise flight
PIOATO General pressure ratio (Start)

VHDVNDVTO General pressure ratio in the HPC/LPC(Start)

PIOACR General pressure ratio (cruise flight)
PIOACHAR Caracteristic value of the general pressure ratio
PIEINL Pressure ratio in the entry
MAEINL Mach number in the entry plane
LAMBDA1 Grad Effective diffusor angle
SPINNER Grad Spinner angle

PIFANTO Fan pressure ratio(Start)
NUEISFAN Maximal isentropic compressor efficiency/FAN
NUEFANTO Isentropic compressor efficiency /FAN (Start)

PIUEII Pressure ratio/Jonction of the FAN nozzle
MAFANEIN Mach number /FAN entry
MAFANAUS Mach number/FAN exit
HTFANEIN Hub-shroud diameter ratio/FAN entry

HTFANAUS Hub-shroud diameter ratio, FAN exit
LVORFAN m Forward FAN Frame Length (LEading edge(VK) FAN FrameVK FAN)
UTFANMAX m/s Maximale FAN TIP celerity
NFANROT Mean blade number of the FAN Rotor
NFANSTA Mean blade number of the FAN Stator
ARFANROT Rotor heigth/Rotor width FAN (mean)

ARFANSTA Stator heigth/Stator width FAN (mean)
CVFANROT Constant of volume per FAN blades (rotor)
CVFANSTA Constant of volume per FAN blades (stator)
RHOFANROT kg/m**3 Density of the FAN rotor material
RHOFANSTA kg/m**3 Density of the FAN stator material
NUEISNDV Maximal isentropic efficiency /LPC
NUENDVTO Isentropic compressor efficiency /NDV (take off)

MANDVEIN Mach number/ LPC entry
MANDVAUS Mach number/LPC exit
PINDVST Compressor ratio per LPC stages
HTNDVEIN Hub-shroud diameter ratio/LPC entry
HTNDVAUS Hub-shroud diameter ratio/LPC exit
LUEBER1 m Length of the jonction between LPC and HPC

NNDVROT Mean blade number of the LPC rotor

 73

NNDVSTA Mean blade number of the LPC stator
ARNDVROT Rotor heigth/Rotor width LPC (mean)
ARNDVSTA Stator heigth/ Stator width LPC(mean)
CVNDVROT Constant of volume per LPC blade (Rotor)
CVNDVSTA Constant of volume per LPC blade (stator)

RHONDVROT kg/m**3 Density of the LPC rotor material
RHONDVSTA kg/m**3 Density of the LPC stator material
NUEISHDV Maximal isentropic compressing efficiency /HPC
NUEHDVTO Isentropic compressing efficiency/HPC (take off)
MAHDVEIN Mach number /HPC entry
MAHDVAUS Mach number /HPC exit

PIHDVST Compressing ratio per HPC stage
HTHDVEIN Hub-shroud diameter ratio/HPC entry
HTHDVAUS Hub-shroud diameter ratio/HPC exit
NHDVROT Mean blade number of the HPC rotor

NHDVSTA Mean blade number of the HPC stator
ARHDVROT Rotor heigth/Rotor width HPC (mean)
ARHDVSTA Stator heigth/Stator width HPC (mean)
CVHDVROT Constant of volume of the HPC blades (Rotor)
CVHDVSTA Constant of volume of the HPC stator
RHOHDVROT kg/m**3 Density of the HPC rotor material
RHOHDVSTA kg/m**3 Density of the HPC stator material

PIBK Compressing ratio of the combustion chamber
NUEA Heat efficiency
VBK m/s Mean celerity in the combustion chamber
TBK s Retention time of the gas part of the combustion chamber
RHOBK kg/m**3 Density of the combustion chamber material
SIGMABK N/mm**2 Maximal tensil stress in combustion chamber wall

NUEISHDT Maximal isentropic Turbine Efficiency/HPT
NUEHDTTO Isentropic Turbine efficiency/HPT (take off)
MAHDTEIN Mach number /HPT entry
MAHDTAUS Mach number /HPT exit
PIHDTST Compressing ratio per HPT stages
HTHDTEIN Hub-shroud diameter ratio/ HPT entry

HTHDTAUS Hub-shroud diameter ratio/HPT entry
LUEBER3 m Length of the jonction between HPT and LPT
NHDTROT Mean number of blades of the HPT rotor
NHDTSTA Mean number of blades of the HPT stator
ARHDTROT Rotor heigth/ Rotor width HPT (mean)
ARHDTSTA Stator heigth/Stator width HDT (mean)
CVHDTROT Volume constant of the HPT blades (Rotor)

