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Abstract 
 
Purpose – The paper presents a theoretical framework that describes the aerodynamics of a 
falling maple (Acer pseudoplatanus) seed. 
Methodology – A semi-empirical method is developed that provides a ratio stating how much 
longer a seed falls in air compared to freefall. The generated lift is calculated by evaluating the 
integral of two-dimensional airfoil elements using a preliminary falling speed. This allows for 
the calculation of the definitive falling speed using Blade Element Momentum Theory (BEMT); 
hereafter, the fall duration in air and in freefall are obtained. Furthermore, the input-variables 
of the calculation of lift are transformed to require only the length and width of the maple seed. 
Lastly, the method is applied to two calculation examples as a means of validation. 
Findings –The two example calculations gave percentual errors of 5.5% and 3.7% for the fall-
ing speed when compared to measured values. The averaged result is that a maple seed falls 9.9 
times longer in air when released from 20 m; however, this result is highly dependent on geo-
metrical parameters which can be accounted for using the constructed method. 
Research limitations – Firstly, the coefficient of lift is unknown for the shape of a maple seed. 
Secondly, the approximated transient state is yet to be verified by measurement. 
Originality/ Value – The added value of this report lies in the reduction of simplifications 
compared to BEMT approaches. In this way a large amount of accuracy is achieved due to the 
inclusion of many geometrical parameters, even though simplicity is maintained. This has been 
accomplished through constructing a simple three-step method that is fundamental and essen-
tially non-iterative.  
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The Aerodynamics of a Falling Maple Seed 
 
Task for a project or thesis 
 
Background 
The maple seed (Acer pseudoplatanus) enters an autorotation after it is released from its stem, 
connecting it to the maple tree. During autorotation, the governing aerodynamics allow the seed 
to slow down its vertical velocity to a certain extent, rendering it more susceptible to effective 
wind dispersal. This evolutionarily shaped mechanism has pushed the aerodynamics of the 
winged seed towards very high efficiencies, constantly being put to the test in its race of sur-
vival. Subsequently, and understanding of these aerodynamical principles resulting in such high 
efficiencies would be truly valuable. 
 
Task 
Determine how much longer the seed falls using autorotational principles when compared to 
freefall. Examine this in constructing an aerodynamical framework following these steps: 
 
• Start with a review to show what exists (or rather does not exist) on the topic. 
• Calculate the lift generated by a maple seed and discuss the important derived equations. 
• Use Blade Element Momentum Theory to calculate the equilibrium falling speed in air. 
• Define a model that allows the calculation of a ratio declaring how much longer the seed 

falls in air. 
• Validate the constructed method using calculation examples. 
• Discuss your results and make recommendations. 
 
The report has to be written in English based on German or international standards on report 
writing 
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List of Definitions 
 
Airfoil 
A body so shaped as to produce an aerodynamic reaction normal to the direction of its motion 
through a fluid with minimum drag. (Frénot 1960, pp. 11) 
 
Aspect ratio 
The ratio of the square of the span to the gross area of an airfoil. (Frénot 1960, pp. 40) 
 
Asymptote 
A straight line that continually approaches a given curve but does not meet it at any finite 
distance. 
 
Autorotation 
A condition of flight wherein there is free and continuous rotation of a heliopter rotor, or other 
aerodynamic body, caused by air forces and not sustained by engine power inputs.  
(Frénot 1960, pp. 47) 
 
Camber 
Curvature of the median line of an airfoil section; more generally, the curvature of a surface. 
(Frénot 1960, pp. 79) 
 
Center of mass 
A point representing the mean position of the matter in a body or system. 
 
Center of rotation 
The center of rotation is a point about which a plane figure rotates. 
 
Chord 
The straight line through the centers of curvature of the leading and trailing edges of an airfoil 
section. (Frénot 1960, pp. 91) 
 
Curve fitting 
Curve fitting is the process of constructing a curve, or mathematical function, that has the best 
fit to a series of data points, possibly subject to constraints. 
 
Drag 
The component of the total aerodynamic force in the direction of the undisturbed relative 
airflow. In powered flight, contributions to this component arising from thrust are excluded. 
(Frénot 1960, pp. 143).  
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Lift 
The component of the total aerodynamic for in the direction of the lift axis. (Frénot 1960, pp. 
261) 
 
Span 
The distance between the wing tips normal to the plane of symmetry. (Frénot 1960, pp. 404) 
Here referred to as the total length of the wing section from center of rotation to the wing tip. 
 
Stall 
The breakdown of attached flow on a wing or turbomachinery blade leading to marked changes 
in aerodynamic characteristics, in particular loss of lift. (Frénot 1960, pp. 411) 
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1 Introduction 
 

1.1 Motivation 
 
The study of maple seed aerodynamics has fascinated those in search of improving the current 
technological efficiencies and engineering fields have often mimicked the mechanics produced 
by evolution in an attempt to achieve equally high efficiencies. 
 
However, careful design approaches by humans used in conventional design philosophy limit 
themselves to conventions that originate from the past, resulting in mannerisms that remain 
unquestioned because “that is how things are done”. This contentment that is found in human 
design philosophy, letting methods be because they seem to work, need not apply to evolution-
ary design: an evolutionary design is constantly being put to the test, competing with rivaling 
mutations that do not limit themselves to changing only the last developed feature of the design. 
Evolutionary design constantly thinks outside the box because it wouldn’t know where the box 
even is; being an unconscious process, it requires only an extensive amount of time for such 
radical trial and error to achieve superb results. We humans do not have the luxury of time that 
nature does, restricting us to finding an optimal design approach in a time limited context; 
therefore, we do not constantly question the basis of the design.  
 
Given this discrepancy in design philosophy, designs that are produced by nature often prove 
to be ingenious in an unconventional way when compared to their more conservative human 
design equivalents. The efficiencies found in maple seeds in extracting power from the air far 
exceed their latest man-made equivalents, namely wind turbines; even going so far as to nearly 
equal the theoretical limit with which power can be extracted from the air. (Holden 2015) As a 
time optimizing species, it would make sense to study the mechanics that are produced by the 
slow, but still more accomplished process of nature until we have reached an equal design ca-
pability. Only then should further research in the mechanics of nature be replaced by starting 
off where the wisdom of nature has ended, reaching even higher efficiencies on our own or 
adapting the discovered mechanics to environments where nature has not yet had the time to 
come up with fitting solutions. As the maple seed still significantly outperforms its man-made 
equivalents, the most time efficient way of progressing in the field of aerodynamics and design 
may prove to be the study of such products of nature; perhaps one day allowing us too to extract 
power from the air at an efficiency close to the theoretical limit. 
 
 
 
 
 
 
 



15 
 

 

1.2 Title Terminology 
 
Maple 
 
“A tree or shrub with lobed leaves, winged fruits, and colorful autumn foliage, grown as an 
ornamental or for its timber or syrupy sap.” (Oxford 2019) 
 
Aerodynamics 
 
“The study of the properties of moving air and the interaction between the air and solid bodies 
moving through it.” (Oxford 2019) 
 
 
 

1.3 Objectives 
 
The main objectives in constructing the methodology are to obtain sufficient accuracy, but 
moreover a simplicity that allows interpretation of the constructed framework; this would pro-
vide the opportunity to extract important insight into the governing mechanics of the autorota-
tion. The goal in sight when solving this research question is not to provide a one-size-fits-all 
answer which states a global average providing the reduction factor of the fall duration when 
accounting for air-effects, but rather to both determine the factors which influence this reduc-
tion and to mathematically provide relationships that quantitatively display the influence these 
factors have on it.  
 
A globally averaged answer considering as many maple seeds as possible is thought to be of 
less value than an answer that allows for the inclusion of individual variances. This is because 
the subject of maple seed aerodynamics could also appeal to quantitative studies in the field of 
biology where individual variances are the main driver of survivability; e.g., a study calculating 
the survivability of the maple tree when shaped by evolution to determine its height and a con-
sequent optimal height. The trade-off between a larger energy need of a taller maple tree and a 
more effective seed dispersal could show why the tree is as tall as it is found to be. Here, an 
optimum can only be obtained quantitatively which is where a variance including method would 
prove to be necessary. Moreover, any study concerning maple seeds will most likely be at an 
individual level, series of individuals or a normal distribution of geometrical variance; a glob-
ally averaged value would thus be of little added value when compared to an individualistic 
method in such situations. 
 
However, in order to progress from the abstract world of mathematics to real-life applied sci-
ences, exemplar calculations will be made that provide insight into what the physical properties 
such as lift, falling velocity and the fall duration ratio actually could be in real life examples 
and to what extent these values vary among seeds with different geometries. 
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1.4 Literature Review 
 
An overview of existing literature ought to be conducted to find a subject in this narrow topic 
of research where an added value can be provided. Various publicly available research sources 
have been consulted using keywords such as “BEMT”, “maple seed” and “post-stall”. The 
choice of paper was primarily based on the title and it was decided using the abstract whether 
the paper in question provides an additional perspective on the topic and is therefore suitable 
for inclusion in this review. 
 
