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Abstract

Complex systems are commonly monitored by many sensors. When one of the sensors fails, the current state
of the system can not be calculated or the information about the current state is not complete. For that reason
sensor failures are one of the main error sources of a system. Thus sensors that deliver significant information
about the system state need to be redundant. This paper shows how to calculate the significance of the
information that a sensor gives about a system by using modern signal processing and artificial intelligence
technologies. It also shows how significant features can be extracted, evaluated from a set of data samples,
how difficult it is to find an optimal parameter and sensor set and that it is possible to reduce the size of needed
data by 97%. The paper concludes analyzing the results of experiments that show that the methods can
classify different errors with a 75% probability.

1. INTRODUCTION

New and better monitoring approaches are required
for condition monitoring, because systems become
complexer. This is especially true for aircraft systems,
where a high availability is required. The air condi-
tioning system is interesting to monitor, because it
not only supplies the passengers with fresh and tem-
pered air; it also cools most of the electronic systems
in the aircraft. Recirculation fans and filters are used
for removing and cleaning a part of the used air from
the cabiny and direct the used air into the air mix-
ing chamber, where it is mixed with fresh air and re-
turned into the cabin. The recirculation filters can get
clogged and the fans can get broken. If this happens
the comfort of the passengers is reduced, because
clogged filters smell and a broken fan causes smoke.
It is difficult to predict, when a filter gets clogged, be-
cause the clogging of the filter depends on the usage
of the aircraft. If a filter gets clogged then the fans
might get broken faster and thus cause more costs
and damage. Monitoring both components can save
a lot of trouble. The recirculation fan and filter sys-
tem consists of active (fans) and passive (filter) parts
and is one of the few systems in the aircraft that uses
condition monitoring.
Condition monitoring requires reliable sensors. If a
sensor fails the information about the system is in-
complete and thus it is recommended to install sig-
nificant sensors redundantly. One problem of current
condition monitoring technologies is, that it is difficult
to calculate which sensors give significant data about
the condition of a system and thus have to be installed
redundantly. Sensor data needs to be processed to
gain more information, than just time domain values.
Frequency data and information about patterns in the

sensor data can be useful to gain information about
the condition of a system.

2. CONDITION MONITORING OF RECIRCULA-
TION FANS AND FILTERS

Today only a limited number of methods for monitoring
the condition of recirculation fans and filters is used
on aircraft. Older aircraft monitor only very rudimen-
tary the air conditioning system, while newer aircraft
sometimes use trend monitoring for the air condition-
ing. Most of the technologies that are used for fan and
filter monitoring have disadvantages that make them
not suited for complex condition monitoring. Some of
the most common technologies, for recirculation fan
and filter monitoring, will be explained below.

Pressure Switch: On many aircraft pressure
switches are used to monitor recirculation fans or
filters. These switches generate a failure message, if
the pressure reaches a defined threshold [1].

Differential Pressure Sensor: Newer aircraft use dif-
ferential pressure sensor to monitor filters and fans.
The pressure difference is used as an indicator for
the clogging of the filter. To get a clogging level and
a forecast, measured values are compared against a
curve, which relates the pressure difference to clog-
ging. A filter clogging can be detected up to 100 hours
in advance [1].

Vibration Sensor: Boeing uses on the 767 and 747
[2] vibration sensing systems to monitor fans. These
systems are mounted on top of a fan and shut the
fan off, if a certain vibration intensity is exceed. This
concept tries to prevent serious damage to the air
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conditioning subsystems.

All presented monitoring concepts use the raw sen-
sor data without additional signal processing and can
only perform simple monitoring tasks. They operate
without significant knowledge of the system and often
only differentiate between a no fault and faulty state.
To be able to get more knowledge about the system,
more and different sensors have to be applied and
the sensor data needs to be processed further.

3. BACKGROUND

The methods that are presented and used in this pa-
per are from the field of information theory and ar-
tificial intelligence. This section will show the basic
principles that are used for the concept in Section 4.

3.1. Information Gain

Information entropy is the knowledge that is contained
in an answer depending on one’s prior knowledge.
The less is known, the more information is provided.
In information theory information entropy is measured
in bits. One bit of information entropy is enough to an-
swer a yes/no question about which one has no data
[3]. The information entropy is also called information
and is calculated as shown below in equation 1. P (vi)
is the probability of the answer vi.

