

Projekt

Die Genauigkeit einer vereinfachten Berechnung der Steigzeit von Flugzeugen

Verfasser: Marcel Mutschall

Prüfer: Prof. Dr.-Ing. Dieter Scholz, MSME

Abgabe: 28.02.2018

Fakultät Technik und Informatik Department Fahrzeugtechnik und Flugzeugbau

URN:

http://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2018-02-28.018

Associated URLs:

http://nbn-resolving.org/html/urn:nbn:de:gbv:18302-aero2018-02-28.018

© This work is protected by copyright

The work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License: CC BY-NC-SA

http://creativecommons.org/licenses/by-nc-sa/4.0

Any further request may be directed to: Prof. Dr.-Ing. Dieter Scholz, MSME E-Mail see: http://www.ProfScholz.de

This work is part of:
Digital Library - Projects & Theses - Prof. Dr. Scholz
http://library.ProfScholz.de

Published by Aircraft Design and Systems Group (AERO) Department of Automotive and Aeronautical Engineering Hamburg University of Applied Science

This report is deposited and archived:

- Deutsche Nationalbiliothek (http://www.dnb.de)
- Repositorium der Leibniz Universität Hannover (http://www.repo.uni-hannover.de)

This report has associated published data in Harvard Dataverse: https://doi.org/10.7910/DVN/MX3K1B

Kurzreferat

Ziel – Die Zeit die ein Flugzeug benötigt, um auf eine bestimmte Höhe zu steigen (die Steigzeit) kann mit einer Formel berechnet werden, die vereinfachend annimmt, dass die Steiggeschwindigkeit über dem gesamten Steigflug mit zunehmender Höhe linear abnimmt. Ziel der Untersuchung ist, zu ermitteln, ob die Annahme einer linear abnehmenden Steiggeschwindigkeit realistisch ist bzw. welche Fehler sich aus der Annahme ergeben.

Methode – Mit der Höhe ändern sich Parameter wie Luftdichte, Widerstand, Schub und damit auch die optimale Fluggeschwindigkeit für den Steigflug. Die Parameter beeinflussen sich dabei gegenseitig. Der Schub wird dabei nach drei unterschiedlichen Methoden berechnet, gegeben von Bräunling, Scholz und Howe. Analysiert wird der Verlauf des Schubes mit der Höhe und der Verlauf der Steiggeschwindigkeit mit der Höhe für jede der drei Schubberechnungen. Abschließend wird für jede Schubberechnung die Steigzeit verglichen wie sie sich ergibt a) aus der einfachen Formel und b) aus einer Integrationsberechnung, bei der der Verlauf der Steiggeschwindigkeit durch eine Funktion beschrieben wird.

Ergebnisse – Die drei Schubberechnungen liefern ausgehend vom gleichen Startschub unterschiedliche Schübe in der Höhe. In die Methode nach Bräunling gehen mehr Parameter ein als in die anderen beiden Methoden. Es kann angenommen werden, dass die Methode nach Bräunling genauer ist, der Beweis kann aber nicht geführt werden. Der Schub nach Scholz und Howe fällt nahezu linear mit der Höhe ab. Der Schubverlauf nach Bräunling zeigt eine deutliche Nichtlinearität. Es wird die Steigzeit von 0 km auf 11 km Höhe berechnet nach a) und b), mit jeder der drei Schubberechnungen. Dabei wird jeweils der Unterschied in der Steigzeit ermittelt. Aufgrund der Nichtlinearität im Schubverlauf zeigt die Methode nach Bräunling dann auch den größten Unterschied zwischen den Berechnungsmethoden von 7,1 %. Bei einer Schubberechnung nach Scholz ergeben sich 1,7 % und nach Howe 1,4 %. Wenn bereits zu Beginn Vereinfachungen, z.B. bezüglich des Triebwerksschubes, vorgenommen wurden, ist es in Hinblick auf den Aufwand und die zu erreicheneden Ergebnisse möglich, und zum Teil sinnvoll, die Berechnungen der Steigzeit mittels linearer Abnahme der vertikalen Geschwindigkeit durchzuführen. Es wird ausdrücklich darauf hingewiesen, dass es hier um den Vergleich von zwei Methoden zur Berechnung der Steigzeit geht und nicht um die Bewertung von Methoden zur Schubberechnung (für die keine Vergleichswerte vorlagen).

Praktischer Nutzen – Es konnte festgestellt werden, dass eine einfache Formel zur Berechnung der Steigzeit mit geringem Fehler angewandt werden kann – insbesondere wenn Methoden zur Schubberechnung vorliegen, bei denen der Schub annähernd linear mit der Höhe abnimmt. Bei großem Aufwand und realitätsnaher Betrachtung, z.B. nach Bräunling, führt der lineare Ansatz jedoch zu einem zu großen Fehler. Hierfür sollte die Berechnung der Steigzeit mittels Integration durchgeführt werden.

DEPARTMENT FAHRZEUGTECHNIK UND FLUGZEUGBAU

Die Genauigkeit einer vereinfachten Berechnung der Steigzeit von Flugzeugen

Aufgabenstellung für ein Projekt

Hintergrund

In der Vorlesung "Flugmechanik" an der HAW Hamburg wird eine einfache Gleichung genutzt, um die Steigzeit *t* von Flugzeugen zu berechnen:

$$t = -\frac{h - h_0}{V_{v0} - V_v(h)} \ln \left(\frac{V_v(h)}{V_{v0}} \right)$$

h Flughöhe

 h_0 Ausgangsflughöhe (Beginn des Steigfluges oder des Höhenbandes)

 $V_{\nu}(h)$ Steiggeschwindigkeit in Höhe h

 V_{v0} Steiggeschwindigkeit bei h_0

Die einfache Gleichung der Steigzeit setzt eine lineare Abnahme der Steiggeschwindigkeit $V_{\nu}(h)$ voraus.

- a) Wenn die Steiggeschwindigkeit $V_{\nu}(h)$ über dem ganzen Steigflug (z.B. vom Startplatz bis in Reiseflughöhe) weitgehend linear ist, dann würde es ausreichen, die Gleichung lediglich einmal für den ganzen Steigflug anzuwenden.
- b) Wenn die Abnahme der Steiggeschwindigkeit $V_{\nu}(h)$ nichtlinear sein sollte, dann wäre es erforderlich den Verlauf eben dieser durch eine Funktion zu beschreiben und mittels folgender Gleichung zu integrieren:

$$t = \int \frac{1}{V_V} dh$$

Aufgabe

Die Aufgabe dieser Projektarbeit ist die Untersuchung der Genauigkeit der vereinfachten Berechnung der Steigzeit von Flugzeugen mit Strahltriebwerken Die folgenden Teilaufgaben sind dabei zu bearbeiten:

- Aufstellen aller Gleichung zur Berechnung der Steiggeschwindigkeit $V_{\nu}(h)$
- Berechnung des Triebwerkschubs T(h) nach drei Modellen
- Berechnung der Steigzeiten nach a) und b) jeweils mit den drei Modellen zum Triebwerkschub
- Vergleich der Ergebnisse

Die Ergebnisse der Hausarbeit sollen in einem Bericht dokumentiert werden. Es sind die DIN-Normen zur Erstellung technisch-wissenschaftlicher Berichte zu beachten.

Inhalt

8 10 10 11 12 15 15 16 18 18
8 . 10 . 10 . 10 . 11 . 12 . 12 . 15 . 15
8 . 10 . 10 . 11 . 12 . 12 . 15 . 15 . 16
8 . 10 . 10 . 11 . 12 . 12 . 15 . 15 . 16
8 . 10 . 10 . 11 . 12 . 15 . 15 . 16
8 10 10 10 11 12 12 15 15
8 . 10 . 10 . 10 . 11 . 12 . 12 . 15
8 . 10 . 10 . 10 . 11 . 12 . 12
8 . 10 . 10 . 10 . 11 . 12 . 12
8 10 10 10 11 12
8 10 10 10 11
8 . 10 . 10
8 . 10 . 10
8 . 10
8
7
6
5
5
5
4
2
2
1
1
1
xiii
x . xii
ix
viii •
eite

Anhang A	Herleitung der Berechnungsparameter	32
A.1	Widerstand	32
A.2	Geschwindigkeit	33
A.3	Triebwerksschub	34
A.4	Gewichtskraft	35
Anhang B	Auflistung der Berechnungstabellen	36
B.1	Berechnung nach Bräunling, Scholz und Howe als Übersicht	36
B.2	Berechnung nach Bräunling	38
B.3	Berechnung nach Scholz	40
B.4	Berechnung nach Howe	42

Verzeichnis der Bilder

Kräfte am Flugzeug im Steigflug	5
Annahme der annähernden Steigrate zur Steigflugberechnung	7
Steigpolare bei konstantem Gewicht, Temperatur und Flughöhe	
für strahlgetriebene Flugzeuge	9
Abhängigkeiten zwischen den Geschwindigkeiten	. 11
Variation des Schubes T mit der Flugmachzahl Ma_0 für unterschiedliche	
Nebenstromverhältnisse μ	. 13
Unterschalldiffusor mit Fangstromröhren bei unterschiedlichen	
Flugmachzahlen Ma_0	. 14
Auszug der Excel Liste zur Berechnung der Steigzeit von Flugzeugen	
nach Bräunling	. 17
Diagramm zum Vergleich des Schubes nach den drei Berechnungsmethoden	. 19
Diagramm zum Vergleich der Steigrate nach den drei Berechnungsmethoden	20
Diagramm zum Vergleich der Steigrate nach den drei Berechnungsmethoden	20
Diagramm zum Vergleich der Steigrate nach Bräunling mit dem	
linearen Ansatz	21
Diagramm zum Vergleich der Steigrate nach Scholz mit dem	
linearen Ansatz	21
Diagramm zum Vergleich der Steigrate nach Howe mit dem	
linearen Ansatz	. 22
Diagramm zum Vergleich der Steigzeiten nach den drei	
Berechnungsmethoden	. 24
	Steigpolare bei konstantem Gewicht, Temperatur und Flughöhe für strahlgetriebene Flugzeuge

Verzeichnis der Tabellen

Tabelle 2.1	Faktoren für die Schubberechnung	16
Tabelle 3.1	Prozentuale Abweichungen der vertikalen Geschwindigkeiten nach	
	den Berechnungsmethoden von Bräunling, Scholz und Howe	
	zum linearen Ansatz	23
Tabelle 3.2	Benötigte Zeiten für einen Anstieg von der Ausgangshöhe in 0 m	
	zur jeweiligen Höhe nach den Berechnungen von Bräunling,	
	Scholz und Howe	23
Tabelle 3.3	Benötigte Zeiten für einen Anstieg von der Ausgangshöhe zur	
	nächsten Höhe in 1000 m darüber, nach den Berechnungen von	
	Bräunling, Scholz und Howe	24
Tabelle 3.4	Prozentuale Abweichungen der Steigzeiten nach den	
	Berechnungsmethoden von Bräunling, Scholz und Howe	
	zum linearen Ansatz	25

Liste der Symbole

a	Beschleunigung
a	variabler Faktor
A	variabler Faktor
a_0	Schallgeschwindigkeit
A_{FL}	Querschnittsfläche der Fangstromröhre
A_{FL1}	Querschnittsfläche am Turbineneintritt
b	Spannweite
B	variabler Faktor
c	mittlere Strömungsgeschwindigkeit
c_{D0}	Nullwiderstandsbeiwert
d	Durchmesser
D	Widerstand
e	Oswaldfaktor
F_x	Kraft in x-Richtung
F_{y}	Kraft in y-Richtung
g	Erdbeschleunigung
G	Gravitationskonstante
h	geometrische Höhe
h_0	geometrische Ausgangshöhe (hier bei 0 m)
k_1	variabler Faktor
k_2	variabler Faktor
k_3	variabler Faktor
k_4	variabler Faktor
k_a	Verhältnis vom Temperaturgradienten zur Temperatur in 0 m nach ISA
L	Auftrieb
L	Temperaturgradient
m	Masse
ṁ	Massenstrom
\dot{m}_0	Massenstrom vor dem Triebwerk
\dot{m}_1	Massenstrom am Turbineneintritt
Ma_0	Flugmachzahl
Ma_1	Machzahl am Turbineneintritt
m_E	Masse der Erde
m_F	Masse des Flugzeugs
n	variabler Faktor
p	Druck
P	Leistung
Q	variabler Faktor
r	Erdradius

R Gaskonstante

ROC vertikale Geschwindigkeit ("Rate of climb"), siehe auch *Vv*

ROC_{max} maximale vertikale Geschwindigkeit

S Flügelfläche

Triebwerksschub

t Zeit

 T_0 Umgebungstemperatur T_4 Turbineneintrittstemperatur

T_A verfügbarer Schub

 T_{Cr} Schub im Reiseflug ("cruise")