Previous research on this topic fails to provide a simple yet all-encompassing methodology that 
is able to calculate the aerodynamics of a maple seed from start to finish. However, simulations 
using CFD and complex mathematical approaches using BEMT have been conducted that de-
scribe certain aspects of the seed with reasonable accuracy. Caley 2013, Lee 2017 and  
Holden 2015 have simulated maple seeds using CFD with underlying principles of BEMT; 
whereas Matič 2015 and Varshney 2011 have opted for a fundamental approach, each gener-
ating a mathematical model that can be used to explain the seed’s mechanics. Although  
Matič 2015 and Varshney 2011 provide some insight into the inner mechanics of the autoro-
tation, the fundamental framework it offers is still fairly limited, discarding the possibility to 
incorporate important details of the seed into the equations and closing the door to a fundamen-
tal discussion of its mechanics.  
 
 
 

1.5 Structure 
 
The content of this paper is structured as follows. 
 
Chapter 2 discusses the recent findings in the field of maple seed research and the possibil-

ity of finding an added value 
Chapter 3 derives and provides an equation for the calculation of a preliminary falling 

speed. This speed will be used later on to give a starting value needed for the 
calculation of lift. The formula is based on some large assumptions, but it is 
shown in chapter 3 that the accuracy of this preliminary value is not of large 
importance. 

Chapter 4 derives and provides the most important equation of the provided methodology, 
namely the calculation of the lift produced by the falling maple seed. It also dis-
cusses and questions the fundamentals of aerodynamical behavior of a maple 
seed as described by these equations. 

Chapter 5  explains the usage of an equation resulting from BEMT for calculating the actual 
equilibrium falling speed of a given maple seed. 
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Chapter 6 expands the derived equation of lift to a normalized and parametrized version in 
order to facilitate the use of the provided method. 

Chapter 7 explores a model for calculating the fallen distance of a given maple seed as a 
function of time based on the calculated falling speed. This fallen distance is 
then compared to a model describing fallen distance in freefall and subsequent 
relationships describing the fall duration as a function of height are used to cal-
culate the ratio between the fall duration in air and in freefall. 

Chapter 8 applies the provided equations to two calculation examples of measured maple 
seeds to give an indication of the accuracy of the derived methodology. 

Chapter 9 summarizes the findings and conclusions that have been derived in the paper and 
continues with several recommendations for proceeding research 
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2 State of the Art 
 
Caley 2013 has conducted a research on the CFD simulation using BEMT principles to simulate 
a maple seed both in rotation and in a steady state with a reasonable level of accuracy. Neither 
variations in the chord length nor mass have been accounted for in the simulation, undermining 
accuracy. The paper states that the large variations in the maple seed’s geometry lead to ex-
tremes in pressure and lift forces, however no framework has been developed to account for 
these geometrical variations. 
 
Ehrich 2018 compares different methods in their accuracy of solving a multi-megawatt class 
wind turbine. The three methods are CFD simulation, an actuator line based CFD simulation 
and a Blade Element Momentum (BEM) approach. It is shown that BEM proves to be the least 
accurate approach in almost all aspects due to its heavy reliance on significant assumptions. 
 
Holden 2015 analyses the flow field around a maple seed and compares the results to wind 
turbine blades. It uses empirical values to substitute physical values that were deferred from 
real life seed samples using high-speed video imaging. Performance values stemming from 
BEMT show a remarkably high-power coefficient of 0.59 for maple seeds when compared to 
those ranging from 0.45 to 0.48 commonly found in wind turbines. 
 
Kulunk 2011 discusses fundamental and advanced topics of wind turbine theory. The paper 
covers subjects ranging from the basic actuator disk model to those including momentum equa-
tions (BEMT) and methods of including tip loss correction factors. 
 
Lee 2017 uses the three-dimensional model of a scanned maple seed to numerically simulate 
the falling velocity and rotational velocity of a maple seed assuming uniform densities for the 
wing section and for the nut section. The study shows leading-edge vortex (LEV) generation, 
allowing the seed to attain a high lift force. The study also provides the falling speed and rota-
tional velocity as a function of time. A change in these values for a variance in seed geometry 
is not accounted for. 
 
Matič 2015 derives a simplified nonlinear dynamic model of a monocopter using a design in-
spired by a maple seed. The model is based on unsteady BEM theory. A validation is provided 
by simulation and the results are in good agreement with empirical findings on a qualitative 
basis, quantitative comparisons validating the constructed method more accurately were not 
performed. The paper provides a relatively simple approach to explaining many characteristics 
of the maple seed; however, the progression of falling speed with respect to time is not in agree-
ment with the simulated findings of Lee 2017. 
 
 
Petrilli 2013 provides an aerodynamic database of airfoils and wings at stall and post-stall an-
gles of attack. The paper uses Reynolds-Averaged Navier Stokes (RANS) computational 
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analysis to simulate high angles of attack lift characteristics providing detailed results for three 
airfoils. Preliminary calculations and known simulations, conducted by Lee 2017, have sug-
gested that a maple seed operates at unconventionally high angles of attack. 
 
Varshney 2011 investigates the kinematics of the transition to a helical motion of a falling 
maple seed. It discovers that the gyration is not initiated analogously to wind turbines, but that 
it is rather a three-step process that is only partially dependent on aerodynamical forces. The 
results produced by Varshney 2011 limit themselves to be purely qualitative, providing infor-
mation on the inner mechanics but lacking a quantitative basis. 
 
In reviewing these various sources of research, the conclusion can be stated that the majority of 
research falls short in providing a theoretical framework that is capable of explaining the fun-
damental drivers behind the motion that is performed by a maple seed both quantitatively and 
qualitatively. The inner mechanics of this motion remain largely unexplored and require a solid 
framework that provides an optimum in combining simplicity and encompassment of maple 
seed features. Without simplicity, the interpretability will suffer and the possibility of extracting 
fundamental insights into the mechanics of its workings ought to diminish. However, where the 
work of Matič 2015 and Varshney 2011 fall short is in disregarding a large number of param-
eters that define the maple seed, therefore oversimplifying not only their model but also the 
conclusions and insights that can be extracted from it. The geometrical discrepancies among 
maple seeds have been observed to be of significant influence in defining important parameters 
such as equilibrium falling speed as has been stated by Caley 2013; however, to include these 
variances has fallen beyond the scope of published papers in this topic research. Previous fun-
damental research has mainly focused on the application of Blade Element Momentum Theory 
in search of insights, stemming its understanding from a comparison with wind turbines. How-
ever, there are several issues to be formed about BEMT, namely that it is often shown to be an 
iterative process, that it requires computationally simulated parameters such as the power coef-
ficient and that it relies on a large amount of assumptions as is shown by Ehrich 2018. An 
iterative method, although ought to be avoided, does not necessarily cause great concern, how-
ever, in the case of a maple seed any addition of complexity will discourage further inclusion 
of details that may end up being crucial in providing additional insights. The requirement of 
computationally simulated parameters strengthens the same argument held against BEMT for 
use in this case, namely that is provides no insight into the inner mechanics of the flight’s work-
ings. Finally, the large amount of assumptions where BEMT is based on may be necessary to 
alleviate complexity but should be avoided when possible regarding the accuracy of a derived 
solution. The case held against BEMT seemingly disregards all possibilities of finding a valu-
able solution for the derivation of a falling speed that attains all requirements, namely accuracy, 
simplicity, comprehension and flexibility. Therefore, this paper opts to pave the way for an 
alternative approach in deriving a framework that can be used to solve the required parameters 
from first principles. 
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3 Preliminary Equilibrium Falling Velocity 
 

3.1 General Equation 
 
The calculation of a preliminary falling speed requires a simplified model of the forces acting 
on the maple seed while in a state of falling equilibrium. It can be stated that the force of gravity 
is the downwards accelerating force which is counteracted by two upwards accelerating forces, 
namely the force of lift and the force of drag that are produced by the surface as projected in 
the plane normal to the direction of the fall; as is shown in Figure 3.1.  
 

 
Figure 3.1 Force equilibrium with seed in autorotation 
 
This force balance can be mathematically stated. 
 

𝐹𝑧 = 𝐿 + 𝐷 (3.1) 
 
Which can be expanded from first principles. 
 

𝑚𝑔 =
1

2
𝜌𝑣𝑟𝑎𝑑

2 ⋅ 𝑐𝐿 ⋅ 𝑆 +
1

2
𝜌𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦

2 ⋅ 𝑐𝐷 ⋅ 𝑆 (3.2) 

 
Already a simplification has been made concerning the surface area responsible for both lift 
and drag. In reality the surface area responsible for the generation of drag will be larger than 
the surface area responsible for lift generation. This is because the inner part of the maple seed 
consists of a nut containing the actual seed; it can be safely stated that this surface area does not 
attribute to the generation of lift whereas it does contribute to additional drag generation. How-
ever, it is worth emphasizing that this preliminary calculation of an equilibrium falling speed 
does not need to be highly accurate. There is a tradeoff between accuracy and computational 
effort and, as will be shown later on, the required accuracy for this preliminary value is not very 
high so any attempt to increase accuracy and remove simplifications ought to be unnecessary 
beyond the complexity that this chapter provides. 
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The radial velocity is dependent on both the angular velocity and the distance to the center of 
mass, which is also the point of rotation. (Holden 2015) 
 

𝑣𝑟𝑎𝑑 = 𝜔𝑅 (3.3) 
 
It is worth noting that the used radius, 𝑅, must be the distance to the center of rotation. Meas-
urements conducted by Holden 2015 have shown that the center of rotation and the center of 
mass lie around the point where the nut ends, and the wing-section of the maple seed com-
mences. Therefore, the radius must be calculated with respect to this general reference point. 
 