CVHDTSTA Volume constant of the HPT Stator
RHOHDTROT kg/m**3 Density of the HPT rotor material
RHOHDTSTA kg/m**3 Density of the HPT stator material
SIGMAHDT N/mm**2 Maximal tensile stress in the HPT blades (rotor)
PIUEI Pressure ratio /Jonction LPT/nozzle
NUEISNDT Maximal isentropic Turbine efficiency/LPT

NUENDTTO Isentropic Turbine efficiency/LPT(take off)

 74

MANDTEIN Mach number/ LPT entry
MANDTAUS Mach number/LPT exit
PINDTST Pressure ratio per LPT stage
HTNDTEIN Hub-shroud diameter ratio/LPT entryt
HTNDTAUS Hub-shroud diameter ratio/ LPT exit

NNDTROT Mean number of blades for the LPT rotor
NNDTSTA Mean number of blades for the LPT stator
ARNDTROT Rotor height/Rotor width LPT(mean)
ARNDTSTA Stator height/ Stator width LPT(mean)
CVNDTROT Constant of volume for LPT blade
CVNDTSTA Constant of volume for LPT Stator

RHONDTROT kg/m**3 Density of the LPT rotor material
RHONDTSTA kg/m**3 Density of the LPT stator material
SIGMANDT N/mm**2 Maximal tensile stress in the LPT rotor
LMIXER m Length of the mixer
LZUSATZ m Additional length of a jonction LPT / mixer
LAMBDA2 Grad Angle of the jonction cone
PHISD Resultant celerity factor of the thrust nozzle

NUEMW1 Mechanical efficiency/LP shaft
NUEMW2 Mechanical efficiency/HP shaft
RHONDW kg/m**3 Density of the LP shaft material
RHOHDW kg/m**3 Density of the HP shaft material
TAUNDW N/mm**2 Maximal tranverse tension in the LP shaft
TAUHDW N/mm**2 Maximal tranverse tension in the HP shaft

TMITNDW m Mean density of the LP shaft
TMITHDW m Mean density of the HP shaft
NTG Number of jet engine nacelle
TGPOS1 Vector Positon/1.jet engine nacelle
TGPOS2 Vector Positon/2.jet engine nacelle
SRTG mm Harshness of the surface /jet engine nacelle

DITG m Maximal nacelle density
FLUEBER2 nacelle extension/ jonction diffusor (0 ... 1.3)

SPTG1
Dimensionless Geometrical description/process of the nacelle
cut(nacelle in one part)

FGONDEL kg/m**2 Weight per surface of the nacelle
SRTP mm Harshness of the surface/turbojet pylon
DITP m Maximal Pylon density

ZHIATPF
X coordinate of the forward pylon attach on the wing (X/TF)/reference
point : wing nose in local cut

ZHIETPF
X coordinate of the aft pylon attach(X/TF)/reference point: flight nose in
local cut

ZHIATPR
X coordinate of the forward pylon attach on the fuselage
(X/LGR)/reference point : fuselage nose

ZHIETPR
X coordinate of the aft pylon attach on the fuselage (X/LGR)/ reference
point : fuselage nose

OMEGATPR Grad Angle of the pylon attach on the fuselage
Table 5.4 List of the variables of the Data bank 8

 75

5.3.2 Templates Files

In the template folder, there are two folders concerning directly the jet engines:

The ANTRIEBSANLAGE folder has four files describing specific jet engines:

File name

Content

CFM56-5A4.DAT

GECF6-80E1.DAT

Global Jet engine data
Jet engines data
Nacelle data
Jet engine pylon data
Thrust values
SFC value

V_CFM56-5A4.DAT

V_GECF6-80E1.DAT

Global Jet engine data
Jet engines data
Thrust values
SFC value
NOx-Emission values
CO-Emission values
HC-Emission values
H2O-Emission values

Table 5.5 Files of the ANTRIEBSANLAGE folder

The TRIEBWERKS folder contains four data files:

File name

Description

TG1.DAT This files contains a dimensionless geometrical description for a
nacelle (in one part)

TG2.DAT This files contains a dimensionless geometrical description for a
nacelle (in two parts)

TL1.DAT This files contains a dimensionless geometrical description for a single
spool jet engine