(1) I(P (v1), . . . , P (vn)) =
n∑

i=1

−P (vi)log2P (vi)

The information gain from an attribute test (setting the
value of a node in a tree, see Figure 3.2 for an exam-
ple) is the difference between the total information en-
tropy requirement (the amount of information entropy
that was needed before the test) and the new informa-
tion entropy requirement. p is the number of positive
answers and n is the number of negative answers [3].

(2) Gain(X) = I(
p

p + n
,

n

p + n
)

−
v∑

i=1

pi + ni

p + n
· I(

pi

pi + ni
,

ni

pi + ni
)

3.2. Decision Trees

Decision trees are a method from the area of artifi-
cial intelligence and are used for machine learning.
They are often binary trees, where each node has
an if-then-else function on an attribute of the sam-
ple data. The ID3 algorithm (Iterative Dichotomiser 3,
published by J. Ross Quinlan in 1986, used to gener-
ate decision trees [5]) was the first algorithm to con-
struct decision trees. ID3 had some problems and
was improved. The improved version of ID3 is C4.5
[4]. It enhances the ID3 algorithm with the ability to
handle both discrete and continues attributes, it can

handle samples with missing attributes and supports
pruning of the tree at the end of the algorithm (remov-
ing branches from the tree). The algorithm uses the
concept of information gain to choose attributes from
the data and build a decision tree. The algorithm in
pseudo code is:

1. Check for base cases

2. For each attribute a

a) Find the normalized information gain from
splitting on a (see below)

3. Let a_best be the attribute with the highest nor-
malized information gain

4. Create a decision node that splits on a_best

5. Recurse on the sub-lists obtained by splitting
on a_best, and add those nodes as children of
node

The result of the algorithm is a binary decision tree,
where the root of the tree is the attribute with the high-
est normalized information gain. Nodes in the follow-
ing levels of the tree represent attributes with lower
normalized information gain. If pure information gain
is used for splitting, then classes with the most cases
are favored [4]. C4.5 uses the normalized informa-
tion gain or the gain ratio. Split info is the information
that is gained from choosing the attribute to split the
samples.

(3) Split Info(X) = −
n∑

i=1

pi + ni

p + n
log2(

pi + ni

p + n
)

Gain ratio is the normalized information gain and is
defined as shown in equation 4 [4].

(4) Gain Ratio(X) =
Gain(X)

Split Info(X)

A resulting decision tree (for the decision if you can
play outside) may look like the tree in figure 3.2.

Figure 1: Example Decision Tree
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3.3. Feature Extraction

The standard application of decision trees is pat-
tern recognition (classification), learning and decision
making. The tree is used to make a decision for new
data, based on old knowledge. Either a sample is
classified based on prior analyzed data or a decision
is made based on prior ’experience’.
Using a decision tree for feature extraction works a
bit different. The goal is not to classify new data, in-
stead the goal is to build a tree, classify given data
and find the attributes with the highest information en-
tropy. During testing, some attributes can be disabled
or deleted and their influence on the condition moni-
toring can be tested.

4. SENSOR OPTIMIZATION BY FEATURE EX-
TRACTION FOR PAHMIR

This section shows how the concepts of the preced-
ing sections are applied for high pressure recirculation
fan and filter monitoring within the PAHMIR project
(Preventive Aircraft Health Monitoring for Integrated
Reconfiguration [7]). Sensor optimization is a very
wide topic and includes a number of different defini-
tions. A few different meanings for sensor optimiza-
tion are:

• Optimizing the position of sensors [8].

• Optimizing the processing of sensor data [9].

• Optimizing the information gain of sensors.

In this paper sensor optimization has the meaning of
sensor optimization, where identifing significant sen-
sors in a number of available sensors that give the
most information about a system, and thus increasing
the information gain, is the goal. Signal processing
methods are also counting as sensors in this context
(e.g. frequency information and average values). Op-
timization in this paper is finding the sensors with the
highest information gain of the data. The data can be
raw sensor data, like amplitudes or processed data
like frequency data. The calculation of the information
gain and the sorting of the data is done by the C4.5
algorithm that is used to construct decision trees for
classification problems. Data samples are first pro-
cessed, then the C4.5 algorithm is applied and finally
the data is analyzed. Raw data samples are normally
processed before they are used as an input. This
means that the data is transformed into the correct
input format for algorithms, it is enhanced with addi-
tional information and it is even possible to compress
the data as it will be shown. Processing is done with
Matlab and does not use any special toolboxes.
Data samples can generally be divided up into two
categories of data: high frequency data and low fre-
quency data. Low frequency data is defined as data

with a sampling frequency less then 20 Hz. High fre-
quency data is any data with a higher sampling rate
then 20 Hz.
The low frequency data will not be processed beside
bringing the data into the correct data format for the
algorithm. There is too little data to perform significant
frequency analysis and compression.
The high frequency data will be processed with the
following steps: First the data is transformed into the
frequency domain, then noise reduction is applied to
the data, after that the frequency data is partitioned
into small blocks (the size of the blocks depend on
the data see Section 6.1.2)and finally every block is
enhanced with additional information.