If the chord distribution along the axial direction of the maple seed would be of constant length, 
it would make sense to use half the total radius as an average value for the calculation of the 
lift force. However, due to an increase in chord length towards the outer edge of the maple seed, 
the radius of the average airfoil is loosely chosen as 75% of the maximal radius. Therefore, the  
equation can be derived and consequently simplified. 
 

𝑚𝑔 =
1

2
𝜌 (

3

4
𝜔𝑅𝑡𝑜𝑡)

2

𝑐𝐿 ⋅ 𝑆 +
1

2
𝜌𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦

2 ⋅ 𝑐𝐷 ⋅ 𝑆 (3.4) 

 

𝑚𝑔 =
1

2
𝜌𝑆 [(

3

4
𝜔𝑅𝑡𝑜𝑡)

2

𝑐𝐿 + 𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦
2𝑐𝐷] (3.5)

 
 

 
 
 

3.2 Inserting Parameter Values 
 
Depending on the extent to which the user of this method measures and simulates their given 
maple seed, the possibility exists that this equation can be readily used to calculate a preliminary 
value for the falling speed. However, in a more likely case only certain parameters such as the 
mass and total radius will be known values. For the calculation of this preliminary value some 
empirical substitutions concerning the other variables suffice. 
 
The angular velocity of the maple seed can be assumed to be an averaged value based on em-
pirical data originating from the work of Holden 2015, namely 86.29 rad/s. 
 
Given that the height from which the maple seed is released most likely does not exceed the 
tallest maple tree, it can be safely assumed that conventional values for the gravitational con-
stant and density are appropriate, respectively 9.81 m/s² and 1.225 kg/m³. In extreme conditions 
regarding temperature, height or pressure it might be relevant to adjust the assumed gravita-
tional constant and density accordingly. 
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The coefficient of lift is derived from the assumption that a cross-section of the maple seed has 
the shape of a NACA-2408 airfoil. This type of airfoil was chosen due to its resemblance in 
thickness and camber to an actual maple seed, although it is worth mentioning that the thickness 
of a maple seed is far smaller than any known NACA-airfoil. The consequences of having an 
even thinner than assumed airfoil on the coefficient of lift are thus far unknown.  
 
The coefficient of lift as a function of angle of attack is dependent on the Reynolds number. 
 

𝑅𝑒 =
𝑣 ⋅ 𝐿

𝜈
 (3.6) 

 
The Reynolds number can be empirically calculated assuming an ambient air temperature of 
15°C. The number will be dependent on the distance to the center of rotation, therefore only the 
outer extreme will be calculated, as this will provide the largest value. The resulting airspeed 
will be the vector addition of the horizontal component, caused by rotational velocity, and the 
vertical component caused by falling speed. To alleviate complexity the Reynolds number is 
calculated empirically, using values found in the publication of Varshney 2011. 
 

𝑅𝑒 =
√(𝜔𝑅𝑡𝑜𝑡)2 + 𝑣𝑧

2 ⋅ 𝐿

𝜈
 (3.7) 

 

𝑅𝑒 =

√(77.9 rad
s

 ⋅ 0.029 m)2 + (0.94 m
s

)2 ⋅ 2.56 ⋅ 10−4N

1.48 ⋅ 10−5 m
2

s

= 2242.27 

 
As is to be expected the Reynolds number is very low due to the slow resultant velocity when 
compared to civil aircraft. The lowest Reynolds number for which data of the coefficient of lift 
exists, is 50000. It is therefore worth noting that this exceptionally small Reynolds number 
might undermine the accuracy of this calculation as it is assumed to be over two times higher, 
namely 50000. 
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Figure 3.2 Coefficient of lift as a function of angle of attack for a NACA-2408 airfoil at a Reynolds 

number of 50000 (Airfoil Tools 2019) 
 
The largest value of the coefficient of lift occurs around an angle of attack of 8.5°, as is shown 
in Figure 3.2. As will be discussed later on in Subchapter 3.3, this paper proves that these angles 
of attack are not relevant for a maple seed; however, for the sake of this preliminary value an 
arbitrary value that resembles the actual coefficient of lift suffices. Example calculations in 
Chapter 8 show that assuming a maximal coefficient of lift for this NACA profile results in an 
accurate preliminary value. The coefficient of lift is therefore assumed to be 1.03 when un-
known. 
 
The coefficient of drag can be approximated by regarding the maple seed as a long flat plate 
perpendicular to the airflow. The resulting value for the coefficient of drag is 1.98  
(Sovran 1978). 
 
The total surface area can be obtained in several ways, these will be provided in order of de-
creasing accuracy. Firstly, an effort could be made to precisely measure and calculate the actual 
surface area of the given maple seed. Otherwise, an approximation could be made using para-
metrization methods provided by Chapter 6 or an empirical average, derived from the work of 
Varshney 2011, of 579.45 mm² can be used. 
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4 Calculation of Lift 
 

4.1 General Equation 
 
The purpose of Chapter 3 was to provide a preliminary value needed for the calculation of lift, 
in this chapter the latter will be elaborated. Starting from first principles the basic formula of 
lift can be stated. 
 

𝐿 =
1

2
𝜌𝑣2 ⋅ 𝑐𝐿 ⋅ 𝑆 (4.1) 

 
As explained in Chapter 3, the mentioned velocity refers to circumferential velocity when in-
duced by a rotating object instead of a linear movement. The equation can therefore be adjusted 
to incorporate this. 
 

𝐿 =
1

2
𝜌𝜔2𝑅2 ⋅ 𝑐𝐿 ⋅ 𝑆 (4.2) 

 
Instead of choosing a value for the average radius as had been previously done, this parameter 
can be left unknown by using the following method: the total amount of lift generated by the 
wing area of the maple seed can be viewed as the sum of the infinitesimally small two-dimen-
sional airfoils it consists of. The result is an integral that can be acquired by defining an infini-
tesimally small surface area, namely c⋅dR. 
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2𝑐𝐿(𝑅)𝑐(𝑅) 𝑑𝑅

𝑅𝑡𝑜𝑡

0

 (4.3) 

 
 

 
Figure 4.1 Visual representation of seed element and defined lift generating surface area element 
 
Here, the variables that are dependent on the radius at which the two-dimensional airfoil lies, 
are placed outside of the integral, namely density and angular velocity; whereas the coefficient 
of lift and the chord length vary along with the radius and are therefore placed inside the inte-
gral. The assumption is made that an individual blade element does not influence other blade 
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elements asides from tip-loss effects and that therefore when the force on every blade element 
is calculated and summed up, it results in the total force of lift acting on the wing section.  
 
One of the most important three-dimensional effects that can be accounted for is tip loss. A last 
step in finalizing (3.3) is to account for the tip loss effect that reduces the effective lift due to 
wingtip vortices. Wheatley (1934) suggests a method to account for tip losses. 
 

𝐵 = 1 −
1

2
⋅

𝑐̅

𝑅𝑡𝑜𝑡
 (4.4) 

 
The method of tip loss correction was chosen from multiple empirical ways of calculating tip 
losses. Although the equation is empirically devised, it considers parameters that are unlikely 
of empirical origin in the situation of a maple seed. The equation states that a simplified way of 
accounting for tip losses is to regard a factor 𝐵 which states that only 𝐵 times the wing span is 
used for effective lift generation. Therefore, (3.3) can be adjusted to include this correction 
factor. 
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2𝑐𝐿(𝑅)𝑐(𝑅) 𝑑𝑅

𝐵∗𝑅𝑡𝑜𝑡

0

 (4.5) 

 
From a more realistic point of view, it can be assumed that 𝑐𝐿(𝑅) is not a directly know function. 
However, a large variety of data providing 𝑐𝐿(𝛼) for many different types of airfoil exists. If 
the relationship 𝛼(𝑅) can be derived, combined with a selection of airfoil as to provide 𝑐𝐿(𝛼), 
the relationship 𝑐𝐿(𝑅) can be quantitatively obtained. 
 
 
 

4.2 Deriving Chord Length 
 
A derivation of the general equation, (3.5), is only part of the work required to transform this 
method into a practically applicable whole. 
 
A first consideration would be that of the chord length as a function of radius. In order to derive 
this function, a 3D-model of a laser scanned maple seed was used to create a projection of the 
wing-surface area as provided by Hinz 2014, as can be seen in Figure 4.2. 
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Figure 4.2 Contour of a scanned maple seed and division between lift and drag-only generating 

parts 
 
The vertical line roughly divides the lift and drag generating part of the seed from its drag-only 
generating counterpart. An estimation for the positioning of this line was based on measured 
visual representations of the CoG on actual maple seeds, performed by Holden 2015. To trans-
form the contour into an equation viable for use in calculation, coordinates emulating both the 
upper and lower contour were plotted on the image, shown by Figure 4.3. 
 

 
Figure 4.3 Coordinates used to define the upper maple seed contour 
 
The same procedure was followed for approximating the lower contour. Consequently, these 
two sets of coordinates were inserted in an online curve fitting program, producing two distinct 
equations. When visually represented by Figure 4.4, these equations approximate the actual 
contours quite well. 
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Figure 4.4 Plotted equations defining the upper curvature (red), the lower curvature (orange) and 

the chord length as a function of span (green) 
 
The green curve represents the subtraction of the equation describing the upper contour from 
the equation describing the bottom contour, therefore yielding the chord length as a function of 
span. The represented equations were consequently converted to metric units. 
 

