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ABSTRACT 

Reducing unscheduled maintenance is important for aircraft operators. There are significant costs 

if flights must be delayed or cancelled, for example, if spares are not available and have to be 

shipped across the world. This thesis describes three methods of aircraft health condition 

monitoring and prediction; one for system monitoring, one for forecasting and one combining the 

two other methods for a complete monitoring and prediction process. Together, the three 

methods allow organizations to forecast possible failures. The first two use decision trees for 

decision-making and genetic optimization to improve the performance of the decision trees and 

to reduce the need for human interaction. Decision trees have several advantages: the generated 

code is quickly and easily processed, it can be altered by human experts without much work, it is 

readable by humans, and it requires few resources for learning and evaluation. The readability 

and the ability to modify the results are especially important; special knowledge can be gained 

and errors produced by the automated code generation can be removed. 

A large number of data sets is needed for meaningful predictions. This thesis uses two data 

sources: first, data from existing aircraft sensors, and second, sound and vibration data from 

additionally installed sensors. It draws on methods from the field of big data and machine learning 

to analyse and prepare the data sets for the prediction process. 

Keywords: Condition Monitoring, Remaining Useful Life Prediction, Decision Tree, Genetic 

Algorithm, Fuzzy Decision Tree Evaluation, System Monitoring, Aircraft Health Monitoring, 

Feature Extraction, Feature Selection, Data Driven, Health Prognostic, Knowledge Based System, 

Supervised Learning, Data-Driven Predictive Health Monitoring, Health Indicators, Machine 

Learning, Big Data, Pattern Recognition 
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APPENDED PAPERS 

The first published paper represented research on and an analysis of the benefits of predictive 

health monitoring by looking at the costs of unscheduled maintenance. The second paper 

developed a basic method for health monitoring using decision trees, sound/vibration signal and 

feature extraction. One drawback of the proposed method was that the feature extraction had a 

significant influence on the performance of the condition monitoring. So the next step (paper 3) 

was to improve the feature extraction by automatically selecting an optimal set of parameters 

using a genetic algorithm. Another drawback was that the condition monitoring returned only 

discrete values for the current condition and no continuous values or information about 

neighbouring states. Accordingly, the method was modified to return more information by using 

a post-fuzzification approach (paper 4). In the next step, the method was enhanced to allow the 

forecasting of the system health. To do this, time series data using the fuzzy condition results were 

created, then approximated and extrapolated into the future. Artificial test data were used for this 

step (paper 5). Finally, the method was modified and tested with real-world aircraft data to 

validate it (paper 6). 

Paper 1: Effects of Condition-Based Maintenance on Costs Caused by Unscheduled 

Maintenance of Aircraft (Gerdes, et al., 2016) 

This paper analyses the effects of condition-based maintenance based on unscheduled 

maintenance delays caused by ATA chapter 21 (air conditioning). The goal is to show the 

introduction of condition monitoring in aircraft systems. The research used the Airbus In-Service 

database to analyse the delay causes and lengths and to check whether they were easily detectable 

via condition monitoring. These results were combined with delay costs. Analysis showed that 

about 80% of the maintenance actions causing departure delays can be prevented when 

additional sensors are introduced. With already existing sensors, it is possible to avoid about 20% 

of the delay-causing maintenance actions.  

Paper 2: Decision trees and the effects of feature extraction parameters for robust sensor 

network design (Gerdes, et al., 2017) 

Reliable sensors and information are required for reliable condition monitoring. Complex systems 

are commonly monitored by many sensors for both health assessment and operation purposes. 

When one of the sensors fails, the current state of the system cannot be calculated reliably as the 

information about the current state will not be complete. This paper shows how to calculate the 
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significance of the information that a sensor gives about a system by using signal processing and 

decision trees. It also shows how signal processing parameters influence the classification rate of 

a decision tree and, thus, the information. The paper uses decision trees to calculate and order the 

features based on the information gain of each feature. During the method validation, they are 

used for failure classification to show the influence of different features on the classification 

performance.  