4.1. Fast Fourier Transformation and Partition-
ing

The fast Fourier transformation takes a number of
time-domain samples and transforms them into the
frequency domain. Basis of the FFT algorithm is the
discrete Fourier transformation, which is defined as
shown in equation 5 with xn, . . . , XN−1 as complex
numbers.

(5) Xk =
N−1∑

n=o

xne
−i2πk

n

N k = 0, . . . , N − 1

A fast Fourier transformation is performed in O(N log
N) operations [6]. The fast Fourier transformation
(FFT) is done with the Matlab function fft. A full trans-
formation with the sampling frequency is done. After
the fast Fourier transformation is done, the frequen-
cies are divided up into blocks. The number of the
frequencies that are grouped in one block is deter-
mined by the calculation parameter Block Width. If
less then Block Width frequencies are available, then
all frequencies are treated as one block. After parti-
tioning all blocks are transformed back into the time
domain, to get information about the behavior of the
block-signal over the time.

4.2. Noise Reduction

Noise reduction is applied to the signal to remove ran-
dom data from the samples in order to improve the
feature detection of the undisturbed signal. The max-
imum frequency power is calculated and then every
frequency signal that is below a defined fraction of
the maximum frequency power is reduced to zero to
remove noise from the sample. The exact fraction of
the maximum frequency power for noise reduction is a
parameter of the experiments (Noise Reduction Fac-
tor ). Noise reduction is done as shown in the Matlab
code 1.
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Y = f f t ( y ) ;
x = mean( abs (Y) ) ∗NoiseReduct ionFactor ;
Y = Y .∗ ( abs (Y) >x ) ;

Listing 1: Noise Reduction

4.3. Additional Information and Data Compres-
sion

Every block of the sampled data is enhanced with
additional information. This information is added to
give the following algorithm more information about
the signal in the time and the frequency domain. The
added information is for the time domain:

• The maximum amplitude of each block

• The mean amplitude of each block

In the frequency domain the following information is
added:

• The mean frequency power of each block

• The maximum frequency power of each block

• The frequency with the highest power of each
block

• The number of peaks that are higher then a de-
fined magnitude of the mean frequency power

The Matlab code 2 shows how the peaks are calcu-
lated. peakBorder is the parameter that can be varied
and it defines, when a spike counts as a peak.

currPeakNum = 0;
for X = 1: blockWidth

i f ( Y_block (X) >= meanPower∗peakBorder )
peaks_block = peaks_block +1;

end
end

Listing 2: Peak Calculation

The additional information is also calculated for the
complete signal sample. Experiments showed that
the added information is more useful for the algorithm,
then the actual raw data. This allows to compress the
data. The information of 100 frequencies (100 fre-
quencies are used to simpler convert the result into
percent values) is thus reduced down to four attributes
(maximum and mean power, the frequency with he
maximum power and the number of peaks). A similar
result is achieved in the time domain. Instead of cal-
culating the amplitude for each frequency in the time
domain, only two attributes (maximum and mean am-
plitude) are calculated for 100 frequencies.

Freq_Info = 4 · Frequencies

BlockWidth
(6)

Time_Info = 2 · Frequencies

BlockWidth
(7)

Total_Info = Freq_Info(8)
+ Time_Info

= 6 · Frequencies

BlockWidth
Normal_Info = 2 · Frequencies(9)

Compression =
Total_Info

Normal_Info
(10)

=
3

BlockWidth

Thus the needed data is reduced to 3 % if
BlockWidth = 100 and Frequencies = 11000. The
results of the analysis of the data with and without
(BlockWidth = 1) compression will be shown in the
section ’Result Analysis’.