𝑐𝑢𝑝𝑝𝑒𝑟(𝑅) =  𝑎1 + 𝑏1𝑅 +  𝑐1𝑅2 +  𝑑1𝑅3 +  𝑒1𝑅4 +  𝑓1𝑅5 (4.6) 
 

𝑐𝑙𝑜𝑤𝑒𝑟(𝑅) =  𝑎2 +  𝑏2𝑅 + 𝑐2𝑅2 +  𝑑2𝑅3 (4.7) 
 

c(R) = 𝑐𝑢𝑝𝑝𝑒𝑟(R) − 𝑐𝑙𝑜𝑤𝑒𝑟(R) (4.8) 
 

⇔ 𝑐(𝑅) =  𝑎3 +  𝑏3𝑅 + 𝑐3𝑅2 +  𝑑3𝑅3 +  𝑒3𝑅4 +  𝑓3𝑅5 (4.9) 
 
Table 4.1 Constants used in the chord-span relationship 
 
 a b c d e f 
1 0.01774875 -0.267276 72.85199 -6395.706 299436.6 5163319 
2 0.008131709 -0.07557199 -25.45918 1462.664   
3 0.009617041 -0.34284799 47.39281 -4933.042 299436.6 5163319 

 
When information of the geometry of the maple seed is unknown, the given 𝑐(𝑅) relation, using 
Table 4.1, can be used to approximate the chord as a function of span. However, a more accurate 
method would be to adjust this function to match certain parameters of the seed’s geometry. An 
adaptation of this function can therefore be found in Chapter 6. 
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4.3 Deriving Angle of Attack 
 
As previously discussed, the retrieval of the relationship 𝑐𝐿(𝑅) will require a derivation of 𝛼(𝑅) 
first. The angle of attack is defined as the relative angle at which the air interacts with the airfoil. 
This can be solved by finding the angle between the velocity vector responsible for downwards 
motion and the perpendicular velocity vector responsible for angular motion. 
 

 
Figure 4.5 Vector diagram defining angle of attack 
 

tan(𝛼) =
𝑣𝑧

𝑣𝑟𝑎𝑑
 (4.10) 

 
As previously discussed in a body acting out a rotational movement, the circumferential veloc-
ity is defined as the product of angular velocity and the radius. 
 

tan(𝛼) =
𝑣𝑧

𝜔𝑅
 (4.11) 

 
Or when transformed to describe the angle of attack, the equation alters to 
 

𝛼 = tan−1(
𝑣𝑧

𝜔𝑅
)   .                                                     (4.12) 

 
A final step towards improving compatibility with the coming 𝑐𝐿(𝛼) equation requires us to 
change the unit to degrees instead of radials. This can be accomplished through multiplication 
with a prescribed factor of 180

𝜋
. 

 

𝛼 = tan−1(
𝑣𝑧

𝜔𝑅
) ⋅

180

𝜋
                                                 (4.13) 

 
The dependency of the angle of attack on the falling speed gives rise to a problem. Namely, if 
the method of calculation of a falling speed requires the falling speed itself as an input param-
eter, then it can only be solved by means of a preliminary value, iterations and a hope of con-
vergence. It is for this reason that the preliminary value discussed in Chapter 3 is calculated. 
However, it turns out that variances of this inserted falling speed affect the outputted value of 
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lift only to a very small extend, as is shown in Chapter 8. A further iteration after the first 
calculation of the definitive falling speed therefore turns out to be unnecessary. 
 
A geometrical twist can be included when it is considered as a relative deviation in angle of 
attack as a function of span. A measurement of a regular twist has been made on the same three-
dimensional model of a scanned maple seed, provided by Hinz 2014. For this purpose, 36 cross-
sections were made of the maple seed and laid over a fixed frame of reference, shown by Figure 
4.6. 
 

 
Figure 4.6 One of the cross-sections used to measure twist angle overlaid on a reference plane 
 
Using Adobe Photoshop CS6, the angle between the chord and horizontal reference line was 
carefully measured for every frame resulting in a set of coordinates representing the relative 
angle to the horizontals of this frame of reference. Afterwards, these values were inserted into 
an online curve fitting tool to obtain the twist over span relationship mathematically. 
 

𝜃𝑡𝑤𝑖𝑠𝑡(𝑅) = −2.643338 +  2222.355 ⋅ 𝑅 −  78527.12 ⋅ 𝑅2 (4.14) 
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Figure 4.7 Graph displaying twist as a function of span 
 
As can be seen, it is assumed that the twist commences at an angle of -2.643°. This is due to 
the arbitrary frame of reference that is chosen. In reality, it is unknown to the extent of this 
paper at which angle the root of the wing-section travels while in stable autorotation. To be 
precise, this uncertainty introduces an unknown variable which is denoted as 𝑘𝑡𝑤𝑖𝑠𝑡, so that 
when this variable equals 2.643, the root is traveling at an angle that doesn’t deviate from the 
plane of rotation. The complete equation describing the angle of attack therefore becomes 
 

𝛼(𝑅) = tan−1(
𝑣𝑧

𝜔𝑅
) ⋅

180

𝜋
+ 𝜃𝑡𝑤𝑖𝑠𝑡(𝑅) + 𝑘𝑡𝑤𝑖𝑠𝑡    .                   (4.15) 

 
It is assumed in this paper that the constant of twist, 𝑘𝑡𝑤𝑖𝑠𝑡, is equal to zero. 
 
When objectively analyzed this curvature of twist is not the way conventional geometrical twist 
develops along the span: it is expected to go from a high angle of twist to a low angle of twist 
to compensate the higher circumferential velocities towards the tip. In the case of the maple 
seed, the twist is shown to oddly increase before it decreases. An explanation for this phenom-
enon lies outside the scope of this paper and is a topic for further research.  
 
For the sake of understanding the mechanisms that drive the autorotation of a maple seed, the 
angle of attack as a function of span can be plotted for an average maple seed, shown by Figure 
4.8. Here, the angular velocity is chosen as 77.9 rad/s with a falling speed equal to 0.94 m/s as 
is shown to be regular values found in the work of Varshney 2011. 
 



31 
 

 

 
Figure 4.8 Graph displaying angle of attack as a function of span 
 
Traditional knowledge of autorotation implies that conventionally only a small portion of the 
helicopter blade can be generating lift. This phenomenon occurs because the angle of attack is 
significantly dependent on the radius, where towards the span it is found that the angle of attack 
decreases due to a greater circumferential velocity. This variance in angle of attack is so large 
that when applied to the traditional function for obtaining the coefficient of lift in relation to 
angle of attack, most of the conventional wing (55%) falls outside of usable angles of attack. A 
normal range of usable angles of attack, yielding positive coefficients of lift, would be from a 
slightly negative, say -3°, to around 12°. However, when the angles of attack for the maple seed 
are observed, they range from 90° to 19.64° for a twist constant of zero. The obvious explana-
tion would be to assume that the chosen constant of twist is therefore wrong and needs to be a 
large negative value, however, this turns out to defy evidence shown by experiments and sim-
ulations made of maple seeds in autorotation. Carefully observed simulations of Lee 2017 show 
that the root of the wing-section crosses the airmass at a somewhat horizontal angle, not a large 
negative angle.  
 
The mystery of the angle of attack is solved when stepping out of the traditional frame of think-
ing; post stall angles of attack are generally neglected in aircraft and helicopter design due to 
an emphasis on the excessive production of drag; however, this manner of thinking does not 
need to apply to a maple seed. The drag produced may very well be necessary to enter a stable 
angular velocity, but the biggest advantage lies in a much more efficient use of lift, as will be 
explained in Chapter 4.4. 
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4.4 Deriving the Coefficient of Lift 
 
To implement this post stall approach, the relationship 𝑐𝐿(𝛼) needed to be obtained for a certain 
airfoil resembling the maple seed’s cross section. The even smaller amount of public data on 
post-stall characteristics on airfoils is a severe limitation to this research, although a chart had 
been found originating from the work of Petrilli 2013 providing the relationship for three dis-
tinct airfoils, namely NACA 4415, NACA 0012 and NACA 63006. Out of these three airfoils, 
the NACA 4415 was selected because of its positive camber. This feature of positive camber is 
distinctly visible when observing a maple seed. Again, the limitation is worth noting that a 
NACA 4415 airfoil is significantly thicker than a maple seed. 
 

 
Figure 4.9 Post-stall coefficient of lift as a function of angle of attack. The graphs are overlaid with 

coordinates for use in curve fitting 
 
Figure 4.9 displays the NACA 4415 𝑐𝐿(𝛼) relationship, overlaid by the coordinates that were 
used to curve fit the graph. In order to improve accuracy of the curve fit, only the range of 
angles of attack which is used in the maple seed was inserted into the curve fitting tool. 
 