 T_N Standschub T_R Schubbedarf

 V_{ROC} wahre Geschwindigkeit bei der $ROC = \max$

 V_T wahre Geschwindigkeit

Vv vertikale Geschwindigkeit (siehe ROC) Vv_0 vertikale Geschwindigkeit (siehe ROC) V_{γ} wahre Geschwindigkeit bei der $\gamma = \max$

W Flugzeuggewicht

y_{linear} linearer Kurvenverlauf der Funktion der Steigrate

y_{Bräunling} Kurvenverlauf der Funktion der Steigrate nach Bräunling

Griechische Symbole

γ Steigwinkel

 γ_{max} maximaler Steigwinkel κ Isentropenexponent

Λ Streckung

 μ Nebenstromverhältnis π_{Fan} Fandruckverhältnis

 π_V Verdichterdruckverhältnis

 ρ Dichte

 $\rho 0$ Umgebungsdichte σ relative Dichte

 τ_{λ} bezogene Turbineneintrittstemperatur

 τ_{v} Verdichtertemperaturverhältnis

 τ_{Fan} Fantemperaturverhältnis

Liste der Abkürzungen

A320	Kurz- und Mittelstreckenflugzeug des Flugzeugherstellers Airbus
------	---

BPR Nebenstromverhältnis ("By-Pass Ratio")

ISA International Standard Atmosphere

ROC vertikale Geschwindigkeit ("Rate Of Climb")

Verzeichnis der Begriffe und Definitionen

Machzahl

"The ratio of the true airspeed to the speed of sound under prevailing atmospheric conditions." (NATO 1980, S. 269)

Nebenstromverhältnis

"The ratio of the air mass flow through the by-pass ducts of a gas-turbine engine to the air mass flow through the combustion chamber, calculated at maximum thrust when the engine is stationary in an international standard atmosphere at sea level." (NATO 1980, S. 77)

Steigflug

"Es handelt sich um einen Steigflug, wenn der Steigwinkel zwischen geodätischem und aerodynamischem Koordinatensystem größer Null ist." (Scholz 2016, Tafelbild 5-1)

Steigrate

"The vertical component of the true airspeed in stated conditions." (NATO 1980, S. 352)

Widerstand (aerodynamisch)

"The component of the total aerodynamic force in the direction of the undisturbed relative airflow. In powered flight, contributions to this component arising from thrust are excluded." (NATO 1980, S. 143)

1 Einleitung

1.1 Motivation

Während des Studiums wird die Berechnung der Steigzeit von Flugzeugen mit einer vereinfachten Methode berechnet. Es wird davon ausgegangen, dass die vertikale Geschwindigkeit mit zunehmender Höhe linear abfällt. Dies reduziert den Rechenaufwand und spart somit Zeit. Es stellt sich jedoch die Frage, ob das Modell dieser Vorgehensweise genügend Einflussfaktoren der Umgebung sowie Flugzeugparameter abdeckt. Das Ziel der Vorlesung sei es auch, den Studierenden einen praxisnahen Einblick zu gewährleisten, indem realitätsnahe Werte berechnet werden.

Diese Projektarbeit soll überprüfen, ob die Berechnungsmethode nicht nur einfach ist, sondern auch Ergebnisse liefert, die eine ausreichend kleine Abweichung zur Realität besitzen. Es soll überprüft werden, ob sie die während des Steigfluges auf das Flugzeug vorherrschenden Einflüsse ausreichend abdeckt, oder ob eine Verwendung dieser Methode zu ungenauen Ergebnissen führt.

1.2 Begriffsdefinitionen

Steigflug

"Es handelt sich um einen Steigflug, wenn der Steigwinkel zwischen geodätischem und aerodynamischem Koordinatensystem größer Null ist." (Scholz 2016, Tafelbild 5-1)

Vereinfachte Berechnung

Eine vereinfachte Berechnung ist die Berechnung eines Modells mittels mathematischen Methoden. Ein Modell "ein Konzept zur Darstellung eines komplexen realen Systems oder Prozesses. Es beschreibt die in einem bestimmten Kontext wichtigen Eigenschaften [...] des entsprechenden Modellierungsobjektes." (Haußer 2011, S. 3) Die Ziele eines Modells liegen in der Beschreibung und der Analyse dieser Eigenschaften bis hin zur Vorhersage des zukünftigen Verhaltens, was in diesem Fall das Ergebnis der Steigzeit ist. Zur Erreichung der Ziele wird die Komplexität der betrachteten Systeme oder Prozesse reduziert. Ein Modell ist einfach, in sich konsistent und stützt sich auf Beobachtungen. Haußer schreibt weiterhin (Haußer 2011, S.8):

"Ein Modell versucht einen Teil der Realität abzubilden; es ist aber nicht mit der Realität gleichzustellen. Es gibt keine "falschen" oder "richtigen" Modelle. Die Qualität eines Modells bestimmt sich alleine daraus, wie gut es Beobachtungsdaten erklärt und zukünftige Vorgänge vorhersagt."

1.3 Ziel der Arbeit

Das Ziel dieses Projektes ist es, die Berechnung der Steigzeit durch lineare Abnahme der vertikalen Steiggeschwindigkeit bei zunehmender Höhe zu überprüfen. Hierfür werden reale Umgebungs- sowie Flugzeugparameter berücksichtigt. Es sollen zusätzlich unterschiedliche Herangehensweisen zur Schubberechnung untersucht und validiert werden, die in die Berechnung der vertikalen Geschwindigkeiten miteinfließen. Dadurch soll verhindert werden, dass ein falscher linearer Charakter durch die dort getätigten Vereinfachungen miteinfließt.

Außerdem sollen die Berechnungen in einer Exceltabelle dokumentiert werden, um die Ergebnisse für unterschiedliche Eingabeparameter zu überprüfen und zur eventuellen Anwendung während des Studiums.

1.4 Literaturübersicht

In der deutschsprachigen und der englischsprachigen Literatur gibt es viele Autoren, die die allgemeine Flugmechanik behandeln. Der Steigflug ist Bestandteil dieser Betrachtung und weißt durch den Großteil der Literatur hindurch keine gravierenden inhaltlichen Unterschiede zueinander auf. Aus diesem Grund wird das Thema des Steigfluges von zwei Quellen ausreichend abgedeckt.

Das Buch "Angewandte Flugleistung: Eine Einführung in die operationelle Flugleistung vom Start bis zu Landung" von Scheiderer 2008 und die Tafelbilder der Flugmechanik-Vorlesung von Scholz 2016 an der HAW Hamburg befassen sich mit der Flugmechanik, und beschreiben speziell für dieses Thema den Steigflug eines Flugzeugs sehr genau. Neben den allgemeinen Beschreibungen werden zusätzlich Herleitungen der Rechengrößen dargelegt. Sie ergänzen sich in Hinblick auf den Einstieg und die weitere Vertiefung in das Thema. Scheiderer 2008 beschreibt mit vielen Erklärungen, Beispielen und Diagrammen die Flugmechanik vom Start, über den Reiseflug, bis hin zur Landung. Scholz 2016 fasst auf den Tafelbildern die wichtigsten Informationen zusammen und ergänzt diese mit detailreichen Ausführungen. Für Personen, die die Vorlesung von Scholz nicht besucht haben, oder das Begleitskript von Trevor Young nicht besitzen, vermögen die reinen Tafelbilder unvollständig bzw. unverständlich zu sein.

Für die Berechnungen des Triebwerksschubes werden drei weitere Quellen herangezogen.

Von Scholz 2016 stammt zusätzlich eine Berechnungsmethode für den Schub, auf die in dieser Arbeit eingegangen wird. Eine weitere Methode wird dem Buch "Aircraft Conceptional Design Synthesis" von Howe 2000 entnommen. Das Buch "Triebwerke" von Bräunling 2015

enthält auf über 1900 Seiten genaue Erklärungen und Berechnungen zu den derzeitigen Triebwerken und liefert neben einer weiteren Methode zur Schubberechnung einen umfangreichen Einblick in den Aufbau und die Funktion moderner Triebwerke.

Der Großteil dieser Projektarbeit befasst sich mit der Berechnung der Steigzeit, sowie den dafür benötigten Parametern. Die lineare Herangehensweise für die Berechnung der vertikalen Geschwindigkeit, mit der die Berechnungen verglichen und analysiert werden sollen, stammt aus "Performance of the Jet Transport Airplane: Analysis Methods, Flight Operations and Regulations" von **Young 2017**.

1.5 Aufbau der Arbeit

Die Projektarbeit ist in folgende Abschnitte gegliedert:

- Abschnitt 2 behandelt die vereinfachte Berechnung der Steigzeit von Flugzeugen, definiert den Steigflug und geht auf die allgemeine Berechnung der Steigrate sowie der Steigzeit ein. Des Weiteren werden die Parameter zur Berechnung der Steigzeit beschrieben. Zusätzlich gibt der Abschnitt eine Übersicht zur Zusammenführung der Parameter sowie deren Berechnungen in einer Excel Liste.
- **Abschnitt 3** gibt die Ergebnisse der Berechnungen wider und wertet diese im Vergleich zum linearen Ansatz aus. Es wird auf die Unterschiede verschiedener Berechnungsarten eingegangen und deren Anwendungspotential überprüft.
- **Anhang A** enthält die Herleitungen der Parameter zur Berechnung der vertikalen Geschwindigkeit.
- Anhang B enthält die einzelnen Berechnungsergebnisse der unterschiedlichen Methoden sowie eine Komplettübersicht der wichtigsten Ergebnisse für den direkten Vergleich der Methoden untereinander.

2 Vereinfachte Berechnung der Steigzeit

2.1 Steigflug

2.1.1 Grundgleichungen des Steigfluges

Bei dem zu berechnenden Steigflug greifen Kräfte in unterschiedlichen Koordinatensystemen am Flugzeug an, die in Bild 2.1 dargestellt werden. Es handelt sich um einen Steigflug, wenn der Steigwinkel $\gamma > 0$ ist (**Scholz 2016**, Tafelbild 5-1).

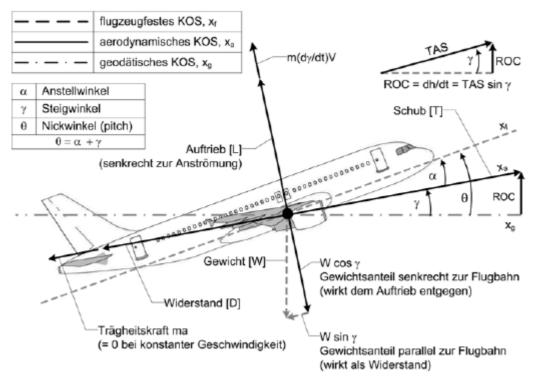


Bild 2.1 Kräfte am Flugzeug im Steigflug (Scheiderer 2008, S.227)

Die Darstellung wird für die Berechnungen vereinfacht, in dem folgende Annahmen getroffen werden.

- Es herrscht Windstille. Dies hat zur Folge, dass die Flugzeugbewegung entlang der in diesem Fall identischen flugbahnfesten und aerodynamischen Achse erfolgt. Die Flugbahnrichtung ist damit der Anströmrichtung entgegengesetzt (**Scheiderer 2008**, S.227).
- Es gibt keinen Schubeinstellwinkel. Das bedeutet, dass die Schubkraft entlang der flugbahnfesten Achse wirkt (Scheiderer 2008, S.228).
- Es gibt keinen Hängewinkel.

Das Kräftegleichgewicht parallel zur Flugbahn ergibt:

$$\sum F_x : T - D - (W \sin \gamma) = m \cdot \frac{dV}{dt}$$
 (2.1)

Das Kräftegleichgewicht senkrecht zur Flugbahn ergibt:

$$\sum F_{y}: L - W \cos \gamma = mV \frac{d\gamma}{dt}$$
 (2.2)

Durch die Annahme eines konstanten Bahnwinkels während des Steigfluges (**Scholz 2016**, Tafelbild 5-9) vereinfacht sich Gleichung (2.2) zu:

$$L = W \cos \gamma \tag{2.3}$$

Durch die Annahme von kleinen Winkeln ist es möglich, cos $\gamma = 1$ zu setzen und dadurch Gleichung (2.3) zu linearisieren:

$$L = W \tag{2.4}$$

Es gibt drei Arten des allgemeinen Steigfluges (Scholz 2016, Tafelbild 5-8):

- Die Höhe h steigt und die Geschwindigkeit v sinkt.
- Die Höhe *h* steigt und die Geschwindigkeit *v* ist konstant.
- Die Höhe h steigt und die Geschwindigkeit v steigt.

Für die Berechnungen wird der Fall mit einer konstanten Geschwindigkeit betrachtet. Für einen solchen unbeschleunigten Flug ergibt sich Gleichung (2.1) zu:

$$T - D - (W\sin\gamma) = 0 \tag{2.5}$$

Durch Umstellung der Gleichung erhält man den Steigwinkel:

$$\sin \gamma = \frac{T - D}{W} \tag{2.6}$$

2.1.2 Berechnung der Steigrate

Der Begriff der Steigrate wird in Scheiderer 2008 (S.230) folgendermaßen definiert:

Die Steigrate [ROC (Rate of climb)] ist definiert als der Höhenzuwachs über der Zeit.