5. EXPERIMENT

To show the performance and concepts of the algo-
rithm, experiments were performed with different pa-
rameters. The data for the experiments and the fea-
ture extraction was sampled with an autonomous box,
that contained sensors and logic to save the data on
a SD card. As a basis for the data collection a test
rig was used. Vibration data with a sampling rate of
44 kHz of a simple PC fan was collected. A PC fan
was used to show the principals of the method. Data
is saved in a raw wave format onto a SD card and then
transferred onto a PC. In addition to the raw sensor
data the condition of the component was saved. The
fan is operated with standard speed, but three differ-
ent conditions were sampled. Data from the following
conditions was collected:

• No additional weight

• A very small weight (less then one gramm) is
added to one blade

• A small coin (one Eurocent) is added to one
blade

For each case 900 samples were collected. Every
sample contains the vibration data of one second.
Ten minutes passed between the individual samples.
Samples were collected during office work hours and
so a variety of noise is contained in the samples.
In the experiment 900 “No weight” (no additional
weight), 450 “Small weight” (a very small weight) and
450 “Big weight” (a small coin) samples were used.
The decision tree of the J48 algorithm (an implemen-

Deutscher Luft- und Raumfahrtkongress 2009

©DGLR 2009 4



tation of C4.5) in WEKA was validated with a 3-fold-
cross-validation (all samples are used for testing and
training and the cross-validation process is repeated
3 times).

5.1. Calculating the Decision Tree

The decision tree is calculated with the open source
Java software WEKA [10]. WEKA allows the user to
test different algorithms and shows the classification
errors that occurred. The correct data format is gen-
erated by using a Java program that transforms the
output files from Matlab into input files for WEKA. For
classification J48 is chosen, which is an implementa-
tion of the C4.5 decision tree algorithm, and a confi-
dence factor of 0.0001. The confidence factor defines
how much pruning is done to the resulting decision
tree.
The complete processed data is used as training
data. After the generation of the decision tree the
same data is used for testing the decision tree. In
general the training and the testing data should not be
the same, but in this case it is exactly what is wanted.
The goal is not to classify new objects correctly, but
to check how good the available data is classified and
what part of the data gives us the most information
about the system.

5.2. Experiment Parameters

Calculations with the same input data, but different
parameter values, were performed to show the influ-
ence of the parameters on the results; Table 1 shows
the available parameters with their possible values.
All ”Yes/No”-parameters are Boolean parameters, that
toggle the calculation of that parameter during the
processing. Default parameters are the values that
are used, when the effect of a parameter onto the al-
gorithm is tested. Only one value per test varies, while
all other parameters keep their default value. The
data processing with Matlab generates a number of
different input sets for the J48 algorithm. For every in-
put set a decision tree is generated and the influence
of the modified parameter is then evaluated.

6. RESULT ANALYSIS

This section analyzes the results of the data process-
ing of the previous section. First the different experi-
ments with the different parameters are analyzed and
evaluated in the next step the results of the best pa-
rameter configuration are taken and analyzed more
closely.

6.1. Parameter Evaluation

This section shows the processing results of the dif-
ferent input sets, based on the parameter variation.
The influence of a parameter is judge by the num-

ber of correct classified samples for every input set.
Finding an optimal set of all parameters for the given
samples, that give the lowest overall false classifica-
tion rate, is a very complex problem. The complexity
of the problem is so high that it is not possible to solve
the problem in a fixed time, instead heuristic methods
have to be used to find an optimal solution.

Table 1: Processing Parameters

Parameters Possible
Values

Default
Value

Block Width (see 4.1) 5/50/
100/200

100

Noise Reduction Factor (see
4.2)

0/1/2/5 0

Maximum Amplitude Yes/No Yes
Mean Amplitude Yes/No Yes
Maximum Power Yes/No Yes
Maximum Frequency Yes/No Yes
Mean Power Yes/No Yes
Number of Peaks Yes/No Yes
Peak Border 1/2/5 2
Global Maximum Amplitude Yes/No Yes
Global Mean Amplitude Yes/No Yes
Global Maximum Power Yes/No Yes
Global Maximum Frequency Yes/No Yes
Global Mean Power Yes/No Yes
Global Number of Peaks Yes/No Yes
Confidence Factor 0.0001/

0.001/
0.01/ 0.1/
1

0.0001

6.1.1. Default Parameters

The first calculation was performed using the default
parameters (see Table 1). The following results in Ta-
ble 2 were gained.

Table 2: Results for the Default Parameter Set
Correct Classified False Classified

73.4 % 26.6 %

The numbers imply that about three quarter of the test
cases are correctly classified. When looking in more
detail at the classification distribution Table 3 results.