𝑐𝐿(α) =  5.450 −  0.373 ⋅ α +  0.0114 ⋅ α2 −  0.000142 ⋅ α3 +  6.096 10−7 ⋅ 𝛼4 (4.16) 
 
With this equation given, an effort can be made to display the progression of the coefficient of 
lift along the span of an average maple seed. Again, the chosen angular velocity and falling 
speed are respectively 77.9 rad/s and 0.94 m/s. 
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Figure 4.10 Lift distribution over span obtained for an average maple seed comparing post-stall 

(green) to conventional (red) 𝑐𝐿(𝛼) use where the purple line represents the end of the 
maple seed’s span 

 
A comparison is made with the application of the same method but for a curve fit to a normal 
range of angles of attack, namely between -3° and 12°, shown by Figure 4.10. The result is that 
when fitted to the conventional range only a very narrow section of the wing will be developing 
lift, a far too narrow region to slow the seed down effectively. Moreover, this conventional 
range of angles of attack falls beyond the span of the maple seed, stating that the maple seed 
produces no lift whatsoever. In contrary, when fitted to a post stall curvature of 𝑐𝐿(𝛼), the maple 
seed will produce a very broad and positive area of lift as is shown by the green curve. The 
supporting evidence for this theory comes from the fact that the constant of twist can be held 
zero, confirming visual evidence of falling seeds shown by Lee 2017, while still producing a 
large enough amount of lift. Another seemingly implausible fact that follows is that not a single 
cross-section of the seed will be positioned in an optimal angle of attack of around 12°; how-
ever, there is no need for this because the wider range of positive 𝑐𝐿 that can be achieved using 
post stall angles of attack proves to be a larger advantage than having a higher maximal value. 
 
The other values required to compute the lift are density, angular velocity and total radius. The 
density can be presumed 1.225 kg/m³ given that the same logic applies that was previously 
discussed in Chapter 3. The angular velocity, unless measured, is a significant limitation of this 
method of calculation. The current approach is to use an empirical average value of 86.29 rad/s 
unless the value is known to be otherwise, as is shown to be an empirical average using values 
from the paper written by Holden 2015. The discovery of a relationship between angular ve-
locity and other known parameters would aid this method in becoming more fundamentally 
based, unfortunately this remains yet to be accomplished in further research. The method was 
devised with the idea that the total radius (as measured from the end of the nut) can be measured 
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and is therefore left as one of the key unknown variables influencing the falling speed, however 
when used otherwise than intended it can be assumed to be 0.029 m as is shown to be an average 
value stemming from results generated by Holden 2015. 
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5 Using BEMT to Calculate Falling Velocity 
 
The basis of Blade Element Momentum Theory is given by the Rankine-Froude model of a 
wind turbine. 
 

 
Figure 5.1 Rankine-Froude model of an actuator disk in a free stream (Kulunk 2011) 
 
The simplified interpretation of Figure 5.1 can be used to consider a maple seed surface as if it 
were such an actuator disk. Here, a free stream fluid flow interacts with the actuator disk trans-
ferring its energy onto the rotor. Consequently, the rotor uses this energy to initiate an angular 
motion and to generate a thrust, or in our case lift. 
 
The major consideration is that unlike the wind turbine, the maple seed itself induces this rela-
tive fluid velocity by falling; however, for aerodynamical purposes this is of little relevance. 
 
The rotor extracts a force from the fluid which is denoted as lift instead of the common deno-
tation of thrust as is found in wind turbine theory. 
 

𝐿 =
𝑑𝑝

𝑑𝑡
 (5.1) 

 
Where dp/dt refers to the rate of change in axial momentum, resulting in a lift force. A more 
convenient notation of this rate of change would be to use the product of mass flow of the free 
stream and the velocity difference before and after the actuator disk. (Kulunk 2011) 
 

𝐿 = �̇� ⋅ (𝑣𝑧 − 𝑣𝑤) (5.2) 
 
Classical physics states that the mass flow rate can be expressed as a function of the area, den-
sity and velocity of the point of the actuator disk or in this case at the point of the maple seed. 
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 𝐿 = 𝜌𝑆𝑣𝐷 ⋅ (𝑣𝑧 − 𝑣𝑤) (5.3) 

 
Furthermore, the wake velocity can be expressed in terms of the axial induction factor, 𝑎, and 
the free flow velocity. (Kulunk 2011) 
 

𝑣𝑤 = (1 − 2𝑎) ⋅ 𝑣𝑧 (5.4) 
 
Combining the previous two equations provides an equation that is suitable for calculating the 
actual falling speed of the maple seed. 
 

𝐿 = 𝜌𝑆𝑣𝑧
2  ⋅ (2𝑎 − 2𝑎2) (5.5) 

 
The only thus far unknown parameter required to calculate the falling speed is the axial induc-
tion factor, 𝑎, which accounts for the deceleration of the fluid when approaching the maple seed 
surface. The axial induction factor of a maple seed has been calculated by Holden 2015 using 
CFD and was shown to be 0.313. Not including a change in axial induction factor when a change 
of geometrical variables occurs, is something that might significantly undermine the added 
value of this paper, namely its encompassment of geometrical variables. Every effort ought to 
be made to investigate the influence these geometrical variances have on important parameters; 
however, for the sake of this paper it is unrealistic to provide an inclusion of geometry in the 
shaping of the axial induction factor since it is numerically simulated in the case of a maple 
seed. The assumption is therefore made that the axial induction factor remains the same for 
every available maple seed since it relates to the power coefficient. The power coefficient is 
synonymous to efficiency; therefore, it can be assumed that the power coefficient and thus the 
axial induction factor are evolutionarily designed to be constant for every maple seed in such a 
way that the efficiency with which the seed extracts power from the air remains the optimal 
value of 0.313, evolutionarily altering its geometry to achieve this goal. 
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6  Parametrization of Lift Formula 
 
In order to provide a more practical variant of this method, the general equation calculating lift 
has been adapted to have simplified geometrical parameters as input variables to facilitate the 
use of this method. For example, a limitation is that the chord-span relationship, namely 𝑐(𝑅), 
requires the user to either define a function approximating this relationship themselves by care-
ful measurement of the given maple seed or to plainly use the provided relationship of the maple 
seed that has been used for the approximation of this paper. Looking at this problem from an 
abstract perspective it can be said that the user can either go through a lot of effort to achieve a 
large amount of accuracy or the user can use the ready-made function, being satisfied with a 
low amount of accuracy. However, as of now there is no in-between method, using some devi-
ation from the actual geometry but with an easier implementation of the method. In order to fill 
this lacuna, this parametrization method was developed. 
 
The two most important parameters defining the shape of the maple seed are the total wingspan 
as measured from the end of the nut, denoted by 𝑅𝑡𝑜𝑡, and the chord length of the maple seed 
at its root, denoted by 𝑐𝑟𝑜𝑜𝑡. Using solely these two parameters, a large number of geometrical 
variables can be adjusted to be in better accordance with the given maple seed. 
 
 
 

6.1 Parametrizing Chord Length 
 

Firstly, the function 𝑐(𝑅) ought to be normalized to provide an easy to use parametrized equa-
tion. To normalize the function horizontally it can be stated that 
 

𝑐(1 ⋅ 𝑘𝑛𝑜𝑟𝑚,ℎ𝑜𝑟) = 0   . (6.1) 
 
A correction factor is defined that horizontally scales the chord function so that the chord length 
is zero when the radius is equal to one. Another correction factor can be defined that vertically 
scales the chord function so that at a radius of zero, the chord length is equal to one. The values 
of these correction factors are given by Table 6.1. 
 
 

𝑘𝑛𝑜𝑟𝑚,𝑣𝑒𝑟 ⋅ 𝑐(0) = 1 (6.2) 
 
 
Table 6.1 Horizontal and vertical normalization constants 
 

𝑘𝑛𝑜𝑟𝑚,ℎ𝑜𝑟 𝑘𝑛𝑜𝑟𝑚,𝑣𝑒𝑟 
0.029278 103.983 
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When implemented into the equation describing chord length as a function of radius, a normal-
ized version can be obtained. 
 
 

𝑐𝑛𝑜𝑟𝑚(𝑅) = −11.550 ⋅ 𝑅5 + 22.878 ⋅ 𝑅4 − 20.507 ⋅ 𝑅3 + 8.7628 ⋅ R2 − 0.58365 ⋅ R + 1 (6.3) 
 
 
The normalized function can be easily adjusted to the maple seed shape given by the defined 
geometrical parameters, using 
 

𝑐𝑟𝑜𝑜𝑡 ⋅ 𝑐𝑛𝑜𝑟𝑚 (
𝑅

𝑅𝑡𝑜𝑡
)   . (6.4) 

 
 
 

6.2 Parametrizing Twist 
 

The equation describing twist as a function of span, namely (4.14), has been constructed so that 
it fits to a maple seed with a total radius equal to 29 mm. However, since 𝑅𝑡𝑜𝑡 has been defined 
as an input parameter, this equation too can be adjusted so that to 𝑅𝑡𝑜𝑡  can be left unknown. 
Firstly, the twist equation will be normalized to facilitate the implementation of this parameter. 
 

𝜃𝑡𝑤𝑖𝑠𝑡(𝑘𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡 ⋅ 1) = 0 (6.5) 
 
The horizontal scaling factor states from the given equation that when normalized, the twist 
equals zero when the radius is equal to one meter. When computed, correction factor 𝑘𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡 
is required to have a value of 0.027056. 
 