Für die Steigrate gilt:

$$ROC = V_V = V_T \cdot \sin \gamma \tag{2.7}$$

Die Steigrate ergibt sich für einen Steigflug mit konstanter wahrer Geschwindigkeit V_T , durch Einsetzen von Gleichung (2.6) in Gleichung (2.7), zu:

$$ROC = V_V = \frac{T - D}{W} V_T \tag{2.8}$$

Die vereinfachte Steigflugberechnung nimmt eine lineare Verteilung der Steigrate ROC = Vv während des gesamten Steigsegmentes an (**Young 2017**). Diese Annahme ist in Bild 2.2 dargestellt.

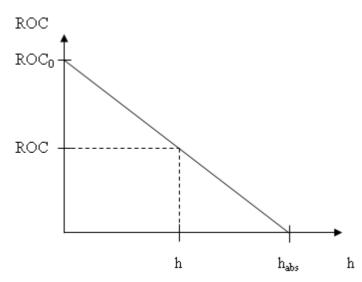
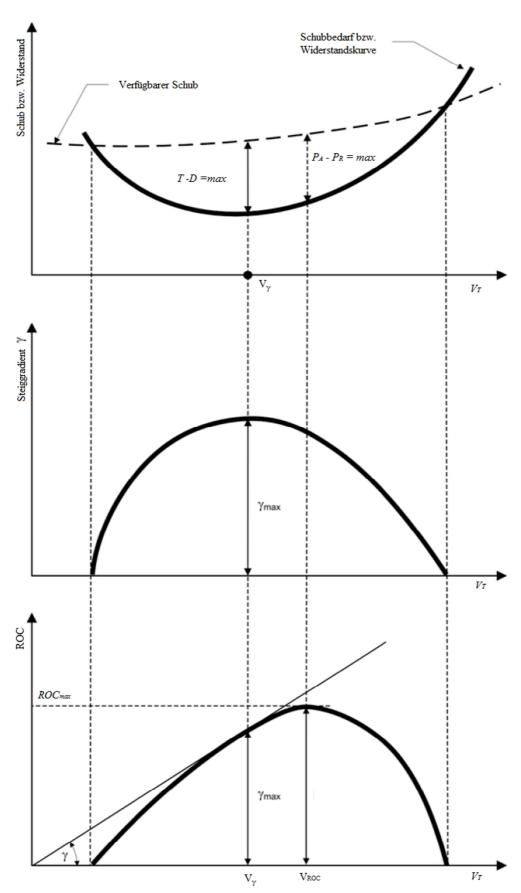


Bild 2.2 Annahme der annähernden Steigrate zur Steigflugberechnung (nach Young 2017)

2.1.3 Berechnung der Steigzeit

Die Geschwindigkeit v ist allgemein definiert durch die zeitliche Änderung des Weges h über die Zeit t. In diesem Fall ist mit der Geschwindigkeit v die vertikale Geschwindigkeit Vv gemeint (Gleichung (2.9)).

$$V_V = \frac{dh}{dt} \tag{2.9}$$


Die Zeit erhält man durch Umstellen der Gleichung (2.9) nach der Veränderung der Zeit mit anschließender Integration über der Höhe.

$$t = \int \frac{1}{V_V} dh \tag{2.10}$$

2.1.4 Visualisierung mit der Geschwindigkeitspolaren

Befindet sich das Flugzeug in einem unbeschleunigten Horizontalflug, so ist die Summe aller Kräfte null. Der Widerstand ist betragsmäßig genau so groß wie die Schubkraft. Damit ein Steigflug stattfinden kann, muss die Schubkraft größer sein als der Widerstand. Maßgebend für die Steigleistung ist die Differenz zwischen Schub und Widerstand, bzw. zwischen benötigtem und verfügbarem Schub.

Die Steigpolare in Bild 2.3 zeigen, dass die maximale Steigrate ROC_{max} mit der Geschwindigkeit beim maximalen Leistungsüberschuss erreicht wird, und der maximale Steigwinkel/Steiggradient γ_x beim maximalen Schubüberschuss.

Bild 2.3: Steigpolare bei konstantem Gewicht, Temperatur und Flughöhe für strahlgetriebene Flugzeuge (**Scheiderer 2008**, S.234)

Der maximale Steiggradient wird geflogen um die Flughöhe in kürzester Flugstrecke zu erhöhen und somit Hindernissen beim Start auszuweichen. Die maximale Steigrate wird geflogen, um das Flugzeug schnell in die Reiseflughöhe zu bringen, in der der Treibstoffverbrauch geringer ausfällt (**Scholz 2016a**). Aus diesem Grund wird im Folgenden mit der Geschwindigkeit für die maximale Steigrate gerechnet.

2.1.5 Definitionen zur Flughöhe

Mit steigender Flughöhe verringern sich der Widerstand und der Triebwerksschub. Da der Triebwerksschub schneller abnimmt als der Widerstand, wird der Schubüberschuss mit steigender Höhe geringer. **Scheiderer 2008** schreibt hierzu (S.239):

An dem Punkt, an dem kein Schubüberschuss mehr vorhanden ist, wird die "absolute Gipfelhöhe" des Flugzeugs erreicht. Die ROC ist an diesem Punkt "Null".

2.2 Die Parameter

Im Folgenden wird auf die einzelnen Parameter der Gleichung (2.8) zur Berechnung der Steigrate *ROC* eingegangen.

2.2.1 Berechnung des Widerstands

Eine alternative (flugmechanische) Darstellung der Polaren nach **Scholz 2016** (Tafelbild 3-6) lautet

$$D = A \cdot v^2 + B \cdot v^{-2} . {(2.11)}$$

mit

$$A = \frac{1}{2}\rho c_{D0}S \tag{2.12}$$

und

$$B = \frac{2m^2g^2}{\rho S\pi Ae} \quad . \tag{13}$$

2.2.2 Berechnung der wahren Geschwindigkeit

In der Flugmechanik sowie im täglichen Flugbetrieb kommen verschiedene Arten von Fluggeschwindigkeiten vor. Die folgenden Geschwindigkeiten werden unter dem Begriff "Geschwindigkeitsvarianten" zusammengefasst.

- Indicated Airspeed (IAS)
- Calibrated Airspeed (CAS)
- Density Airspeed (DAS)
- Equivalent Airspeed (EAS)
- True Airspeed (TAS)
- Mach Number (Ma)

Die Abhängigkeiten zwischen diesen Geschwindigkeiten werden in Bild 2.4 dargestellt. Im weiteren Verlauf werden nur die wahre Geschwindigkeit und die Machzahl verwendet.

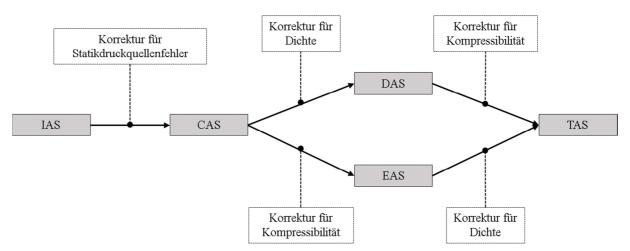


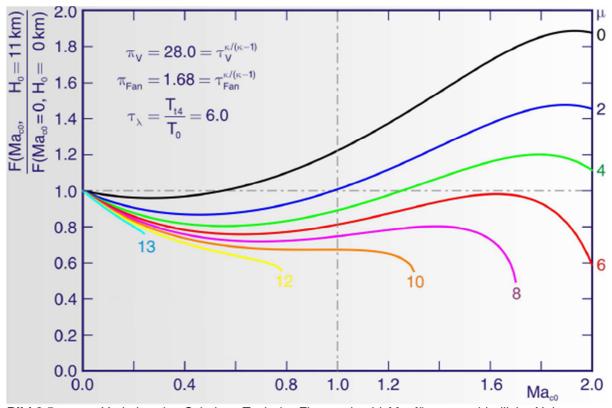
Bild 2.4 Abhängigkeiten zwischen den Geschwindigkeiten (nach Scheiderer 2008, S.67)

Nach den Geschwindigkeitskorrekturen für Statikdruckquellenfehler, Dichte und Kompressibilität erhält man die wahre Geschwindigkeit des Flugzeuges. Es wird die Geschwindigkeit betrachtet, bei der die Steigrate maximal, und die Steigzeit folglich minimal sind. Die maximale vertikale Geschwindigkeit erreicht man bei einem Jet durch das Fliegen mit der Geschwindigkeit für minimale Leistung (vgl. **Scholz 2016**, Tafelbild 5-12). Damit ergibt sich die maximale wahre Geschwindigkeit zu:

$$V_T = \sqrt{\frac{1}{6A}(T \mp \sqrt{T^2 + 12AB})}$$
 (2.14)

Die wahre Geschwindigkeit ist demnach abhängig von den oben benannten Parametern A und B, sowie zusätzlich vom Triebwerksschub T.

2.2.3 Bedeutung des Triebwerksschubes


Der Triebwerksschub T geht nach Gleichung (2.8) sowohl direkt in die Berechnung der vertikalen Geschwindigkeit ROC ein, als auch indirekt durch Beeinflussung der wahren Geschwindigkeit V_T (Gleichung (2.14)). Zur Berechnung des Triebwerksschubes werden unterschiedliche Methoden betrachtet. Das primäre Ziel ist es dabei, eine realitätsnahe Berechnung durchzuführen, wobei der Rechenaufwand relativ geringgehalten werden soll. Daraufhin werden im Folgenden drei unterschiedliche Methoden verwendet. Sie unterscheiden sich in der Anzahl und Auswahl der einzusetzenden Parameter, sowie der Herangehens- und Berechnungsweise.

2.2.4 Berechnung des Triebwerksschubes nach Bräunling

Der Massenstrom geht direkt in die Berechnung des Triebwerksschubes mit ein, welcher laut Definition zunächst aufgrund der geringeren Dichte bei zunehmender Flughöhe abnimmt.

$$\dot{m} = \rho c A_{FL} \tag{2.15}$$

In dieser von **Bräunling 2015** aufgestellten Berechnung wird der Einfluss der Machzahl berücksichtigt, und zwar in Form des Zusammenspiels von Stau- und Geschwindigkeitseffekt. Diese Abhängigkeit des Massenstroms ist in Gleichung (2.15) nicht zu erkennen. Der Geschwindigkeitseffekt bewirk eine Abnahme des Schubes von Strahltriebwerken mit steigender Flugmachzahl. Der Grad der antiproportionalen Zunahme des Massenstroms mit steigender Flugmachzahl hängt vom Nebenstromverhältnis (BPR) des Triebwerks ab. Bei Triebwerken mit niedrigem BPR ist der Staueffekt dominant, womit der Schub bei steigender Machzahl schnell wieder ansteigt. Triebwerke mit hohem BPR erreichen durch den dominierenden Geschwindigkeitseffekt einen geringeren Schub (vgl. **Bräunling 2008**, Abschnitt 5.3.3). Veranschaulicht wird dieses Zusammenspiel der Komponenten von Schub, Machzahl und BPR in Bild 2.5.

Bild 2.5 Variation des Schubes T mit der Flugmachzahl Ma_0 für unterschiedliche Nebenstromverhältnisse μ (**Bräunling 2015**, S.353)

Ein weiterer, nicht zu vernachlässigender Aspekt, ist die Änderung der Fangstromröhre bei unterschiedlichen Geschwindigkeiten, womit sich die Signifikanz des Massenstroms ändert (Gleichung (2.17)). In Bild 2.6 wird qualitativ dargestellt, wie sich die Querschnittsfläche der Fangstromröhre A_{FL} mit zunehmender Fluggeschwindigkeit verkleinert, und nach Gleichung (2.15) somit auch der Massenstrom selbst.