TPP1.DAT This files contains a dimensionless geometrical description for a jet
engine pylon

TW1.DAT This files contains a dimensionless geometrical description for a
nacelle (in one part) for a turbofan

TW2.DAT Same as TW1.DAT

ZTL1.DAT This files contains a dimensionless geometrical description for a twin
spool jet engine

Table 5.6 File of the TRIEBWERK folder

 76

6 Methodology and Description of the GUI

6.1 Methodology

The methodology to describe is the process which permits to understand a subroutine or the
program called by a certain button and how to start to find any information inside the program
source code.
The first step is to find out which program is called. This can be done by looking at the
monitor of the Java interface: it displays clearly the name of the subroutine or of the script
called. A simple window research (Ctrl+ F) in the PrADO folder allows us to find the file
researched.

In the case of a Fortran file describing a subroutine, the code is supposed to be self descriptive
which means they almost always include the name of the author, the date of creation and
update of the file, a short description at their beginning as well as a listing of the in- and
output variables . The structure of the files is often also written in the files.
This implies the descriptions and the structure shown in this report are the ones provided by
the author of the subroutine, translated in English.

What describes the interconnection between the libraries is the CALL of the subroutines. I
have chosen not to be consistent in the description of the calls in order to show only the most
important ones.

6.2 Description of the GUI

The GUI process in PrADO is under copyright of the IFL, so how to reproduce it will not be
described here but how to analyze it to know what it exactly calls can be shown.

During this research, a free java compiler, Eclipse, was installed to open the java files since
they’re not adapted to be opened by the window notepad. After a quick analysis, it can be
easily seen that the java programs don’t describe the PrADO windows but only provide the
basic code which reads script files and produces the windows from it. So in order to know
which program is called by which button, the scripts have to be studied.
They are located in PRADO/GUI/… and can be opened by the windows text editor. The most
important one is the script of the main window:

 77

A shortened version of this file is presented here:

/** ********************
 ** Global Functions **
 ** ********************/
GLOBAL ("PrADO/TA2") {
METHODS () {
BUTTON ("PrADO Projektdefinition") {EXECUTE ("javaw -cp .\SOG sog
.\GUI\SCRIPT_COMMON\PrADO-PROJEKT-D-GUI.scr");}
 […]
/** ********************
 ** Program functions of PrADO **
 ** ********************/
LABEL ("Hilfen");
BUTTON ("Vorgabedaten einlesen") {EXECUTE (".\BAT\prado1.bat");}
BUTTON ("Sicherheitskopie erstellen") {EXECUTE (".\BAT\prado2.bat");}
BUTTON ("DMS Datenbankeditor") {EXECUTE ("javaw -cp .\SOG sog
.\GUI\SCRIPT_COMMON\PrADO-DMSEDITOR-D-GUI.scr");}
[…]
LABEL ("Darstellung/TECPLOT");
BUTTON ("Historie/Entwurfsanalyse") {EXECUTE (".\BAT\DispTec-GEIT.bat");}
BUTTON ("Historie/Parametervariation") {EXECUTE (".\BAT\DispTec-
GPVAR_B.bat");}
BUTTON ("Historie/Optimierung") {EXECUTE (".\BAT\DispTec-GOVAR_B.bat");}
BUTTON ("Diagramme") {EXECUTE ("javaw -cp .\SOG sog
.\GUI\SCRIPT_JAVA\PrADO-Grafik\2dkurvea-gui.scr");}
[…]
LABEL ("Gesamtentwurfsprogramm");
BUTTON ("Einzelanalyse (EA)") {EXECUTE (".\BAT\prado10.bat");}
BUTTON ("Parametervariation (PV)") {EXECUTE (".\BAT\prado11.bat");}
BUTTON ("Optimierung (OP)") {EXECUTE (".\BAT\prado12.bat");}

LABEL ("Einzelmodule");
BUTTON ("Anforderungen (MD1)") {EXECUTE (".\BAT\md1.bat");}
BUTTON ("Rumpfgeometrie (MD2)") {EXECUTE (".\BAT\md2.bat");}
 […]
LABEL ("Datenbearbeitung")
BUTTON ("DB1 Programmsteuerung") {EXECUTE ("javaw -cp .\SOG sog
.\GUI\SCRIPT_JAVA\PrADO-TA2\DB1\IO-PrADO-TA2-DB1-GUI.scr");}
BUTTON ("DB2 Anforderungen") {EXECUTE ("javaw -cp .\SOG sog
.\GUI\SCRIPT_JAVA\PrADO-TA2\DB2\IO-PrADO-TA2-DB2-GUI.scr");}
[…]

 78

Note: this symbol “[…]” means a part of the code is intentionally not shown

Looking at this file shows that there are two possibilities for a button: it executes either a
batch file, or it executes the java shell (javaw -cp .\SOG sog) and a script at the same time.