𝜃𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡(𝑅) = 𝜃𝑡𝑤𝑖𝑠𝑡(𝑘𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡 ⋅ 𝑅) (6.6) 
 

𝜃𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡(𝑅) = −2.643338 +  60.128 ⋅ R − 57.484 ⋅ R2 (6.7) 
 
Because of this normalization, an easy to use relationship accounting for this unknown 𝑅𝑡𝑜𝑡 can 
be created. 
 

𝜃𝑛𝑜𝑟𝑚,𝑡𝑤𝑖𝑠𝑡 (
𝑅

𝑅𝑡𝑜𝑡
) (6.8) 

 
The adjusted function is to be used when parameter 𝑅𝑡𝑜𝑡 is known instead of the fixed equation 
describing twist as a function of span, (4.14). 
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6.3 Parametrizing Total Surface Area and Tip Loss Correction 
 
Using the adjusted equation describing chord length as a function of span, a new value of wing 
surface area can be calculated by integrating the chord length along the total span. This value 
can be used both in the preliminary falling speed, although this may not be necessary, but more 
importantly when calculating the definitive falling speed. 
 

𝑆𝑤𝑖𝑛𝑔 = ∫ 𝑐𝑟𝑜𝑜𝑡 ⋅ 𝑐𝑛𝑜𝑟𝑚 (
𝑅

𝑅𝑡𝑜𝑡
) 𝑑𝑅

𝑅𝑡𝑜𝑡

0

 (6.9) 

 
When calculating the total surface area required for the final falling velocity, an empirical value 
for the nut surface area can be used and added to the calculated wing surface area. It is shown 
that when the nut is cut away from an average maple seed, the surface area is reduced by  
59.2 mm² (Varshney 2011). The total wing surface area can therefore be approximated using 
 

𝑆 = 5.92 10−5 + ∫ 𝑐𝑟𝑜𝑜𝑡 ⋅ 𝑐𝑛𝑜𝑟𝑚 (
𝑅

𝑅𝑡𝑜𝑡
) 𝑑𝑅

𝑅𝑡𝑜𝑡

0

  . (6.10) 

 
A final and minor adjustment can be made using this method of parametrization, concerning 
the tip loss correction factor 𝐵. This correction factors uses the mean chord length and total 
wing span, which can be formulated in accordance with the defined parameters. 
 

𝑐̅ =
∫ 𝑐𝑟𝑜𝑜𝑡 ⋅ 𝑐𝑛𝑜𝑟𝑚 (

𝑅
𝑅𝑡𝑜𝑡

)
𝑅𝑡𝑜𝑡

0
𝑑𝑅

𝑅𝑡𝑜𝑡
 (6.11) 

 
Using the adjusted function describing chord length, a more accurate average value for the 
chord length can be obtained. The effective amount of surface area that is used will be approx-
imated more accurately when accounted for this new value. Hereafter, (4.4) is to be applied 
using the new value for the averaged chord length, namely 
 

𝐵 = 1 −
1

2
⋅

𝑐̅

𝑅𝑡𝑜𝑡
   .  
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7 Calculation of Fallen Distance 
 

7.1 Fallen Distance Including Aerodynamic Effects 
 
In order to complete the task of providing an all-encompassing framework to describe the aer-
odynamics and mechanics of a maple seed, the sole calculation of the equilibrium falling speed 
does not suffice. Preceding this state of force equilibrium, the seed will be in a transient state 
where the forces of drag and lift gradually build up until they cancel out the acceleration caused 
by the force of gravity. A lack of data to empirically approximate the forces during this transient 
period dismisses the possibility to solve this problem in an empirical fashion, whereas a funda-
mentally based solution falls beyond the scope of this paper and could be considered a task for 
further research. 
 
In fact, only a relatively small amount of information is known about the relationship of falling 
speed as a function of time for maple seeds. Namely that it gradually reaches a falling speed 
equal to the calculated equilibrium speed after a timespan that is not overly long, that the accel-
eration when dropped is equal to the earth’s acceleration and that the initial vertical velocity is 
equal to zero. 
 
Mathematically, this set of constraints can be constructed as 
 

lim
𝑡→+∞

𝑣(𝑡) = 𝑣𝑧  ∧  
𝑑 𝑣(𝑡0)

𝑑𝑡
= 𝑔 ∧ 𝑣(0) = 0   . (7.1) 

 
 
One function suitable for approximation of such a relationship is a scaled hyperbola.  
 

𝑣(𝑡) =
1

−(𝑘𝑎𝑡 + 𝑘𝑏)
+ 𝑘𝑐 (7.2) 

 
 
Here, three constants are defined that can be solved using the three defined constraints. Firstly, 
when calculated, the velocity value of the horizontal asymptote is found to be equal to the con-
stant 𝑘𝑐. It can therefore be stated that this constant 𝑘𝑐 is equal to the equilibrium falling speed, 
𝑣𝑧. 
 
The second constraint can be used to define a relationship between 𝑘𝑎, 𝑘𝑏 and the gravitational 
constant 𝑔. 
 

𝑑𝑣(𝑡)

𝑑𝑡
=

𝑑 [
1

−(𝑘𝑎𝑡 + 𝑘𝑏)
+ 𝑣𝑧]

𝑑𝑡
=

𝑘𝑎

(𝑘𝑎𝑡 + 𝑘𝑏)2
 (7.3) 
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This derivative is ought to be equal to the gravitational constant, 𝑔, when 𝑡 is equal to zero. 
 

𝑔 =
𝑘𝑎

(𝑘𝑎 ⋅ 0 + 𝑘𝑏)2
⇔ 𝑔 =

𝑘𝑎

𝑘𝑏
2  (7.4) 

 
The third constraint, defining the origin point, can be used to obtain the value for constant 𝑘𝑏. 
 

𝑣(0) = 0 (7.5) 

⇔
1

−(𝑘𝑎 ⋅ 0 + 𝑘𝑏)
+ 𝑣𝑧 = 0 ⇔ 𝑘𝑏 =

1

𝑣𝑧
 (7.6) 

 
Using the relationship of 𝑔 to 𝑘𝑎 and 𝑘𝑏, the value of 𝑘𝑏 can be used to obtain the value of 𝑘𝑎. 
 

𝑔 = 𝑣𝑧
2𝑘𝑎  ⇔ 𝑘𝑎 =

𝑔

𝑣𝑧
2

 (7.7) 

 
Therefore, the equation describing 𝑣(𝑡) can be written and simplified as 
 

𝑣(𝑡) = 𝑣𝑧 −
𝑣𝑧

2

𝑔𝑡 + 𝑣𝑧
   . (7.8) 

 

 
Figure 7.1 Falling velocity in air (purple) compared to in free stream (green) 
 
From this relationship describing falling speed as a function of time, the vertical distance that 
the maple seed has traversed in its falling motion can be derived by taking the integral of the 
calculated function. 
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𝑠𝑓𝑙𝑢𝑖𝑑(𝑡) = ∫ 𝑣(𝑡)𝑑𝑡  (7.9) 

 
 

𝑠𝑓𝑙𝑢𝑖𝑑(𝑡) = 𝑣𝑧𝑡 −
𝑣𝑧

2 ⋅ ln(𝑔𝑡 + 𝑣𝑧)

𝑔
+ C (7.10) 

 
 
For practical purposes the requirement to take the absolute value inside of the natural logarithm 
has been disregarded, since the value of 𝑔𝑡 + 𝑣𝑧 always is a positive value. The integration 
introduces an integration constant that needs to be solved, defining the vertical displacement of 
the function. A constraint, defining constant 𝐶 is that the function should pass the origin, math-
ematically this constraint can be stated as 
 

𝑠𝑓𝑙𝑢𝑖𝑑(0) = 0  . (7.11) 
 
Therefore, the resulting equation becomes 
 

𝑠𝑓𝑙𝑢𝑖𝑑(𝑡) = 𝑣𝑧𝑡 −
𝑣𝑧

2 ⋅ ln(𝑔𝑡 + 𝑣𝑧)

𝑔
+

𝑣𝑧
2 ⋅ ln(𝑣𝑧)

𝑔
   . (7.12) 

 

 
Figure 7.2 Fallen distance in air (purple) compared to in freefall (green) 
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7.2 Fallen Distance in Freefall 
 
In order to compare a maple seed under the effect of aerodynamic influences to a maple seed 
in freefall, a simple framework providing the fallen distance in freefall has been developed. 
 
While in freefall, the only force acting on the maple seed is the force of gravity, denoted as 𝐹𝑧. 
The aerodynamic forces of drag and lift that were previously used for stating the vertical falling 
equilibrium are therefore dismissed. If only one downwards pulling force is exerted on the seed, 
then a state of force equilibrium is never reached which results in a constant acceleration, equal 
the gravitational constant 𝑔. Evaluating the double integral of this acceleration as a function of 
time will provide the relationship describing traversed vertical distance as a function of time. 
 

𝑠𝑓𝑟𝑒𝑒𝑓𝑎𝑙𝑙(𝑡) = ∬ 𝑔𝑑𝑡 =
𝑔𝑡2

2
 (7.11) 

 
 
 

7.3 Falling Time Ratio 
 
In order to answer the research question, “How much longer the seed falls using autorotational 
principles when compared to freefall?”, a general equation can be formulated that provides a 
ratio comparing the time it takes for a given maple seed to fall from a certain height in air to 
the time it takes for that same maple seed to fall from the same height in freefall. 
 