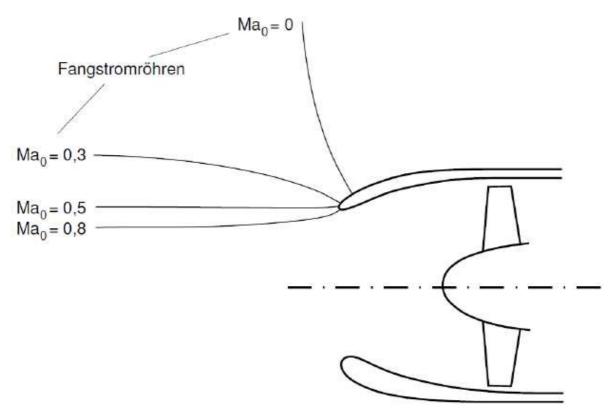


Bild 2.6 Unterschalldiffusor mit Fangstromröhren bei unterschiedlichen Flugmachzahlen *Ma*₀ (**Kozulovic 2016**, Folie 162)

Die sehr umfangreiche Gleichung (2.16) nach Bräunling beinhaltet weitere Triebwerksparameter, wie Druck- und Temperaturverhältnisse des Verdichters und des Fans, sowie der Turbineneintrittstemperatur. Für die Berechnung müssen alle einzusetzenden Parameter bekannt sein.

$$T = \frac{\dot{m}_0 a_0}{1 + \mu} \left\{ \sqrt{\frac{2}{\kappa - 1} \left[\tau_{\lambda} - \tau_0 \left(\tau_v - 1 + \mu (\tau_{Fan} - 1) \right) - \frac{\tau_{\lambda}}{\tau_0 \cdot \tau_v} \right]} + \mu \sqrt{\frac{2}{\kappa - 1} \left(\tau_0 \cdot \tau_{Fan} - 1 \right) - M a_0 (1 + \mu)} \right\}$$
(2.16)

$$\dot{m}_0 = \dot{m}_1 = \rho_1 c_1 A_{FL1} = \frac{p_0}{\sqrt{T_0}} \cdot M a_1 \cdot \sqrt{\frac{\kappa}{R}} \cdot A_{FL1} \cdot \left[\frac{1 + \frac{\kappa - 1}{2} \cdot M a_0^2}{1 + \frac{\kappa - 1}{2} \cdot M a_1^2} \right]^{\frac{1}{2} \frac{\kappa + 1}{\kappa - 1}}$$
(2.17)

2.2.5 Berechnung des Triebwerksschubes nach Scholz

Eine weitere Variante zur Berechnung des Triebwerkschubes wurde von Professor Dieter Scholz entwickelt. Die Gleichung ist ursprünglich für den Reiseflug ausgelegt und lautet:

$$\frac{T_{CR}}{T_N} = a\sigma^n \tag{2.18}$$

Mit $a = -0.0253\mu + 0.7291$ und $n = 0.0033\mu + 0.7324$.

Es werden deutlich weniger Parameter vorausgesetzt, die bekannt sein müssen. Dazu gehören das durch den Triebwerkshersteller gegebene BPR und der Startschub des Flugzeugs, sowie die von der Höhe abhängige relative Dichte σ . Letzteres ist definiert als die ambivalente Dichte ρ dividiert durch die Dichte auf Meereshöhe ρ_0 nach ISA Konditionen:

$$\sigma = \frac{\rho}{\rho_0} \tag{2.19}$$

Nach Young 2017 (Kapitel 1, S. 28) kann σ in der Troposphäre berechnet werden als

$$\sigma = \left(1 - \frac{LH}{T_0}\right)^{\left(\frac{g}{RL}\right) - 1} , \qquad (2.20)$$

mit
$$L = 6.5 \frac{K}{1000m}$$
, $T_0 = 288.15 K$, $g = 9.80665 \frac{m}{s^2}$ und $R = 287.053 \frac{m^2}{s^2 K}$.

2.2.6 Berechnung des Triebwerksschubes nach Howe

Denis Howe beschreibt eine Variation des Schubes in Abhängigkeit von der Machzahl und der Höhe zusätzlich zum BPR als

$$\frac{T}{T_N} = (k_1 + k_2 \mu + (k_3 + k_4 \mu) M a_0) \sigma^Q . \tag{2.21}$$

Die Gleichung gilt nur für eine Machzahl $Ma_0 \le 0.9$. k_{1-4} sowie Q beschreiben variable Faktoren. Die Faktoren sind für bestimmte Machzahlen und BPR vorgegeben und können direkt aus der Tabelle 2.1 abgelesen werden. Diese Faktoren gelten für den maximalen Schub. Howe beschreibt die Schubänderung mithilfe des Höheneinflusses und eines linearen Geschwindig-

keitseinflusses. Ein realer Schubverlauf ist nicht linear, was Howe dadurch berücksichtigt, seinen linearen Verlauf in zwei Sektionen mit unterschiedlichen Faktoren zu unterteilen. Die erste Sektion reicht von $0 < Ma_0 \le 0,4$ und die andere von $0,4 \le Ma_0 \le 0,9$. Schulz 2007 hat numerische Modelle zur Schubberechnung untersucht und analysiert, dass für einen Steigflug die Berechnung nach Howe zu bevorzugen sei (S. 73).

Tabelle 2.1 Faktoren für die Schubberechnung (nach Howe 2000, S. 67)

BPR	Ma ₀	\mathbf{k}_1	k ₂	k ₃	k ₄	Q h<11km	Q h>11km
1	0 - 0,4	1	0	-0,2	0,07	0,8	1
	0,4 - 0,9	0,856	0,062	0,16	-0,23	0,8	1
3 - 6	0 - 0,4	1	0	-0,6	-0,04	0,7	1
	0,4-0,9	0,88	-0,016	-0,3	0	0,7	1
8	0 - 0,4	1	0	-0,595	-0,03	0,7	1
	0,4-0,9	0,89	-0,014	-0,3	0,005	0,7	1

2.2.7 Berechnung des Gewichts

Zur Berechnung des Flugzeuggewichts wird vereinfacht angenommen, dass sich die Masse aufgrund von Treibstoffverlust oder ähnlichem während des Steigfluges nicht signifikant ändert, und somit konstant bleibt. Die Berechnung des Gewichts erfolgt klassisch nach dem zweiten Newtonschen Axiom

$$F = m \cdot a \quad . \tag{2.22}$$

wobei die Beschleunigung mit zunehmendem Abstand zur Erde abnimmt.

2.3 Zusammenführung

Die einzelnen Komponenten werden in der beigeführten Excelliste zusammengeführt und nach Gleichung (2.8) berechnet. In Bild 2.7 ist ein Auszug dieser Liste für den Fall der Berechnung nach Bräunling aufgezeigt. Im oberen Teil der Tabelle werden die Eingabeparameter eingetragen, welche für eine einwandfreie Berechnung nach der jeweiligen Methode vollständig sein müssen. Es dürfen nur Änderungen in den Eingabefeldern vorgenommen werden, da die anderen Felder Gleichungen beinhalten und ansonsten ihre Verlinkungen verlieren. Die Parameter sind Standardwerte und werden nach Möglichkeit ebenfalls nicht verändert. Am linken Rand stehen die Größen, die als Teil- oder Endergebnis in den Zeilen berechnet wer-

den. Die Spalten beschreiben die Höhen von 0 m bis 11000 m im Abstand von 1000 m (in diesem Bildausschnitt nur bis 7000 m). Die Ergebnisse der Parameter zur Berechnung der vertikalen Geschwindigkeit (siehe Abschnitt 2.2) sind farblich hervorgehoben. Die Berechnungsblätter zur Howe- sowie zur Scholz-Methode sind in Anhang B dargestellt, ebenso wie ein direkter Vergleich aller wichtigen Ergebnisse der drei Methoden. Aufgrund der unterschiedlichen Berechnungen der drei Methoden sind ebenso die Eingabeparameter jeweils andere.

Eingabeoptionen						Konstanten (vorzug	gsweise nicht än	dern):	
Masse Flugzeug m _F		75000 kg	9			Medium Luft:			
Flügelfläche S		123 m	2			карра к		1,4	
Spannweite b		34 m				Gaskonstante R		287,057	Nm/(kgK)
Streckung A		9,398373984 -							
Nullwiderstandsbei	vert c _{D0}	0,02 -				k _a		0,000022558	1/m
Oswaldfaktor e		0,75 -				Gravitationskonsta	nte G	6,67248E-11	m³/kgs²
Flugmachzahl Ma ₀		0,82 -				Erdradius r		6380000	m
Machzahl Triebwerk	seintritt Ma ₁	0,75 -				Masse Erde m _E		5,98E+24	kg
Nebenstromverhälti	niss µ	4,6 -							
Turbineneintrittstem		1425 K							
Verdichterdruckver		22 -							
Fandruckverhältnis	π _{Fan}	1,64 -							
Querschnittsfläche	Turbineneintritt A _{FL1}	2,010619298 m	2						
Durchmesser d		1,6 m							
löhe	m	0	1000	2000	3000	4000	5000	6000	7000
		1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4
	Nm/(kgK)	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057
lichte p	kg/m³	1,225	1,112	1,006	0,909	0,819	0,736	0,660	0,589
lruck p	Pa	101325	89875	79495	70109	61640	54020	47181	41061
lmgebungstemperatur T ₀	K	288,15	281,65	275,15	268,65	262,15	255,65	249,15	242,65
rdbeschleunigung g	m/s²	9,803	9,800	9,797	9,794	9,790	9,787	9,784	9,781
	N	89593	83239	77327	71882	66921	62457	58497	55045
	IV.	63533	03233	11321	11002	00321	62457	50431	55045
	kg/m	1,507	1,367	1,238	1,118	1,008	0,905	0,811	0,725
C _{D0}	-	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
s	m ²	123	123	123	123	123	123	123	123
						40000 470F F	E07404EE0		
	kg/m	323997514 ⁷ 75000	356813227 ⁷ 75000	393844663 ⁷ 75000	435753441 [*] 75000	483324795 [*] 75000	537494558 [*] 75000	599382929 75000	670336972 75000

Bild 2.7: Auszug der Excel Liste zur Berechnung der Steigzeit von Flugzeugen nach Bräunling

3 Analyse und Auswertung zur Steigzeit

3.1 Analyse

Die Ergebnisse der drei Methoden zur Berechnung des Triebwerkschubes werden miteinander verglichen, bevor jeweils ein Vergleich zum linearen Ansatz folgt.

Die Umgebungsparameter wie Druck, Temperatur, Dichte, Gravitation etc. sind für alle drei Varianten gleich. Werden die selben Eingabeparameter für die Berechnung benötigt, haben diese denselben Wert. Somit sind auch die Flugzeugmasse, die Flügelfläche, die Spannweite und weitere bei jeder der Methoden vom Wert her gleich. Die unterschiedlichen Berechnungen des Schubes T sorgen dafür, dass ebenfalls die vom Schub abhängigen Werte für die wahre Geschwindigkeit V_T und für den Widerstand D jeweils andere sind.

Für die Berechnung nach Bräunling wird die Beispielrechnung aus Kapitel 14 mit realen Größen verwendet, womit eine Vergleichbarkeit zu real existierenden Flugzeugen geschaffen wird. Für die beiden anderen Methoden gilt das gleiche Nebenstromverhältnis wie bei der von Bräunling, was bedeutet, dass die einzige Änderung des Schubes über die Wahl des Standschubes erreicht werden kann. Dies resultiert daher, dass die übrigen Parameter entweder konstant oder, wenn sie z.B. von der Umgebung abhängen, unveränderbar sind. Der Standschub für die beiden Methoden wird auf denselben Wert von 150000 N gesetzt. Somit ist er im Vergleich zu einem realitätsnahen Standschubwert eines A320 von 120000 N (siehe EASA 2017, S.11) nur gering angehoben worden. Dieser Änderung liegt dem damit ungefähr zusammentreffenden Startpunkt der Schubkurve bei der Höhe 0 m zugrunde. Dies sorgt für eine bessere Vergleichbarkeit der drei Methoden untereinander.

Betrachtet wird eine Flughöhe von 0 m bis 11000 m. In Bild 3.1 ist zu erkennen, dass der Graph des Schubes *T* bei jeder der drei Methoden anstatt den Verlauf einer Geraden, den einer Kurve abzeichnet, die nach oben geöffnet ist. Des Weiteren nimmt die Steigung des Graphen mit zunehmender Flughöhe ab.

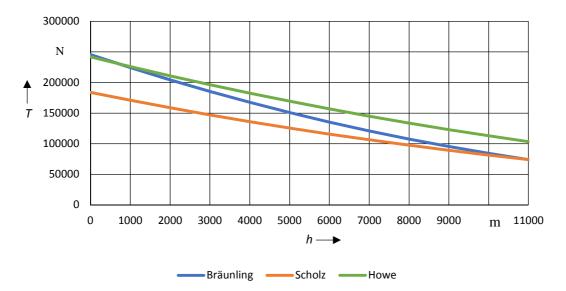


Bild 3.1 Diagramm zum Vergleich des Schubes nach den drei Berechnungsmethoden

h Steighöhe

T Triebwerksschub

Bei Bräunling beträgt der Gesamtschub in 0 m Höhe ca. 250000 N, genau wie es bei Howe der Fall ist. Bei der Berechnung nach Scholz nimmt der Schub einen deutlich geringeren Wert an, und zwar von 185000 N. Dahingegen beträgt der Schub nach Scholz in 11000 m ca. 75000 N, so wie bei Bräunling. Der Schub nach Howe liegt mit über 100000 N deutlich dar-über (siehe Bild 3.1).