The first option calls a batch file which launches the executable having the same name. The
executables are compiled from source files which include a description of the files.

The second calls another java interface which can be analyzed by the same process as the
main windows.

Figure 6.1 Detail of the status monitor

As shown in figure 6.1, looking at the executable launched by the main windows in the status
monitor is also interesting since it shows which subroutines and files are implied by the
button of the window. After a quick research, it can be found that they’re located in the
PrADO\SOURCE\MAIN\ folder and functions which are not modules, like the project
definition, the data bank generation or the safety copy are performed by subroutines of this
folder called “prado1” to “prado12”. Tecplot related buttons have other names which can be
found in the files.

Using this method should help to understand any part of PrADO launched by the main
window.

 79

7 Discussions

Many things make this report incomplete: as a program, description files in it should be
analyzed but PrADO involves at least three different software and 1600 files.
Besides, those files are constantly evolving so it would be impossible to make a definitive
description of the PrADO structure.
 The following discussion tends to gives solutions to these issues.

7.1 Language Discussion

Fortran is the language of most of the PrADO structure so it is a big characteristic of the
global program. Not only because of its capacities in term of simplicity, safety and velocity
but it also determines the possibilities of evolution and the graphical interfacing.

In fact, Fortran is not evolving much and the latest possibilities provided by other language
such as Java or C++ are missing when one works on such a complex program.
Of course, translating the program into another language would be a huge work and having
those possibilities might not be enough to take such a decision, but if a discussion should be
led on the subject, then the following arguments could be interesting.

Clearly, what would be useful is:
 -having a free compiler downloadable for every person working on the project. (Java
has Eclipses, C++ has Visual Studio 2005 express). Those free compilers keep evolving all
the time, providing new fastening techniques, which Microsoft Compaq Fortran visual studio
does not.
 - having access to free standard libraries which permit to do different things with one
language: graphical interfacing, graphical output or data management. All this would allow us
to have a more simplified program structure with only one language for the interface and the
computation. It would at least simplify the interconnection between the interface and the data
banks.
 -It would surely make the code more readable. The Program Object Oriented (POO)
language (C++ and JAVA) is simpler to understand because it allows more graphical
representation of the code and variables are naturally grouped by concern in the objects.
 -having access to the internet forums when encountering troubles while programming is
really an asset for the new programmer. It is barely possible for Fortran now.
 - Above all, the possibility to generate automatically documentation in the form of an
html file is a huge asset, which would permit having a complete documentation for every new
release of the program.

 80

Doxygen for C++, or Javadoc for Java perform this kind of work. Universal Report and
Doxygen are two programs, which could also generate documentation for Fortran.
The condition of these programs is that the programmers have to respect certain syntax to
have it generating a meaningful documentation so none of them would be applicable directly
on the PrADO code as it is now. Every file should be reworked so that it follows the program
rules. Many experiments have been led with PrADO and Doxygen and the result was an index
of the source files in HTML format. By clicking on the name of a source file, it only shows its
contents with wrong colour code. The reason why it did not match is because the coding
conventions did not match any of the possible configurations of Doxygen. The following
pictures give an idea of the possibilities that Doxygen could provide to PrADO, and examples
of correct automatic documentation can be found on the software website.

Figure 7.1 Main page of a html file generated with Doxygen

Figure 7.2 Examples of possibilities with Doxygen

 81

Another possibility to make the documentation process automatic is to create a word model
with a macro, which would produce a document out of the pre-existing syntax of PrADO. Not
all files follow the exact same rules but some of them are more common: the description is
usually between two lines of “-“, the chapters of the program are underlined by quotation
mark (“), etc... Therefore, it would be possible to use this information to realize a macro
filling a Microsoft Word model. This document could be then saved under an html format and
the produced file could be called from an index with all the files names, as in Doxygen. The
index could also link to other documents such as this report, KIESEL 2007 or IFL’s own
documentations, and the important files could be enhanced with formula translating the
equation used or remarks.
This would be a possibility to make the documentation process half-automatic but the content
of the documentation and the coding convention have to be decided by the programmers.
Moreover, the details in the PrADO file are written in German and an automatically generated
documentation would be in German.