Firstly, both (7.10) and (7.11) ought to be inversed to provide the traversed vertical distance, or 
height, as a function of time. During freefall, the fall duration as a function of height is ex-
pressed as 
 

∆𝑡𝑓𝑟𝑒𝑒𝑓𝑎𝑙𝑙 = √
2 ⋅ ℎ

𝑔
  . (7.12) 

 
Unfortunately, the function describing this relationship in air can not be as cleanly inversed and 
turns out to be a relationship providing two values for the fall duration for a given height, of 
which one is negative and thus clearly false. 
 

ln(𝑔 ⋅ ∆𝑡𝑎𝑖𝑟 + 𝑣𝑧) 𝑣𝑧
2 − 𝑔𝑣𝑧 ⋅ ∆𝑡𝑎𝑖𝑟 − 𝑣𝑧

2 ln(𝑣𝑧) + 𝑔ℎ = 0 (7.13) 
 
The inconvenience of a relationship that provides a false and a true value can be resolved by 
taking the absolute value of the term that allows for this negative duration. 

|ln(𝑔 ⋅ ∆𝑡𝑎𝑖𝑟 + 𝑣𝑧) 𝑣𝑧
2| − 𝑔𝑣𝑧 ⋅ ∆𝑡𝑎𝑖𝑟 − 𝑣𝑧

2 ln(𝑣𝑧) + 𝑔ℎ = 0 (7.14) 
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The trade-off is that the duration will be a slightly wrong value when the equilibrium falling 
speed is below 1 m/s. The obtained value for  ∆𝑡𝑎𝑖𝑟 will be false until  
 

∆𝑡𝑎𝑖𝑟 =
𝑣𝑧(𝑣𝑧 ⋅ ln(𝑣𝑧) − 𝑣𝑧 + 1)

𝑔
   .  (7.15) 

 
When this value of ∆𝑡𝑎𝑖𝑟 is calculated for calculation example one, with values stemming from 
Subchapter 8.1, it is found to be equal to 176 µs. Conclusively, this interval of error is therefore 
negligible when calculating practical examples. 
 
Using the same conventional values for 𝑣𝑧 and 𝑔, namely 0.94 m/s and 9.81 m/s², these rela-
tionships can be visually compared. 
 

 
Figure 7.3 Fall duration as a function of height in air (purple) compared to in freefall (green) 
 
Unfortunately, because the fall duration in air cannot be cleanly expressed as a function, it 
cannot be used to construct an equation that calculates the ratio prescribing how much longer a 
seed falls in air when compared to in freefall; however, this does not imply that such a ratio 
cannot be calculated, as will be demonstrated in Sections 8.1.5 and 8.2.4. 
 
As can be observed in the above graph, the time difference between both fall durations increases 
more for a given increase of height than the fall duration in freefall does. This implies that the 
falling time ratio increases with an increase in height since the seed will have had percentage-
wise more time in a state of autorotation. 
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8 Calculation Examples 
 

8.1 Example One 
 
Based on a research concerning the kinematics of falling maple seeds, namely that of  
Varshney 2011, a sufficient number of parameters has been obtained of two distinct maple 
seeds. The researchers released these maple seeds and precisely measured their falling speeds. 
Because both seeds have very different falling speeds given due to their distinct geometries, 
they prove excellent examples to verify the constructed method. It is worth noting that not all 
parameters that are open for use in the method were provided by the research paper. A very 
high amount of accuracy is therefore not expected, but a relative approximation and a clear sign 
of the influence of the difference in geometry will suffice. 
 
The information available for the first maple seed is a select, but important number of parame-
ters, given by Table 8.1. 
 
Table 8.1 Known parameters of example seed one 
 

m (mg) S (mm²)  𝜔 (rad/s)  𝑣𝑧(m/s) 
170.6 612.8 77.9 0.94 

 
Unfortunately, due to the small number of known variables, the parametrization equations can-
not be used to achieve a higher amount of accuracy. 
 
 

8.1.1 Preliminary Falling Speed 

 
Firstly, the equation for the calculation of this preliminary falling speed can be restated, 
namely (3.5). 

 

𝑚𝑔 =
1

2
𝜌𝑆 ⋅ [(

3

4
𝜔𝑅𝑡𝑜𝑡)

2

⋅ 𝑐𝐿 + 𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦
2𝑐𝐷] 

 
The only unknown geometrically based parameter is the total radius, 𝑅𝑡𝑜𝑡, which can be empir-
ically approximated to be 29 mm, as is discussed in Subchapter 3.2. Asides from that, the other 
unknown values are expected to be unknown and will be assumed to be the values that have 
been prescribed in Subchapter 3.2. 
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Table 8.2 Assumed values for the calculation of preliminary speed one 
 

g (m/s²)  𝜌 (kg/m³)  𝑐𝐿  𝑐𝐷 
9.81 1.225 1.0586 1.98 

 
Using these input values, the general equation can be solved to provide a preliminary value for 
the falling speed, namely 𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦. 
 

⇔ 𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦 = 0.842 
m

s
 

 
 

8.1.2 Calculation of Lift 

 
Using this preliminary value of falling velocity during force equilibrium, the general equation 
of lift can be restated as follows and consequently solved using (4.5). 
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2𝑐𝐿(𝑅)𝑐(𝑅) 𝑑𝑅

𝐵∗𝑅𝑡𝑜𝑡

0

 

 
Firstly, the tip loss correction factor should be calculated using the same logic as is explained 
in Subchapter 6.3. 
 

𝑐̅ =
∫ 𝑐(𝑅)𝑑𝑟

𝑅𝑡𝑜𝑡

0

𝑅𝑡𝑜𝑡
 

 
The average chord will be calculated using the empirical values given by the maple seed of 
which the relationship c(R) was measured as previously discussed in Chapter 4. A keen ob-
server might state that the value given by the integral can be corrected so that it is consistent 
with the known total surface area. However, since this tip loss correction factor is dependent 
on the aspect ratio, adjusting only the average chord and not the total wingspan to fit the given 
maple seed will in fact cause the correction factor to be even less accurate than if it was calcu-
lated on a purely empirical basis. Therefore, the provided equation describing a standard chord 
length progression along the span is used, combined with an average total wingspan of  
0.029 m as is recommended in Subchapter 4.4. 
 

𝑐̅ =
∫ 𝑐(𝑅)𝑑𝑟

0.029

0

0.029
= 0.01189 m 

 
The tip loss correction factor 𝐵, using (4.4), can therefore be computed. 
 

𝐵 = 1 −
𝑐̅

2𝑅𝑡𝑜𝑡
= 0.807086 
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According to this empirical value, only 80.7% of the wing span of an average maple seed is 
effectively used for generating lift. 
 
Aside from this, there is no need to further calculate any variables; therefore, MATLAB was 
used to compute the value of lift. The empirical relation describing twist as a function of radius 
remained unadjusted due to the total radius being left unknown. Using (4.14), the function de-
scribing angle of attack as a function of radius can be stated, where the preliminary velocity is 
substituted as 0.842 m/s as is calculated. This equation can then be inserted into the function 
describing 𝑐𝐿(𝛼) and combined with the empirical equation describing chord as a function of 
radius, (4.9), a value of lift can be computed. 
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2𝑐𝐿(𝑅)𝑐(𝑅) 𝑑𝑅

𝐵∗𝑅𝑡𝑜𝑡

0

 

 
 

𝐿 = 2.5493 10−4 𝑁 
 
 
 

8.1.3 Calculation of Equilibrium Falling Speed 

 
Here, (5.5) is used as discussed in Chapter 5 to obtain the actual value of the falling speed. 
 

𝐿 = 𝜌𝑆𝑣𝑧
2 ⋅ (2𝑎 − 2𝑎2) 

 
The axial induction factor, 𝑎, is the only fully empirical value that needs to be entered and 
was simulated to be 0.313 for an average maple seed. (Holden 2015) 
 
Therefore, the equation can be solved using the other known variables. 
 
 

⇔  𝑣𝑧 = 0.888623 m/s 
 
 
This falling speed deviates 5.47% from the actual falling speed, which is a very good approx-
imation given the limited amount of details that are known of the provided maple seed. A rea-
sonable amount of deviation from the actual falling speed should be expected to leave room for 
a further increase of accuracy when this method is applied using more detailed measurements 
of variables such as known values for the geometrical parameters defined in Chapter 6, the 
actual function describing the chord length or the actual function describing the coefficient of 
lift. 
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8.1.4 Reiteration 

 
Using this newly obtained value for the equilibrium falling speed, the calculation of lift ought 
to be redone. 
 

𝐿 = 2.5556 10−4 N 
 
Already, it can be concluded that the value of lift has only changed by a miniscule amount that 
is unlikely to cause drastic differences in the equilibrium falling velocity. However, to complete 
the calculation the falling speed is recalculated as follows. 
 
 

𝑣𝑧 = 0.88972 m/s 
 
 
The resulting change is only 0.12% after performing the first and most important iteration. The 
conclusion is therefore made that although the constructed method has an inherent tendency 
towards an iterative solution, it is shown to be of negligible importance and can for the sake of 
simplicity be left asides or only performed once. 
 