Wenn man sich die Graphen zum *ROC* über die Höhe aufgetragen anguckt, so erkennt man ein ähnliches Schema, was auf den Schub zurückzuführen ist (Gleichung (2.8)). Wie in Bild 3.2 dargestellt, startet die *ROC* nach Bräunling und Howe in 0 m mit 50 m/s. Mit der Scholz-Methode wird in derselben Höhe nur eine *ROC* von 30 m/s erreicht. Bei Bräunling und Scholz sinkt dieser Wert auf 10 m/s in 11000 m ab. Nach Howe schafft das Flugzeug in dieser Höhe noch 20 m/s.

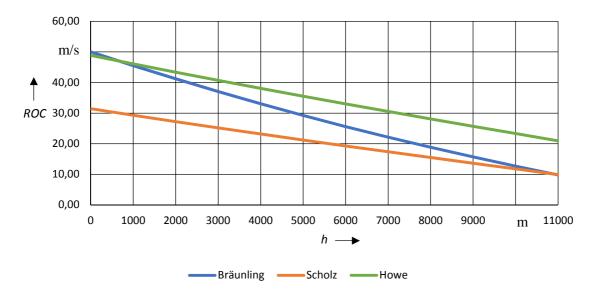


Bild 3.2 Diagramm zum Vergleich der Steigrate nach den drei Berechnungsmethoden

h SteighöheROC Steigrate "rate of climb" / vertikale Geschwindigkeit

Um eine bessere Vergleichbarkeit herzustellen werden die Ergebnisse der *ROC* dimensionslos gemacht und erneut über der Höhe aufgetragen. In Bild 3.3 ist zu erkennen, dass die beiden obenstehenden Kurven von Scholz und Howe einer Geraden näherkommen als die untere Kurve der Bräunling-Berechnung.

Bild 3.3 Diagramm zum Vergleich der Steigrate nach den drei Berechnungsmethoden

h SteighöheROC Steigrate "rate of climb" / vertikale Geschwindigkeit

Um jede dieser Kurven mit dem linearen Ansatz zu vergleichen wird, so wie in Bild 3.4 bis Bild dargestellt, eine Gerade vom Startpunkt bei 0 m bis zum Endpunkt bei 11000 m der jeweiligen Kurve eingefügt,

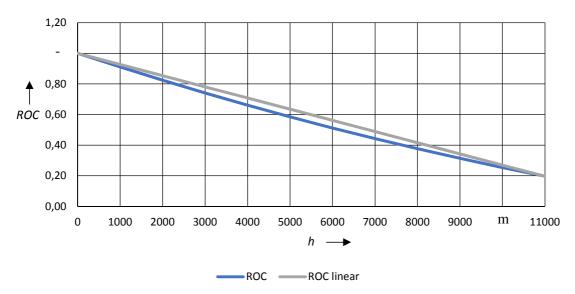


Bild 3.4 Diagramm zum Vergleich der Steigrate nach Bräunling mit dem linearen Ansatz

h SteighöheROC Steigrate "rate of climb" / vertikale Geschwindigkeit

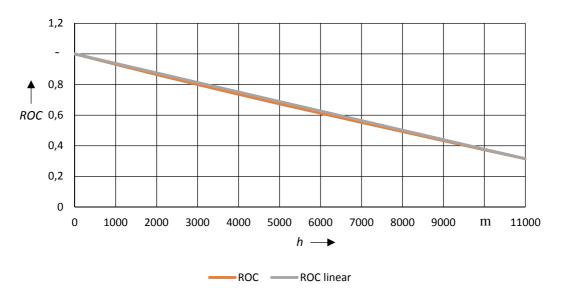


Bild 3.5 Diagramm zum Vergleich der Steigrate nach Scholz mit dem linearen Ansatz

h SteighöheROC Steigrate "rate of climb" / vertikale Geschwindigkeit

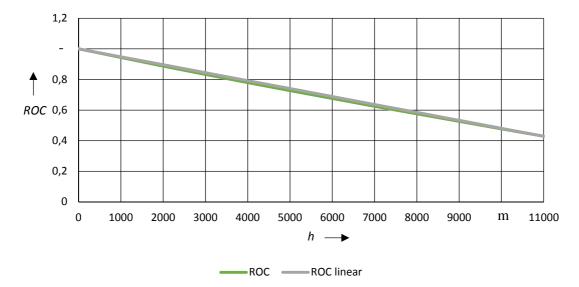


Bild 3.6 Diagramm zum Vergleich der Steigrate nach Howe mit dem linearen Ansatz

h SteighöheROC Steigrate "rate of climb" / vertikale Geschwindigkeit

Beispielsweise wird hiermit für die Bräunling-Methode angenommen, dass die Steiggeschwindigkeit des Flugzeugs beim Anstieg von 0 m auf 11000 m von ca. 50 m/s auf 10 m/s linear abfällt. Der lineare Verlauf kann beschrieben werden durch die Geradengleichung

$$y_{linear} = -0.0731x + 1.0731 (3.1)$$

Der Verlauf des Graphen nach Bräunling wird vereinfachter Weise durch die Funktion

$$y_{Br\ddot{a}unling} = 0.0017x^2 - 0.0946 + 1.093$$
 (3.2)

beschrieben. Es ist zu erkennen, dass der Verlauf nach Bräunling anstatt durch eine lineare Funktion besser mit einer polynomischen Funktion 2. Grades beschrieben wird.

Um herauszufinden wie ungenau die vereinfachte Methode mit linearem Ansatz gegenüber dieser aufwendigeren Methode der Integration ist, wird die prozentuale Abweichung zwischen den beiden Kurven ermittelt. Die Werte des Bräunling-Ansatzes werden hierbei als Sollwerte, und die des linearen Ansatzes als Istwerte angenommen. Mit der Gleichung

$$\%_{\text{error}} = \frac{\text{Istwert} - \text{Sollwert}}{\text{Istwert}} \cdot 100\%$$
 (3.3)

werden die prozentualen Abweichungen der Werte für jede Höhe von 0 m bis 11000 m im Abstand von 1000 m berechnet. Dieser Vorgang wird für die beiden anderen Methoden ebenfalls durchgeführt.

In Tabelle 3.1 sind die absoluten prozentualen Abweichungen der drei Methoden aufgezeigt. Der Maximale Wert der prozentualen Abweichung für die vertikale Geschwindigkeit nach Bräunling liegt bei 10,38 %. Nach Scholz ist an der Stelle mit der größten Abweichung zwischen den Graphen ein Wert von 2,22 % erreicht. Nach Howe beträgt die maximale Abweichung 1,92 %.

Tabelle 3.1 Prozentuale Abweichungen der vertikalen Geschwindigkeiten nach den Berechnungsmethoden von Bräunling, Scholz und Howe zum linearen Ansatz

	1				J.: _ : a.		· • · · · · · · · · · · · · · ·	110 11011				
Höhe [m]	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000
Bräunling [%]	-	1,78	3,60	5,38	7,06	8,55	9,71	10,38	10,31	9,12	6,13	-
Scholz [%]	-	0,64	1,18	1,62	1,95	2,15	2,22	2,13	1,87	1,44	0,82	-
HOWE [%]	-	0,54	1,00	1,38	1,67	1,86	1,92	1,86	1,65	1,28	0,74	-

Diese Projektarbeit untersucht die Steigzeit von Flugzeugen, wofür die vertikalen Geschwindigkeiten zuerst invertiert, und anschließend über der Höhe integriert werden (Gleichung (2.10)).

Die in der Tabelle 3.2 angegebenen Steigzeiten beschreiben die für das Flugzeug benötigten Zeiten, um von 0 m auf die jeweilige Höhe zu steigen. Somit beträgt z.B. die Steigzeit von 0 m auf 11000 m nach Bräunling 479 Sekunden, nach Scholz 600 Sekunden und nach Howe 338 Sekunden.

Tabelle 3.2 Benötigte Zeiten für einen Anstieg von der Ausgangshöhe in 0 m zur jeweiligen Höhe nach den Berechnungen von Bräunling. Scholz und Howe

		Hach	acii Dci	Communi	JOIL VOIL	Diddill	ng, con	OIZ UIIU	11000			
Höhe [m]	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000
Bräunling [s]	-	21,0	44,1	69,7	98,4	130,6	167,2	209,4	258,5	316,9	388,2	478,5
Scholz [s]	-	33,0	68,4	106,5	148,1	193,3	242,8	297,6	358,6	427,6	506,8	599,8
HOWE [s]	-	21,1	43,5	67,3	92,7	119,9	149,2	180,7	214,9	252,1	293,0	338,3

Um eine Steigzeit zu ermitteln, bei der das Flugzeug nicht in 0 m Höhe startet, muss die Zeit für die Strecke von 0 m bis zum Startwert einfach von der Zeit für die Strecke von 0 m bis zum Endwert abgezogen werden. So beträgt die Steigzeit nach der Scholz-Methode für einen Anstieg von 5000 m auf 6000 m 242,8 s - 193,3 s = 49,5 s. Die benötigten Steigzeiten für die

jeweiligen 1000 m sind aus Tabelle 3.3 zu entnehmen. In Bild 3.7 wird dies zusätzlich grafisch dargestellt.

Tabelle 3.3 Benötigte Zeiten für einen Anstieg von der Ausgangshöhe zur nächsten Höhe in 1000 m darüber nach den Berechnungen von Bräunling Scholz und Howe

		1000	m daruk	ber, nac	n aen B	erecnnu	ungen v	on Brau	niing, Sc	noiz un	a Howe	
Höhe [m]	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000
Bräunling [s]	-	21,0	23,1	25,6	28,6	32,2	36,6	42,1	49,1	58,4	71,3	90,3
Scholz [s]	-	33,0	35,4	38,2	41,5	45,2	49,5	54,7	61,1	69,0	79,2	93,0
HOWE [s]	-	21,1	22,4	23,8	25,4	27,2	29,2	31,5	34,2	37,3	40,9	45,3

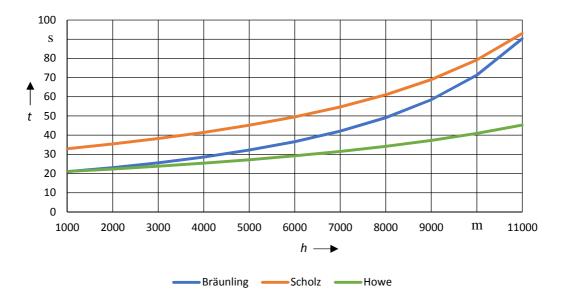


Bild 3.7 Diagramm zum Vergleich der Steigzeiten nach den drei Berechnungsmethoden

- h Steighöhe
- t Steigzeit

Wird aus der linearen Verteilung der vertikalen Geschwindigkeiten ebenfalls die Steigzeit berechnet und mit den Steigzeiten der drei Methoden verglichen, so ist bei allen dreien zu erkennen, dass die prozentuale Abweichung noch kleiner ist als bei den vertikalen Geschwindigkeiten.

Die maximale Abweichung zwischen zwei Steigzeiten beträgt nach Bräunling noch 7,14 %. 1,68 % ist die größte Abweichung, die aus der Scholz-Methode resultiert und nach der Howe-Methode liegt die maximale Abweichung zwischen den Steigzeiten bei 1,43 %. Die komplette Übersicht der Abweichungen der jeweiligen Steigzeiten sind in Tabelle 3.4 dargelegt.

Tabelle 3.4	Prozentuale	Abweichungen	der	Steigzeiten	nach	den	Berechnungsmethoden	von
	Bräunling Sc	chalz und Hawe	711m	linearen And	eatz			

Höhe [m]	0	1000	2000	3000	4000	5000	6000	7000	8000	9000	10000	11000
Bräunling [%]	-	0,92	1,83	2,75	3,66	4,55	5,40	6,15	6,76	7,14	7,10	6,24
Scholz [%]	-	0,33	0,63	0,90	1,14	1,35	1,51	1,62	1,68	1,67	1,58	1,39
HOWE [%]	-	0,28	0,53	0,76	0,97	1,14	1,28	1,38	1,43	1,43	1,37	1,23

3.2 Auswertung

Die unterschiedlichen Steigzeiten der drei Methoden für einen Steigflug von 0 m auf 11000 m sind sehr auffallend. Nach der Methode von Scholz benötigt das Flugzeug für diesen Höhenanstieg fast doppelt so lange wie nach der Howe-Methode. Dies resultiert aus den unterschiedlichen vertikalen Geschwindigkeiten. Während das Flugzeug nach Howe, so wie bei Bräunling, zu Beginn noch mit ca. 50 m/s steigt, und somit für die ersten 1000 m nur ca. 21 s benötigt, erreicht das Flugzeug nach Scholz diese Höhe erst nach 33 s. Wie in Tabelle 3.3 und Bild 3.7 zu sehen ist, bleiben die Zeiten nach Howe für jede weitere 1000 m geringer als bei den anderen Methoden, bis es bei 11000 m nur noch ca. die Hälfte der Zeit benötigt.