 82

8. Conclusions

This project shows the principal capacities of PrADO and how to use them. The main window
is especially detailed. It shows clearly PrADO as a very powerful aircraft design tool.

The structure of the program appears quite clear in terms of folders and files (p.23 to 30) and
the scheme of interconnections between the various kind of files is very complex (p.30).
A study of the module’s structure shows how the program is itself structured and it shows also
partly how its main functions are accomplished. The study of the main libraries describes the
tools which PrADO has at its disposal.

The study of the jet engine parts shows that if one would like to add a jet engine model in the
structure of PrADO he will have to change many files to add really the possibility of a new jet
engine kind or he can work on the pre existing files to make them give the performance of the
new jet engine. What is not described here is how to create the geometry for a new jet engine.
I hope this part will be useful for the next student wishing to add a turbofan, for instance.

To conclude this report, I hope that the methodology will be helpful for anyone desiring to
understand what is behind PrADO and I hope that the discussion will be interesting for the
people coding this powerful program.

 83

Acknowledgements

First, I would like to thank my girlfriend and my parents for all their support during my
studies and especially during this stay in Germany. Without your appreciation and assistance,
I could never have done this semester in Germany.

Then, I would like to thank my supervisors in Germany and in France, Mr François Stephan,
Farida Chabouni, Prof. Dr. Scholz, and Kolja Seeckt who always answered my questions very
helpfully. Furthermore, I am fully aware that doing this report has been a great opportunity to
me and was only possible because of your personal advice.
Thanks also to Mr Heinze who gave me hints to start my research.

And last but definitely not least, there are Dominik and Chloe, who very often reminded me
of more reasons for being in Germany than just writing my report.

 84

References

 Heinze 2008:
HEINZE, Wolfgang: PrADO-TA2. Braunschweig: Institut für Flugzeugbau und Leichtbau,
2007

 Scholz 1999
SCHOLZ, Dieter: Skript zur Vorlesung Flugzeugentwurf. HAW Hamburg, Fachbereich
Fahrzeugtechnik und Flugzeugbau, Vorlesungsskript, 1999
URL: http://www.haw-hamburg.de/pers/Scholz/Flugzeugentwurf.html

TECPLOT
URL: http://www.tecplot.com (2008-05-16)

Doxygen
URL: http://www.doxygen.org (2008-05-16)

Universal Report
URL: http://www.omegasystems.org (2008-05-16)

Kiesel 2007
KIESEL, Torsten: Methodisches Entwerfen von Verkehrsflugzeugen mit PrADO. HAW
Hamburg, Fachbereich Fahrzeugtechnik und Flugzeugbau,
URL: http://www.haw-hamburg.de/pers/Scholz/Flugzeugentwurf.html

Seeckt 2006
SEECKT, Kolja: Performance assessment of part-electric HAW Hamburg, Fachbereich
Fahrzeugtechnik und Flugzeugbau
URL: http://www.haw-hamburg.de/pers/Scholz/Flugzeugentwurf.html

	Titelpage
	Abstract
	Task
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Terms and Definitions
	1. Introduction
	1.1. Motivation
	1.2. Aim of the project
	1.3. Structure of the Project

	2. Generalities about PrADO
	2.1 Program Concept
	2.2 The IFL
	2.3 External Programs Needed
	2.4 Main Functions
	2.4.1 Helps Functions
	2.4.2 General Design Programs
	2.4.3 Single Modules
	2.4.4 Dealing with Data

	2.5 Graphics/TECPLOT

	3. Description of the global Structure
	3.1. Description of the global organisation
	3.2. Relational diagrams
	3.3. Modules
	3.4. Global Analysis of the Libraries
	3.5. Analyse of specific Libraries

	4 Description of the Data Management System Library
	5 The Jet Engines in PrADO
	5.1 Jet Engines Modules
	5.2 Jet Engines Libraries
	5.3 Jet Engine Data Bank and Templates
	5.3.1 Data Banks
	5.3.2 Templates Files

	6 Methodology and Description of the GUI
	6.1 Methodology
	6.2 Description of the GUI

	7 Discussions
	7.1 Language Discussion

	8 Conclusions
	Acknowledgements
	References
	APPENDIX A not published
	APPENDIX B not published