Table 3: Distribution of Wrongly Classified Samples

Sample
Class

Classified
as No

Classified
as Small

Classified
as Big

No 755 103 42
Small 175 218 57
Big 41 61 348

The majority of the samples was correctly classified.
For samples with no additional weight and a big addi-
tional weigth the classification was very good, while
samples with a small additional weigth were often
classified as samples with no additional weigth. The
results are still good, because the small attached
weight was really light and sensing accuracy was not
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very high. When only no additional weigth and big ad-
ditional weigth samples are used then the number of
wrongly classified samples goes down to 5 %.

Table 4: Results for the Default Parameter Set with no
Additional small Weight Samples

Correct Classified False Classified
92.7 % 7.3 %

Table 5: Distribution of Wrongly Classified Samples with no
Small Weight Samples

Sample
Class

Classified
as No

Classified
as Big

No 862 38
Big 60 390

6.1.2. Block Width

Table 6 shows the results, when the block width
varies.

Table 6: Results for Block Width
Block Width False Classified

5 43.3 %
50 27.4 %

100 26.6 %
200 24.3 %

The decreasing numbers imply that at some point an
optimal block width can be reached, at which a mini-
mum of false classified samples is obtained.

6.1.3. Noise Reduction

Table 7 shows the experimental results for a varying
noise reduction.

Table 7: Noise Reduction
Noise Reduction False Classified

0 26.6 %
1 24.2 %
2 27.6 %
5 42.6 %

6.1.4. Maximum Amplitude

The calculation of the maximum amplitude can be
turned on or off. The Tables 8 and Table 9 show the
results.

Table 8: Results for Maximum Amplitude per Block
Maximum Amplitude False Classified

Yes 26.6 %
No 26.5 %

Table 9: Results for Global Maximum Amplitude
Global Maximum Amplitude False Classified

Yes 26.6 %
No 26.6 %

These results show that the maximum amplitude does
not have a big influence on the classification in this
problem. This is even more interesting to notice, be-
cause amplitude is the value that the vibration sen-
sors record and that can be taken as an input without
additional processing.

6.1.5. Mean Amplitude

The Tables 10 and 11 show the influence of the mean
amplitude values.

Table 10: Results for Mean Amplitude per Block
Mean Amplitude False Classified

Yes 26.6 %
No 27.7 %

Table 11: Results for Global Mean Amplitude
Global Mean Amplitude False Classified

Yes 26.6111 %
No 26.6111 %

The mean amplitude seams to have little influence on
the accuracy.

6.1.6. Maximum Frequency Power

Table 12 and Table 13 show the results of the param-
eter variations for the maximum frequency power.

Table 12: Results for Maximum Frequency Power per block
Maximum Frequency Power False Classified

Yes 26.6 %
No 25.0 %

Table 13: Results for Global Maximum Frequency Power
Maximum Frequency Power False Classified

Yes 26.6 %
No 26.6 %

The maximum power seams to have a small influence
on the classification.

6.1.7. Frequency with Highest Power

Table 14 and Table 15 show the results of the param-
eter variations for the frequency with the maximum
power.

Table 14: Results for Frequency with Highest Power per
Block

Frequency with
Highest Power False Classified

Yes 26.6 %
No 26.3 %
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Table 15: Results for Global Frequency with Highest Power

Frequency with
Highest Power False Classified

Yes 26.6 %
No 26.6 %

The maximum power seams to have a small influence
on the classification.

6.1.8. Mean Frequency Power

Table 12 and Table 13 show the influence of the pa-
rameter variations for the mean frequency power.

Table 16: Results for Mean Frequency Power per Block
Mean Frequency Power False Classified

Yes 26.6 %
No 22.8 %

Table 17: Results for Global Mean Frequency Power
Mean Frequency Power False Classified

Yes 26.6 %
No 26.6 %

Mean frequency power is a big factor and can improve
the classification by nearly 4 %. The global mean val-
ues give no information about the condition of the fan.

6.1.9. Number of Peaks

Table 18 and Table 19 show the influence of the num-
ber of peaks for the calculation.

Table 18: Results for Number of Peaks per Block
Number of Peaks False Classified

Yes 26.6 %
No 21.8 %

Table 19: Results for Global Number of Peaks
Number of Peaks False Classified

Yes 26.6 %
No 26.6 %

The number of peaks does have an even bigger influ-
ence on the classification then the mean frequency
power and the false classification rate can be im-
proved by nearly 5 %.

6.1.10. Peak Border

The peak border (the value that defines what is a
peak) also influences the calculation. Table 20 shows
this.

Table 20: Results for Peak Border
Peak Border False Classified

1 24.3 %
2 26.6 %
5 22.3 %

Results for the peak border show no clear trend, but
the numbers suggest that an optimum exists.