Wie bereits in Abschnitt 1.2 gesagt wurde gibt es keine "richtigen" oder "falschen" Modelle, sondern nur unterschiedliche Qualitäten. Um zu überprüfen, ob die Methode mit der geringsten Abweichung nun auch qualitativ die beste ist, werden diese validiert. **Schulz 2007** schreibt über die Berechnung nach Howe folgendes:

The equation given by Denis Howe was found to be most accurate for the evaluation of the climb thrust. (Abstract)

Die Abweichungen im Vergleich zu realen Steig-Daten liegen laut seiner Analyse

- bis 4267 m bei < 5%,
- bis 6096 m bei 10%.
- bis 10668 m bei 20%,
- bis 12192 m bei 40% (S.46).

Schulz sagt ebenfalls, dass Howe eine gute lineare Methode für die Schubänderung mittels Geschwindigkeitsanpassungen definiert hat. Ein weiterer großer Vorteil ist, dass nur wenige Eingabeparameter bekannt sein müssen. Er sagt jedoch auch:

[...] a real thrust lapse rate does not follow a linear law but is slightly bended [...] (S. 37)

Die Scholz-Methode benötigt noch weniger Eingabeparameter, ist nach eigenen Angaben jedoch für den Reiseflug ausgelegt. Aus diesem Grund ist die sehr geringe zu verzeichnende Abweichung der Steigzeit im Vergleich zur linearen Betrachtung nicht sehr aussagekräftig bezüglich der Qualität der Methode. Wie in Abschnitt 1.2 beschrieben, wird dies dadurch bestimmt, "wie gut [sie] Beobachtungsdaten erklärt und zukünftige Vorgänge vorhersagt." (Haußer 2011, S. 8) Die Steigzeit weicht bereits zu Beginn sehr stark von den anderen Methoden ab (siehe Bild 3.7). Da die Werte von Howe bis 4267 m nur eine Abweichung von weniger als 5 % zu realen Steigzeiten aufweisen, sind die Werte von Scholz dahingehend deutlich schlechter. Die Flughöhe von 11000 m entspricht etwas weniger als der Reiseflughöhe eines A320 (Lufthansa 2017, S. 94). Da die Scholz-Methode für genau diesen Fall ausgelegt wurde ist anzunehmen, dass die Berechnung des Schubes in dieser Höhe gute Werte ausgibt. Die große Abweichung der Howe-Methode bezüglich realer Werte in dieser Höhe passt ebenfalls dazu, genauso wie die realistischere Annäherung an die "maximum operating altitude" (EASA 2017a, S. 39).

Die Steigzeit der Bräunling-Methode besitzt mit 7 % die größte Abweichung im Vergleich zur linearen Berechnung. Für die Berechnung benötigt sie jedoch deutlich mehr Parameter, welche zum Teil schwer zugänglich sind. In Bild 3.7 ist gut zu erkennen, wie sich die Steigzeiten in den ersten 4000 Metern den Werten der Howe-Methode ähneln und zum Ende hin denen der Scholz-Methode. Wie eben dargelegt sind das die Bereiche, in denen die jeweiligen Methoden die besten Ergebnisse in Hinblick auf Reale Ereignisse erzielen. Zusätzlich besitzt der Graph einen leicht gebogenen Verlauf (**Schulz 2007**, S. 37), der bei den anderen Methoden nicht auftaucht. Es ist jedoch hinzuzufügen, dass sich die Werte von Bräunling für z.B. Verdichter- und Fandruckverhältnisse bei der Analyse anderer Flugzeugmuster ändern müssten.

Die prozentuale Abweichung der Steigzeit nach Bräunling ist mit 7,14 % deutlich größer als die beiden anderen Methoden von ca. 1,5 %. Dementsprechend kann gesagt werden, dass es von der angewendeten Berechnung des Schubes abhängig ist, ob eine Berechnung der Steigzeit mit einem linearen Ansatz annehmbar ist, oder nicht. Wird der Schub mit der Methode von Bräunling berechnet, so sollte man im weiteren Verlauf auf den linearen Ansatz verzichten. Die daraus resultierenden Abweichungen sind so groß, dass sie den Aufwand in den vorherigen Schritten eventuell zunichtemachen. Hierfür sollte man die realitätsgetreue Berechnung mittels Integration verwenden.

Für die Methoden der Schubberechnung nach Scholz und Howe kann aufgrund der geringen Abweichungen gesagt werden, dass sich die Steigzeiten durchaus mittels linearem Ansatz berechnen lassen. Bedenkt man, dass die Methode mit linearem Ansatz eine Daumenregel ist, mit der die Steigzeit oder die vertikale Geschwindigkeit überschlagen werden, so ist dies verglichen mit dem Aufwand einer Integration eine sehr gute Methode. Die Qualität der beiden

Schubberechnungsmethoden in Hinblick auf die Anwendungsfälle sollte jedoch im Vorwege bekannt sein.

Allgemein gesagt entscheidet man je nach Aufgabenstellung, Aufwand und gewünschter Ergebnisgenauigkeit die Wahl der Schub-, und demnach auch der Steigzeitberechnungsmethode.

4 Zusammenfassung

Untersucht wurde in dieser Projektarbeit die Genauigkeit einer vereinfachten Berechnung der Steigzeit von Flugzeugen. Der lineare Ansatz zur Berechnung der vertikalen Geschwindigkeit wurde mit dem einer numerischen Methode der Integration verglichen und die Abweichungen analysiert.

Dafür wurden drei unterschiedliche Methoden zur Berechnung des Schubes untersucht, welcher einen direkten Einfluss auf die vertikale Geschwindigkeit besitzt. Die Steigzeit errechnet sich schließlich durch Integration aus dieser Geschwindigkeit. Die Methoden unterscheiden sich je nach Rechenaufwand sowie den dafür benötigten Parametern, und berücksichtigen zum Teil nicht alle Einflussfaktoren. Während die Methode nach Bräunling z.B. die Änderung der Fangstromröhre des Triebwerks, und somit auch die Änderung des Massenstromes, berücksichtigt, tun dies die Methoden nach Scholz und Howe nicht.

Der Vergleich der jeweiligen Steigzeiten der drei Methoden mit denen einer linearen Berechnung zeigt, dass die Beantwortung der Aufgabenstellung von der Berechnungsmethode abhängig ist. Für manche Fälle, wie z.B. für die von Scholz und Howe, ist es durchaus möglich und auch sinnvoll in Hinblick auf den Aufwand, die Berechnung mittels linearer Abnahme der vertikalen Geschwindigkeit durchzuführen. Je mehr Vereinfachungen zu Beginn für die Parameter der vertikalen Geschwindigkeit vorgenommen wurden, desto mehr weichen sie von der Realität ab, und desto geringer ist die Abweichung zum linearen Verlauf.

Bei großem Aufwand und realitätsnaher Betrachtung in den vorhergegangenen Berechnungen, z.B. nach Bräunling, führt der lineare Ansatz mit 7 % Abweichung zu einem großen Fehler. Hierfür sollte die Berechnung der Steigzeit mittels Integration durchgeführt werden.

5 Ausblick

In dieser Projektarbeit wird davon ausgegangen, dass das Flugzeug von 0 m bis 11000 m durchgehend mit der maximalen wahren Geschwindigkeit steigt. Dies ist eine wenig effiziente Vorgehensweise und somit wenig wirtschaftlich bzw. realitätsnah. Bei einem operativen Steigflug wird in mehreren Steigsegmenten auf unterschiedliche Fluglevel gestiegen. Der Steigflug könnte dahingehend genauer untersucht werden, dass er in die unterschiedlichen Segmente unterteilt, und mit der jeweils passenden Methode berechnet wird. Zusätzlich wird bei einem operationellen Steigflug mit konstanter IAS/Mach oder einer bestimmten Steigrate gestiegen, was ebenfalls zu betrachten wäre.

Zusätzlich ist zu sagen, dass dieses Projekt nur an dem Beispiel eines Kurz- und Mittelstreckenflugzeuges des Typs A320 durchgeführt wurde. Es besteht die Möglichkeit die Eingabeparameter beliebig zu verändern, da diese keinen Einschränkungen unterliegen. Für Berechnungen von Flugzeugtypen, die stark von dem eines A320 abweichen, ist jedoch nicht gewährleistet, dass qualitativ hochwertige Ergebnisse erzielt werden. Für ein Langstreckenflugzeug ist es nur möglich in Etappen zu steigen, da die Dienstgipfelhöhe vom Gewicht abhängig ist und er das Maximum zu Beginn nicht erreichen kann. Die Veränderung des Gesamtgewichts des Flugzeuges aufgrund von Treibstoffverbrauch fällt bei Langstreckenflugzeugen deutlich gravierender aus, als es bei Kurz- oder Mittelstreckenflugzeugen der Fall ist. Dies müsste für eine allgemeinere Betrachtung der Berechnungen aus dieser Arbeit berücksichtigt werden.

Die Projektarbeit versucht durch reale Eingabeparameter auf reale Ergebnisse zu schließen. Die logische Konsequenz ist es diese Ergebnisse mit real gemessenen Werten eines Steigfluges zu vergleichen, Unterschiede darzustellen und Optimierungen vorzunehmen.

Literaturverzeichnis

Bräunling 2009 Bräunling, Willy J. G.: Flugzeugtriebwerke. Berlin, Heidelberg:

Springer-Verlag Berlin Heidelberg, 2009. doi: 10.1007/978-3-642-

34539-5

EASA 2017 EUROPEAN AVIATION SAFETY AGENCY: Type-Certificate Data Sheet

for CFM56-5B and CFM56-5C series engines. Paris, 2017.

EASA 2017a EUROPEAN AVIATION SAFETY AGENCY: Type-Certificate for Airbus

A318-A319-A320-A321. Blagnac, 2017.

Haußer 2011 HAUßER, Frank, LUCHKO, Yury: Mathematische Modellierung mit

MATLAB – Eine praxisorientierte Einführung. Berlin: Springer Spek-

trum, 2011. doi: 10.1007/978-3-8274-2399-3

Howe 2000 Howe, Denis: Aircraft Conceptional Design Synthesis. Lon-

don: Professional Engineering Publishing, 2000. doi:

10.1002/9781118903094

Kozulovic 2016 Kozulovic, Dragan: Flugzeugtriebwerke. Hamburg, Hochschule für

Angewandte Wissenschaft, Flugzeugtriebwerke, Vorlesungsskript,

2016.

Lufthansa 2017 DEUTSCHE LUFTHANSA AG: Flight Crew Operating Manual for A318-

A319-A320-A321. Frankfurt, 2017.

NATO 1980 ADVISORY GROUP FOR AEROSPACE RESEARCH AND DEVELOPMENT,

NORTHATLANTIC TREATY ORGANIZATION (AGARD/NATO): Multi-

lingual Aeronautical Dictionary. France, 1980.

Scheiderer 2008 Scheiderer, Joachim: Angewandte Flugleistung: Eine Einführung in

die operationelle Flugleistung vom Start bis zur Landung. Ber-

lin: Springer-Verlag Berlin Heidelberg, 2008. doi: 10.1007/978-3-

540-72724-8

Scholz 2016 SCHOLZ, Dieter: Flugmechanik I. Hamburg, Hochschule für Ange-

wandte Wissenschaft, Flugmechanik, Vorlesungstafelbilder, 2016.

doi: fml.profscholz.de

Scholz 2016a SCHOLZ, Dieter: Flugmechanik I. Hamburg, Hochschule für Ange-

wandte Wissenschaft, Flugmechanik, Skript, 2016.

Schulz 2007 Schulz, Oliver: Assessment of Numerical Models for Thrust and Spe-

cific Fuel Consumption for Turbofan Engines. Hamburg, Hochschule für Angewandte Wissenschaft, Fahrzeugtechnik und Flugzeugbau,

Diplomarbeit, 2007.

Young 2017 YOUNG, Trevor M.: Performance of the Jet Transport Airplane: Anal-

ysis Methods, Flight Operations and Regulations. Chichester,

UK: John Wiley & Sons, Ltd, 2017. doi: 10.1002/9781118534786

Anhang A

Herleitung der Berechnungsparameter

Die Parameter der Gleichung (2.8) zur Berechnung der vertikalen Geschwindigkeit werden im Folgenden hergeleitet.