 
 

8.1.5 Falling Time Ratio 

 
Since the fall duration is obviously dependent on the height from which the seed is released, an 
arbitrary value can be chosen. The Red Maple, one of the more common American species, 
grows to be, on average, 21.3 meters tall (Jasey 2019). Since the seed wouldn’t fall from the 
top of the tree, an average release height of 20 meters is used for both calculation examples. 
 
The fall duration in freefall can be calculated using (7.12), whereas the duration in air can be 
calculated using (7.14), the results are provided by Table 8.3. 
 
Table 8.3 Fall durations of example seed one 
 

 ∆𝑡𝑓𝑟𝑒𝑒𝑓𝑎𝑙𝑙 (s)  ∆𝑡𝑎𝑖𝑟 (s) 
2.02 23.02 

 
Consequently, the research question can be answered for this example: the seed falls 11.4 times 
longer in air than in freefall. 
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8.2 Example Two 
 
A second maple seed from the same research paper, written by Varshney 2011, can be used to 
calculate and verify the falling speed during force equilibrium. The variables that are given are 
the same as for the previous maple seed, although with different values, given by Table 8.4. 
 
Table 8.4 Known parameters of example seed two 
 

m (mg) S (mm²)  𝜔 (rad/s)  𝑣𝑧(m/s) 
195.8 546.1 82.7 1.18 

 
When comparing these parameters to the previous example, the larger mass and smaller surface 
area can be hypothesized to speed up the resulting falling speed, this preliminary conclusion is 
observed in the measured falling speed; however, the question remains whether the constructed 
method can account for these variances in geometry to influence the calculated falling speed in 
a reasonable fashion. 
 
 

8.2.1 Preliminary Falling Speed 

 
The same general equation, (3.5), can be stated and filled in using the same logic as the previ-
ous calculation example. The values of the unknown variables can therefore be re-used, given 
by Table 8.5.  
 

𝑚𝑔 =
1

2
𝜌𝑆 [(

3

4
𝜔𝑅𝑡𝑜𝑡)

2

⋅ 𝑐𝐿 + 𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦
2𝑐𝐷] 

 
Table 8.5 Assumed values for the calculation of preliminary speed two 
 

g (m/s²)  𝜌 (kg/m³)  𝑐𝐿  𝑐𝐷 
9.81 1.225 1.0586 1.98 

 
Using this information, the value of the preliminary falling speed can be computed. 
 

𝑣𝑧,𝑝𝑟𝑒𝑙𝑖𝑚𝑖𝑛𝑎𝑟𝑦 = 1.17 
m

s
 

 
Already, this value is shown to be surprisingly close to the actual falling speed. However, the 
possibility exists that this is purely luck due to the large amount of assumptions and simplifi-
cations used in this preliminary method of calculation. 
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8.2.2 Calculation of Lift 

 
Using this preliminary value of falling velocity during force equilibrium, the general equation 
of lift, (4.5), can be restated and consequently solved. 
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2 ⋅ 𝑐𝐿(𝑅) ⋅ 𝑐(𝑅) 𝑑𝑅

𝐵∗𝑅𝑡𝑜𝑡

0

 

 
The calculation of the tip loss correction factor, 𝐵, uses the same logic applied to the previous 
calculation example and ought not to be reformulated. According to the empirical value of 𝐵 

calculated in Section 8.1.2, only 80.7% of the wing span of an average maple seed is effec-
tively used for generating lift. 
 
The same method and logic as elaborated in Section 8.1.2 were used and the value of lift has 
been computed using MATLAB.  
 

𝐿 =
1

2
𝜌𝜔2 ∫ 𝑅2 ⋅ 𝑐𝐿(𝑅) ⋅ 𝑐(𝑅) 𝑑𝑅

𝐵∗𝑅𝑡𝑜𝑡

0

 

 
 

𝐿 = 4.3049 ∗ 10−4 N 
 
 
 

8.2.3 Calculation of Equilibrium Falling Speed 

 
(5.5) Is used as provided in Chapter 5 to obtain the actual value of the falling speed using the 
same, simulated value for the axial induction factor, 𝑎. (Holden 2015) 
 

𝐿 = 𝜌𝑆𝑣𝑧
2 ⋅ (2𝑎 − 2𝑎2) 

 
The equation can be solved using the other known variables. 
 
 

⇔  𝑣𝑧 = 1.22 m/s 
 
 
This falling speed deviates 3.66% from the actual falling speed. Which produces an average 
percentual error of 4.57% for the calculation of the falling speed. Considering the amount of 
uncertainty given by the limited known variables, the constructed method has proven itself re-
markably accurate for these two example calculations. The distinct difference in geometry and 
consequent falling speed is clearly accounted for in the end results of falling speeds, which is a 
feat that previous research has been unable to include in such a straight forward and simple 
manner as provided by this paper. 
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8.2.4 Falling Time Ratio 

 
Using the same arbitrary height as referenced in Section 8.1.5, the falling time ratio can be 
calculated. 
 
The fall duration in freefall can be calculated using (7.12), whereas the duration in air can be 
calculated using (7.14). The results are provided by Table 8.6. 
 
Table 8.6 Fall durations of example seed two 
 

 ∆𝑡𝑓𝑟𝑒𝑒𝑓𝑎𝑙𝑙 (s)  ∆𝑡𝑎𝑖𝑟 (s) 
2.02 17.01 

 
Consequently, the research question can be answered for this example: the seed falls 8.42 times 
longer in air than in freefall. The discrepancy with the previously calculated falling time ratio 
from Section 8.1.5 makes sense: one could presume that a heavier and smaller seed will fall 
more quickly and therefore differ less from duration it would take to fall in freefall. 
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9 Conclusions 
 
The paper has constructed and validated a method describing the aerodynamics of a maple seed 
and allowing the calculation of its equilibrium falling speed and consequent ratio comparing 
the fall duration in air to in freefall. An effort has been made to provide ample flexibility in 
including variances in maple seed geometry to account for a large biodiversity in the available 
seeds. The method aims to be primarily fundamentally based and would be considered to have 
succeeded in that aspect although some variables are still required to be substituted with empir-
ical values. The validation of this paper as is shown in the example calculations has proven to 
be sufficiently accurate given the relatively small amount of data that is known about the cal-
culation examples. The three-step method of calculating the falling speed provided by this paper 
proves to be a simpler alternative when compared to preceding computational methods in this 
field of research. A lack of validation of these alternative methods of calculation such as un-
steady BEM theory refrains the possibility of an exact comparison between previously stated 
methods and the method given by this paper. 
 
The essential calculation of lift performed in this paper provides the possibility to incorporate 
an extensive amount of specifications of a maple seed and derives its main advantage from that 
flexibility combined with its ease of use. Other developed frameworks describing the respective 
aerodynamics have failed to allow the incorporation of such intricate details of geometry, such 
as chord length and twist, that are essential for an accurate calculation of the falling time. Es-
pecially when considering and comparing individual differences of maple seeds with distinct 
geometries, the provided method proves to be reliable and accurate. 
 
An important conclusion confirming visual evidence of falling maple seeds is that of the large 
angles of attack that occur when considering the small rotational velocity found in maple seeds. 
These large angles of attack require the maple seed to derive its lift using solely post-stall angles 
of attack. As stated in Subchapter 4.3, the evolutionary pressure to opt for post-stall angles 
instead of conventional angles of attack is the most beneficial option for achieving the largest 
amount of lift.  
 
The final calculation of falling speed as discussed in Chapter 5 uses Blade Element Momentum 
Theory and consequently adopts many of its assumptions and inaccuracies. Moreover, the 
power coefficient that is used stems from a simulation of a maple seed and is immutable with 
respect to variances in geometry. However, BEMT is used only to a relatively small extend and 
a more fundamentally based method of calculating falling speed from lift can be a task for future 
research. The assumption is made that the coefficient of power is the parameter that is evolu-
tionarily optimized, altering geometry to sustain this variable in the process. Even though such 
assumptions have been made, example calculations have proven to be remarkably accurate 
therefore rendering these assumptions either true or of minor influence. 
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The calculation of a falling time or fallen distance as a function of time is devalued due to a 
lack of experimental data which can be used to validate any constructed method of approximat-
ing the behavior of a falling maple seed while in transitional period. The constructed model 
describing fallen distance with respect to time is therefore yet to be validated and can until 
validation only be assumed to be an approximation based solely on logical reasoning. However, 
when accounting for the possibility of a flaw due to assumption it can be stated that as based 
on two calculation examples a maple seed falls 9.91 times longer when in air when compared 
to freefall. 
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10 Recommendations 
 
As previously stated, the most significant limitation in completing this theoretical framework 
lies in the lack of more validation, needed to provide reliability and value to the constructed 
aerodynamical and mechanical models. Most importantly, measurements of the falling time of 
maple seeds when released from a certain height would aid this research in providing either 
support for or disapproval of the constructed framework. Secondly, an addition of more calcu-
lation examples for validation of the equilibrium falling speed, stemming from multiple 
sources, would largely benefit the validation of the method in general. 
 
In order to divert the method into an even more fundamentally based one, several empirical 
values could be investigated whether a relationship to the known parameters such as geomet-
rical features and weight can be formed. Such currently empirical values include the angular 
velocity, 𝜔, and the axial induction factor, 𝑎. 
 
Lastly, the unconventional progression of twist along the wingspan of the maple seed that has 
been found in Subchapter 4.3 is yet to be fundamentally discussed and explained. 
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