6.1.11. Confidence Factor

The confidence factor determines how much the de-
cision tree is pruned and also has an influence on the
classification accuracy.

Table 21: Results for Confidence Factor
Peak Border False Classified Tree Size

1 27.4 % 275 Nodes
0.1 26.7 % 225 Nodes

0.01 26.2 % 185 Nodes
0.001 26.0 % 163 Nodes

0.0001 26.6 % 109 Nodes

The results of the variation of the confidence factor
shows the problem of over-fitting. The less pruning is
performed the more samples are wrongly classified.
Over-fitting is reduced when pruning is used.

6.2. Sensor Optimization

To be able to define the set of sensors that give the
most information about the fan condition a decision
tree has to be generated and evaluated. To find the
attributes, which contain the most information about
the system, a decision tree with a low false classifica-
tion rate is needed.

6.2.1. Feature Extraction

To extract significant attributes from the desicion tree
a parameter set is needed that generates a tree with
a low false classification rate. However it is not pos-
sible to take a parameter set of only the best attribute
settings that were calculated in the experiments, be-
cause the parameters influence each other in a highly
complex way. For example, if we deactivate the calcu-
lation of the mean frequency power and the number
of peaks (two values which improved the false classi-
fication rate if turned off) then we get the classification
results in Table 22 and Table 23.
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Table 22: Results for the Modified Parameter Set
Correct Classified False Classified

73.0 % 27.0 %

Table 23: Distribution of Wrongly Classified Samples

Sample
Class

Classified
as No

Classified
as Small

Classified
as Big

No 741 104 55
Small 163 225 62
Big 63 39 348

Table 22 shows that the false classification rate gets
worse and indicates that both values are highly con-
nected. Thus to find an optimal set of parameters
special algorithms are needed, as it was mentioned
in Section 6.1. Using the default parameters, which
represent a good parameter set, and the sample data
results in a decision tree that is partly as shown below.

Block109MeanPower <= 0.01
| Block112PeakNum <= 11
| | Block106PeakNum <= 8
| | | . . .
| | Block106PeakNum > 8: smal l
| Block112PeakNum > 11
| Block123MeanPower <= 0.007: no
| Block123MeanPower > 0.007: smal l
Block109MeanPower > 0.01

Block110PeakNum <= 1
| Block11PeakNum <= 3
| | . . .
| Block11PeakNum > 3
| . . .
Block110PeakNum > 1

Block111MeanPower <= 0.009
| . . .
Block111MeanPower > 0.009

. . .

Listing 3: Part of the Decision Tree

It is evident that the most important feature in the
tree is the mean frequency power of block 109. Fol-
lowed by other attributes like the number of peaks.
The tree contains no nodes of the “global” attributes
(e.g. Global Mean Power). That means that they give
nearly no information for the classification problem.
The block peak number and the block mean power
are the most significant features or attributes for the
given problem and the samples. It is interesting to no-
tice here that the correct classification rate increases,
when one of both features is not used. This indicates
the complex problem of finding the optimum parame-
ter set for a given problem.

6.2.2. Sensor Selection

Based on the feature extraction in the previous sub-
section it is possible to decide, which sensors and

processing methods need to be considered for moni-
toring the system. For the experiments only two “sen-
sors” need to be considered to gain a fairly good clas-
sification.

6.2.3. Application for the Recirculation Fans
and Filters

The experiment shows good results. To validate the
method and experiments two more complex tests are
planned to be performed. A test on aircraft will be
performed that collects real world operation samples.
These samples of a well funtioning aircraft will contain
no information about failure cases, however they will
contain much noise from the operational environment
of the aircraft. The additional noise is needed, be-
cause the algorithm will later also operate in the real
world and therefore need to be well adapted to work
with noise. Because it is difficult to collect informa-
tion about failure cases in a test on aircraft a second
test will be performed. This second test will be con-
structed and installed in a hangar, where recirculation
fans and filters will be monitored and different failure
cases will be simulated. This test set up allows gath-
ering of samples in different failure conditions with low
noise. Information processing (noise reduction, FFT)
is well supported by state of the art digital signal pro-
cessors and it is possible to evaluate the information
nearly in real time.

7. SUMMARY AND RECOMMANDATION

The results of the experiment show that a fairly good
failure classification can be made with the recom-
mended algorithms and methods. While the classi-
fication is not perfect, it allows to decide, which fea-
tures and sensors contain the most information about
a system. The experiment used only
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