A.1 Widerstand

Die Herleitung wird nach Scholz 2016 (Tafelbild 3-6) durchgeführt:

$$D = \frac{1}{2}\rho v^2 c_D S \tag{A.1}$$

$$c_D = c_{D0} + \frac{c_L^2}{\pi A e} \tag{A.2}$$

$$D = \frac{1}{2}\rho v^2 c_{D0} S + \frac{1}{2}\rho v^2 \frac{c_L^2}{\pi A e} S$$
 (A.3)

Das c_L ergibt sich aus der Auftriebsgleichung im Reiseflug. Der Steigwinkel γ wird hier nicht berücksichtigt.

$$L = mg = \frac{1}{2}\rho v^2 c_L S \tag{A.4}$$

$$c_L = \frac{2mg}{\rho v^2 S} \tag{A.5}$$

$$D = \frac{1}{2}\rho v^2 c_{D0} S + \frac{1}{2}\rho v^2 \cdot \frac{4m^2 g^2}{\rho^2 v^4 S^2 \pi A e} \cdot S$$
 (A.6)

$$= \frac{1}{2}\rho c_{D0}Sv^2 + \frac{2m^2g^2}{\rho S\pi Ae} \cdot v^{-2}$$
 (A.7)

$$D = A \cdot v^2 + B \cdot v^{-2} \tag{A.8}$$

A.2 Geschwindigkeit

Die Herleitung wird nach Scholz 2016 (Tafelbild 5-12) durchgeführt:

$$V_v = v \sin(\gamma) \tag{A.9}$$

$$= v \left(\frac{T}{W} - \frac{D}{W} \right) \tag{A.10}$$

$$= v \frac{T}{W} - \frac{v}{W} A v^2 - \frac{v}{W} B v^{-2}$$
 (A.11)

$$= -\frac{A}{W}v^3 + \frac{T}{W}v - \frac{B}{W}v^{-1} \tag{A.12}$$

Die maximale vertikale Geschwindigkeit wird bei $\frac{dV_v}{dv}$ erreicht:

$$\frac{dV_v}{dv} = -\frac{3A}{W}v^2 + \frac{T}{W} + \frac{B}{W}v^{-2} = 0 \tag{A.13}$$

$$\frac{3A}{W}v^4 - \frac{T}{W}v^2 - \frac{B}{W} = 0 \tag{A.14}$$

Mit $v^2 = x$

$$\frac{3A}{W}x^2 - \frac{T}{W}x - \frac{B}{W} = 0 {(A.15)}$$

$$3Ax^2 - Tx - B = 0 \tag{A.16}$$

$$x = \frac{T \mp \sqrt{T^2 + 12AB}}{6A} \tag{A.17}$$

$$V_T = v = \sqrt{\frac{1}{6A}(T \mp \sqrt{T^2 + 12AB})}$$
 (A.18)

A.3 Triebwerksschub

Die Herleitung ist **Bräunling 2015** entnommen und dem Kapitel 14 zu entnehmen. Das Ergebnis dieser Herleitung für den Schub, sowie den Massenstrom lauten:

$$T = \frac{\dot{m}_0 a_0}{1+\mu} \left\{ \sqrt{\frac{2}{\kappa - 1} \left[\tau_{\lambda} - \tau_0 \left(\tau_v - 1 + \mu (\tau_{Fan} - 1) \right) - \frac{\tau_{\lambda}}{\tau_0 \cdot \tau_v} \right]} + \mu \sqrt{\frac{2}{\kappa - 1} \left(\tau_0 \cdot \tau_{Fan} - 1 \right) - M a_0 (1 + \mu)} \right\}$$
(A.19)

$$\dot{m}_0 = \dot{m}_1 = \rho_1 c_1 A_1 = \frac{p_0}{\sqrt{T_0}} \cdot M a_1 \cdot \sqrt{\frac{\kappa}{R}} \cdot A_{FL1} \cdot \left[\frac{1 + \frac{\kappa - 1}{2} \cdot M a_0^2}{1 + \frac{\kappa - 1}{2} \cdot M a_1^2} \right]^{\frac{1}{2} \frac{\kappa + 1}{\kappa - 1}}$$
(A.20)

Die bezogene Turbineneintrittstemperatur errechnet sich nach:

$$T_{\lambda} = \frac{T_4}{T_0} \tag{A.21}$$

Ein nach Bräunling festgelegter Schätzwert beträgt T_{λ} = 6,0.

Die Umgebungsschallgeschwindigkeit errechnet sich nach:

$$a_0 = \sqrt{\kappa R T_0} \tag{A.22}$$

Das Verdichterdruckverhältnis errechnet sich nach:

$$\pi_V = \tau_V \frac{\kappa}{\kappa - 1} \tag{A.23}$$

Ein nach Bräunling festgelegter Schätzwert beträgt $\pi_V = 28,0$.

Das Fandruckverhältnis errechnet sich nach:

$$\pi_{Fan} = \tau_{Fan} \frac{\kappa}{\kappa - 1} \tag{A.24}$$

Ein nach Bräunling festgelegter Schätzwert beträgt $\pi_{Fan} = 1,68$.

Das Temperaturverhältnis rechnet sich nach:

$$\tau_0 = 1 + 0.5(-1)Ma_0^2 \tag{A.25}$$

A.4 Gewichtskraft

Die Gewichtskraft berechnet sich nach dem zweiten Newtonschen Axiom (Gleichung (2.22)) zu:

$$W = mg (A.26)$$

Die Erdbeschleunigung ist abhängig vom Abstand zum Erdmittelpunkt.

$$g = \frac{Gm_E}{(r_E + h)^2} \tag{A.27}$$

Anhang B

Auflistung der Berechnungstabellen

B.1 Berechnung nach Bräunling, Scholz und Howe als Übersicht

Höhe		ш	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	-	10000
D Bräunling	Į.	z	89593	83239	77327	71882	66921	62457	58497	55045	52099	49650		47683
Scholz		N	71471	67877	64550	61487	58688	56150	53870	51846	50073	48547		47261
Howe		Z	88519	83741	79243	75024	71082	67418	64030	60917	58079	55515		53223
V_{T}														
Bräunling	gu	m/s	235,8	237,1	238,5	239,8	241,2	242,7	244,4	246,3	248,6	251,4		254,8
Scholz		m/s	205,8	209,0	212,3	215,9	219,8	224,0	228,6	233,6	239,1	245,1	2	51,8
Howe		m/s	234,2	238,0	242,0	246,3	250,9	255,7	260,9	266,4	272,5	279,0	28	36,1
F														
Bräunling	ng.	N	245466	224337	204279	185336	167531	150870	135349	120949	107644	95403	841	187
Scholz		Z	183816	170945	158706	147082	136056	125610	115728	106392	97587	89294	814	66
Howe		z	241920	226023	210835	196341	182525	169370	156861	144981	133715	123046	112959	66
W														
Bräunlir	ng	kg	735205	734974	734744	734514	734284	734054	733824	733594	733365	733135	732906	90
Scholz		kg	735205	734974	734744	734514	734284	734054	733824	733594	733365	733135	732906	9
Howe		kg	735205	734974	734744	734514	734284	734054	733824	733594	733365	733135	732906	9
ROC														
Bräunling	ng	m/s	49,99	45,53	41,20	37,04	33,05	29,23	25,59	22,13	18,83	15,69	12,69	6
	linear	m/s	49,99	46,34	42,69	39,03	35,38	31,73	28,08	24,43	20,78	17,12	13,4	11
Scholz		m/s	31,45	29,30	27,21	25,16	23,16	21,20	19,27	17,37	15,49	13,62	11,76	9
	linear	s/m	31,45	29,49	27,53	25,57	23,61	21,65	19,70	17,74	15,78	13,82	11,8	98
Howe		m/s	48,86	46,07	43,35	40,68	38,07	35,51	33,00	30,53	28,10	25,70	23,3	22
	linear	m/s	48,86	46,32	43,78	41,25	38,71	36,17	33,64	31,10	28,56	26,03	23,4	6
ROC einheitenlos														
Bräunling	ng		1,00	0,91	0,82	0,74	990	85'0	0,51	0,44	0,38	0,31	0,2	S
	linear		1,00	0,93	0,85	0,78	0,71	0,63	0,56	0,49	0,42	0,34	0,2	1
Scholz			1,00	0,93	0,87	08'0	0,74	19,0	0,61	0,55	0,49	0,43	0,3	1
	linear		1,00	0,94	0,88	0,81	0,75	6900	0,63	0,56	05'0	0,44	0	0,38
Howe			1,00	0,94	68'0	0,83	0,78	0,73	89'0	0,62	0,58	0,53	°,0	8
	linear	_	1,00	56'0	06'0	0,84	62'0	0,74	69'0	0,64	85'0	0,53	0,4	00

Zeit t													
Brämling	v	0000	20,98	44,10	69,74	98,36	130,60	167,24	209,37	258,51	316,93	388,18	478,49
linear	S	00°0	20,79	43,30	67,82	94,76	124,65	158,22	196,49	241,03	294,30	360,61	448,64
Scholz	S	0000	32,96	68,40	106,64	148,10	193,28	242,81	297,55	358,62	427,61	506,81	599,81
linear	S)	00°0	32,85	16,79	105,68	146,41	190,67	239,15	292,72	352,60	420,47	498,81	591,47
Howe	S	0000	21,09	43,47	67,30	92,72	119,93	149,16	180,69	214,86	252,11	293,01	338,32
linear	S	00'0	21,03	43,24	66,79	91,83	118,57	147,25	178,20	211,78	248,50	289,00	334,15
prozentuale Abweichung ROC													
Bräunling	%	000	-1,78	-3,60	-5,38	-7,06	-8,55	-9,71	-10,38	-10,31	-9,12	-6,13	000
Scholz	%	00'0	-0,64	-1,18	-1,62	-1,95	-2,15	-2,22	-2,13	-1,87	-1,44	-0,82	000
Howe	%	00°0	-0,54	-1,00	-1,38	-1,67	-1,86	-1,92	-1,86	-1,65	-1,28	-0,74	000
prozentuale Abweichung Zeit t													
Bräunling	%	0000	0,92	1,83	2,75	3,66	4,55	5,40	6,15	92'9	7,14	7,10	6,24
Scholz	%	0000	0,33	0,63	06'0	1,14	1,35	1,51	1,62	1,68	1,67	1,58	1,39
Howe	%	00°0	0,28	0,53	92'0	26.0	1,14	1,28	1,38	1,43	1,43	1,37	1,23
Zeiten zwischen den 1000m													
Bräunling	S	00'0	20,98	23,12	25,63	28,63	32,23	36,64	42,13	49,14	58,41	71,26	90,31
Scholz	S	00'00	32,96	35,44	38,25	41,46	45,17	49,54	54,74	61,07	66'89	79,21	93,00
Howe	8	0,00	21,09	22,39	23,83	25,42	27,21	29,23	31,53	34,17	37,25	40,90	45,31

B.2 Berechnung nach Bräunling

Masse Flugzeug mr				Nonsta	Nonstanten (vorzugsweise nicht andern)	nicht andern):						
	75000 kg			Mediu	Medium Luft:							
Flügelfläche S	123 m ²			карра к	2		1,4					
Spannweite b	34 m			Gaskor	Gaskonstante R		287,057 Nm/(kgK)	gK)				
Streckung A	9,398373984 -											
Nullwiderstandsbeiwert cpo	0,02 -			ž,			0,000022558 1/m					
Oswaldfaktor e	0,75			Gravitz	Gravitationskonstante G		6,67248E-11 m3/kgs2	٩.				
Flugmachzahl Mao	0,82 -			Erdradius r	us r		6380000 m					
Machzahl Triebwerkseintritt Ma ₁	0,75			Masse	Masse Erde mg		5,98E+24 kg					
Nebenstromverhaltniss µ	4,6 -											
Turbineneintrittstemperatur T ₄	1425 K											
Verdichterdruckverhältnis nv	22 -											
Fandruckverhältnis Aran	1,64											
Querschnittsfläche Turbineneintritt Art.	2,010619298 m ²											
Durchmesser d	1,6 m											
Höhe m	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	11000
	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4
Nm(kgK)	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057
Dichte ρ kg/m³	1,225	1,112	1,006	606'0	0,819	0,736	0,660	0,589	0,525	0,466	0,413	0,364
Druck p Pa	101325	89875	79495	70109	61640	54020	47181	41061	35600	30743	26437	22632
Umgebungstemperatur T ₀	288,15	281,65	275,15	268,65	262,15	255,65	249,15	242,65	236,15	229,65	223,15	216,65
Erdbeschleunigung g m/s²	9.803	9.800	767.6	9.794	9.790	9.787	9.784	9.781	9.778	9.775	9.772	6926

D	Z	89593	83239	77327	71882	66921	62457	58497	55045	52099	49650	47683	46176
A	kg/m	1,507	1,367	1,238	1,118	1,008	0,905	0,811	0,725	0,646	0,574	0,508	0,448
CDO		0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
S	m ²	123	123	123	123	123	123	123	123	123	123	123	123
В	kg/m	323997514	356813227	393844663	435753441	483324795	537494558	599382929	670336972	751984400	846302103	955703984	1083154365
ш	kg	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000
ĸ		3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142
V		865'6	868'6	868'6	865,6	868'6	865,6	868'6	868'6	9,398	9,398	868'6	9,398
40		0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750
Δ	m/s	235,782	237,144	238,470	239,805	241,195	242,700	244,386	246,335	248,647	251,437	254,843	259,025
	;	227270	Eccases	OFFICE	700300	******	000000	070307	OF COCK	*******	20120	20110	12000
1 (2 Inebwerke)	Z	243468	506 050	525 202	183530	16/01	1308/0	133349	120949	258 714	93403	107 637	171716
om ov		0.750	950,050	025,500	47,084	022,190	105,115	0.750	0.750	0.750	0.750	197,037	0.750
Mai	. "	0,000	0,700	06/10	0,730	0,730	00,730	0,730	0,730	0,730	0,730	0,730	0,730
Arri	a	2,011	2,011	2,011	2,011	2,011	2,011	2,011	2,011	2,011	2,011	2,011	2,011
Mao		0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820	0,820
30	m/s	340,296	550,450	750,756	080,826	180,426	250,025	510,451	512,270	508,000	505,793	299,400	7/0,067
п.	-	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6
ğ		4,945	5,059	5,179	5,304	5,436	5,574	5,719	5,873	6,034	6,205	6,386	6,577
To		1,134	1,134	1,134	1,134	1,134	1,134	1,134	1,134	1,134	1,134	1,134	1,134
Δı		2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419	2,419
Trans.		1,152	1,152	1,152	1,152	1,152	1,152	1,152	1,152	1,152	1,152	1,152	1,152
Τ,	Ж	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000	1425,000
W	ke	735205	734974	734744	734514	734284	734054	733824	733594	733365	733135	732906	732676
	P												
Höhe	а	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	11000
ROC	s/m	49,989	45,526	41,204	37,041	33,048	29,232	25,594	22,130	18,833	15,692	12,693	9,820
ROC linear	m/s	49,989	46,337	42,685	39,034	35,382	31,730	28,079	24,427	20,775	17,123	13,472	9,820
ROC		-	0,911	0,824	0,741	0,661	0,585	0,512	0,443	0,377	0,314	0,254	0,196
ROC linear		-	0,927	0,854	0,781	0,708	0,635	0,562	0,489	0,416	0,343	0,269	0,196
1,ROC		0.020	0.022	0.024	0.027	0.030	0.034	0.039	0.045	0.053	0.064	0.079	0.102
1/ROC linear		0,020	0,022	0,023	0,026	0,028	0,032	0,036	0,041	0,048	0,058	0,074	0,102
			300.00		700.07	17000	002.000	0000071	020,000	012 020	200 200	201.000	100 007
Zeit linear	w w	0	20,793	44,102	67,820	98,364	124,650	158,215	196,492	241,028	294,296	360,611	478,491
prozentuale Abweichung ROC	%	00'0	-1,78	-3,60	-5,38	-7,06	-8,55	-9,71	-10,38	-10,31	-9,12	-6,13	00'0
prozentuale Abweichung Zeit t	%	000	0,92	1,83	2,75	3,66	4,55	5,40	6,15	97.9	7,14	7,10	6,24
Zeiten zwischen den 1000m	ø	0	20,985	23,117	25,633	28,628	32,234	36,641	42,130	49,144	58,414	71,256	90,309

B.3 Berechnung nach Scholz

Eingabeoptionen					Kons	Konstanten (vorzugsweise nicht ändern)	e nicht ändern):						
Masse m		75000 kg			Medi	Medium Luft:							
Flügelfläche S		123 m ²			¥			1,4 -					
Spannweite b		34 m			Gask	Gaskonstante R		287,057 Nm/(kgK)	kgK)				
Streckung A		9,398373984 -											
Nullwiderstandsbeiwert c _{D0}	beiwert c _{D0}	0,02 -			N.			0,000022558 1/m					
Oswaldfaktor e		0,75 -			Gravi	Gravitationskonstante G		6,67248E-11 m3/kgs2	. SS.				
Flugmachzahl Mao	la ₀	0,82			Erdra	Erdradius r		6380000 m					
Nebenstromverhältniss µ	altniss µ	4,6 -			Mass	Masse Erde m _E		5,98E+24 kg					
Standschub T _N		150000 N											
Durchmesser d		2,3 m											
	E	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	110
	а	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	110
		1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4
	Nm/(kgK)	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057
d	kg/m ³	1,225	1,112	1,006	606'0	0,819	0,736	0,660	0,589	0,525	0,466	0,413	0,364
Druck p	Pa	101325	89875	79495	70109	61640	54020	47181	41061	35600	30743	26437	22632
Temperatur T	м	288,15	281,65	275,15	268,65	262,15	255,65	249,15	242,65	236,15	229,65	223,15	216,0
-		0 000	0000	1000	000	0000	2020	1000	0 701	0.770	3220	0.773	0.760

D	Z	71471	LL 67877	64550	61487	58688	56150	53870	51846	50073	48547	47261	46206
A	kg/m	1,507	1,367	1,238	1,118	1,008	506'0	0,811	0,725	0,646	0,574	0,508	0,448
000		0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
S	m ²	123	123	123	123	123	123	123	123	123	123	123	123
В	kg/m	323997514	356813227	393844663	435753441	483324795	537494558	599382929	670336972	751984400	846302103	955703984	1083154365
в	kg	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000
R		3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142
٧		866'6	868'6	865'6	9,398	9,398	865'6	865'6	866'6	9,398	868'6	868'6	9,398
O		0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750
^	m/s	205,809	208,964	212,332	215,940	219,824	224,024	228,590	233,579	239,058	245,107	251,820	259,306
T () Triahrmacka)	2	193916	170045	159706	147082	136056	125610	115779	106307	79570	80008	81400	74183
3		0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613	0.613
а		0,748	0,748	0.748	0.748	0.748	0,748	0,748	0.748	0,748	0,748	0.748	0,748
3		4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6	4.6
. b		1,000	106'0	0,822	0,742	699'0	0,601	0,539	0,481	0,429	0,381	0,337	0,297
S	kg/m ³	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225
L	Z	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000
W	kg	735205	734974	734744	734514	734284	734054	733824	733594	733365	733135	732906	732676
Höhe	a	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	11000
ROC	m/s	31,449		27.210	25.164	23.162	21.198	19,269	17.368	15,488	13,623	11.764	9,901
ROC gerade	m/s	31,449	29,490	27,531	25,573	23,614	21,655	19,696	17,737	15,778	13,819	11,860	9,901
ROC		1	0,932	0,865	00800	0,736	0,674	0,613	0,552	0,492	0,433	0,374	0,315
ROC gerade		-	0,938	0,875	0,813	0,751	689'0	0,626	0,564	0,502	0,439	0,377	0,315
1/ROC		0.032	0.034	0.037	0.040	0.043	0.047	0.052	0.058	0.065	0.073	0.085	0.101
1/ROC gerade		0,032	0,034	0,036	0,039	0,042	0,046	0,051	950'0	0,063	0,072	0,084	0,101
Zeit t	S	0	52,961	68,399	106,645	148,102	195,2/6	242,811	29/,249	338,621	42/,00/	500,813	299,814
Teit t gerade	ø	0	32,853	696'19	105,682	146,409	190,673	239,148	292,724	352,603	420,474	498,813	591,468
prozentuale Abweichung ROC	%	00'0	-0,64	-1,18	-1,62	-1,95	-2,15	-2,22	-2,13	-1,87	-1,44	-0,82	00'0
prozentuale Abweichung Zeit t	%	00'0	0,33	69'0	06'0	1,14	1,35	15,1	1,62	1,68	1,67	1,58	1,39
Zeiten zwischen den 1000m	v	0	32,961	35,438	38,245	41,457	45,174	49,535	54,738	61,072	986'89	79,206	93,001

B.4 Berechnung nach Howe

Eingabeoptionen					Konst	Konstanten (vorzugsweise nicht ändern)	se nicht ändern):						
Masse m		75000 kg			Mediv	Medium Luft:							
Flügelfläche S		123 m ²			¥			1,4					
Spannweite b		34 m			Gasko	Gaskonstante R		287,057 Nm/(kgK)	(kgK)				
darus Streckung A		9,398373984 -											
Nullwiderstandsbeiwert cDo	iwert cpo	0,02 -			<i>3</i> 2			0,000022558 1/m					
Oswaldfaktor e		0,75 -			Gravit	Gravitationskonstante G		6,67248E-11 m3/kgs2	gs,				
Flugmachzahl Mao		0,82 -			Erdradius r	ius r		6380000 m					
Nebenstromverhältniss	tniss	4,6 -			Masse	Masse Erde mg		5,98E+24 kg					
Standschub T _N		150000 N											
						Fakt	oren für die Schubgl	Faktoren für die Schubgleichung nach Howe 2000	2000				
					BPR	Mao	, k	k,	E.	3	Q h<11km		Q h>11km
						1 0-0,4		1	0	-0,2	0,07	8'0	-
						0,4-0,9	O,	0,856	0,062	0,16	-0,23	8'0	-
					3 bis 6			1	0	9.0-	-0,04	0,7	1
						0,4-0,9	o,	88'0	-0,016	-0,3	0	0,7	1
						8 0-0,4		1	0	-0,595	-0,03	0,7	1
						0,4-0,9	6,	68'0	-0,014	-0,3	0,005	7,0	
Höhe		0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	11000
		1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4	1,4
	Nm/(kgK)	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057	287,057
Dichte p	kg/m ³	1,225	1,112	1,006	606'0	0,819	0,736	0,660	0,589	0,525	0,466	0,413	0,364
Druck p	Pa	101325	89875	79495	70109	61640	54020	47181	41061	35600	30743	26437	22632
Temperatur T	Ж	288,15	281,65	275,15	268,65	262,15	255,65	249,15	242,65	236,15	229,65	223,15	216,65
Frdheschlennianns	m/s ²	0 803	0000	0 707	0 704	0 700	0 797	0 794	0 781	0 779	9775	0.773	0 760

D	N	88519	83741	79243	75024	71082	67418	64030	60917	58079	55515	53223	51200
4	kg/m	1,507	1,367	1,238	1,118	1,008	506'0	0,811	0,725	0,646	0,574	0,508	0,448
800		0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
S	m ²	123	123	123	123	123	123	123	123	123	123	123	123
В	kg/m	323997514	356813227	393844663	435753441	483324795	537494558	599382929	670336972	751984400	846302103	955703984	1083154365
ш	kg	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000	75000
R	-	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142	3,142
٧		866,6	868'6	9,398	9,398	868'6	865,6	865,6	9,398	9,398	866,6	868'6	9,398
v		0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750	0,750
			200 200			220 020	200 220	200 000		037 000	100000	200	
Δ	m/s	101,467	C86*/57	747,031	740,511	CC8,0C2	/60,007	//8'007	200,443	712,437	1/6,8/7	780,083	795,884
T (2 Triebwerke)	×	241920	226023	210835	196341	182525	169370	156861	144981	133715	123046	112959	103436
K ₁		0,88	88'0	88'0	88'0	88'0	88'0	0,88	88'0	88'0	88'0	88'0	0,88
Ŕ		-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016	-0,016
Ks		-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3	-0,3
ķ		0	0	0	0	0	0	0	0	0	0	0	0
Q für h<11km		0,7	0,7	0,7	2,0	2,0	0,7	0,7	0,7	0,7	0,7	0,7	0,7
T_N	N	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000	150000
э.		4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6	4,6
ь		1	0,907	0,822	0,742	699'0	0,601	0,539	0,481	0,429	0,381	0,337	0,297
હ	kg/m ³	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225	1,225
111	3	735705	NEON CE	224744	724514	724704	724054	722074	723504	722265	301000	200055	353655
**	S _W	13777	+12+01	++(+0)	+10+01	+07+61	+00+01	+70551	+600001	COCCCI	(5155)	006751	010751
Höhe	В	0	1000	2000	3000	4000	2000	0009	7000	8000	0006	10000	11000
ROC	m/s	48,856	46,071	43,347	40,682	38,072	35,514	33,002	30,532	28,100	25,697	23,317	20,952
ROC linear	m/s	48,856	46,319	43,782	41,246	38,709	36,172	33,636	31,099	28,562	26,026	23,489	20,952
Roc		1	0,943	0,887	0,833	0,779	0,727	0,675	0,625	0,575	0,526	0,477	0,429
ROC linear		1	0,948	968'0	0,844	0,792	0,740	0,688	0,637	0,585	0,533	0,481	0,429
1/ROC		0.020	0.022	0.023	0.025	0.026	0.028	0.030	0.033	0.036	0.039	0.043	0.048
1/ROC linear		0,020	0,022	0,023	0,024	0,026	0,028	0,030	0,032	0,035	0,038	0,043	0,048
Zaitt	v	0	21 087	43.475	002 29	92,723	119 935	149 165	180 691	214.861	252.113	293 014	338 320
Zeit t linear	v)	0	21,029	43,244	98,799	91,826	118,566	147,253	178,196	211,780	248,497	288,995	334,145
occeptuale Abraeichma ROC	%	000	0.54	100	1 38	1,67	1 86	1 92	1 86	1 65	1 28	-0.74	000
prozentuale Abweichung Zeit t	2 %	000	0.28	0.53	0.76	76.0	1.14	1.28	1.38	1.43	1.43	137	1.23
_													
Zeiten zwischen den 1000m	S	0	21,087	22,388	23,825	25,423	27,212	29,230	31,527	34,170	37,251	40,901	45,307