The paper concludes by analysing the results of experiments; it finds the method can classify 

errors with a 75% probability and different feature extraction options influence the information 

gain. 

Paper 3: Automated Parameter Optimization for Feature Extraction for Condition 

Monitoring (Gerdes, et al., 2016) 

Pattern recognition and signal analysis can be used to support and simplify the monitoring of 

complex aircraft systems, but information must be extracted from the gathered data in a proper 

way. The parameters of the signal analysis need to be chosen specifically for the monitored system 

to get the best pattern recognition accuracy. The paper develops an optimization process to find 

a good set of parameters for signal analysis using a global heuristic search and optimization. The 

computed parameters deliver slightly better results (one to three percent) than manual analysis. 

In addition, a full set of data samples is not needed. Thus, genetic optimization has the best 

performance. 

Paper 4: Fuzzy Condition Monitoring of Recirculation Fans and Filters (Gerdes & Galar, 2016) 

Pattern recognition technologies are often used to find patterns in complex systems. Condition 

monitoring can also benefit from pattern recognition. However, many pattern recognition 

technologies only output the classification of the data sample; they do not output any information 

about classes that are very like the input vector. This paper presents a concept for pattern recognition 

that outputs similarity values for decision trees. Experiments confirm that the method works and 

shows good classification results. Different fuzzy functions are evaluated to show how the method can 

be adapted to different problems. The concept can be used on top of any normal decision tree 

algorithm and is independent of the learning algorithm. The goal is to determine the probabilities of a 

sample belonging to each class. Experiments show the concept is reliable and works with decision tree 

forests (discussed in the paper) to increase the classification accuracy. Overall, the concept has the 
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same classification accuracy as a normal decision tree, but it offers the user more information about 

how certain the classification is.  

Paper 5: Decision Trees and Genetic Algorithms for Condition Monitoring Forecasting of 

Aircraft Air Conditioning (Gerdes, 2013) 

This paper proposes a method for forecasting the condition of an aircraft air conditioning system 

based on observed past data. Forecasting is done in a point by point way by iterating the 

algorithm. The proposed method uses decision trees to find and learn patterns in past data and 

then uses these patterns to select the best forecasting method to forecast future data points. 

Forecasting a data point is based on selecting the best applicable approximation method. The 

selection is done by calculating different features/attributes of the time series and then evaluating 

the decision tree. A genetic algorithm is used to find the best feature set for the given problem to 

increase the forecasting performance. The experiments show a good forecasting ability even when 

noise disturbs the function. 

Paper 6: Genetic Algorithms and Decision Trees for Condition Monitoring and Prognosis of 

A320 Aircraft Air Conditioning (Gerdes, et al., 2017) 

The paper shows condition monitoring can be introduced into most systems by adopting a data-

driven approach and using existing data sources. The goal is to forecast the remaining useful life 

(RUL) of a system based on various sensor inputs. Decision trees are used to learn the 

characteristics of a system. The data for the decision tree training and classification are processed 

by a generic parametric signal analysis. To obtain the best classification results for the decision 

tree, a genetic algorithm optimizes the parameters. A forest of three different decision trees with 

different signal analysis parameters is used as classifier. The proposed method is validated with 

data from an A320 aircraft from ETIHAD Airways. Validation shows condition monitoring can 

classify the sample data into ten predetermined categories, representing the remaining useful life 

(RUL) in 10 percent steps. This is used to predict the RUL. There are 350 false classifications out 

of 850 samples. Noise reduction reduces the outliers to nearly zero, making it possible to correctly 

predict condition. It is also possible to use the classification output to detect a maintenance action 

in the validation data. 
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 INTRODUCTION 

This section gives an overview of the derivation of this work from the project on preventive 

aircraft monitoring for integrated reconfiguration.  

 Preventive Aircraft Health Monitoring for Integrated Reconfiguration 

(PAHMIR) 

The PAHMIR (Preventive Aircraft Health Monitoring for Integrated Reconfiguration) project 

provided the research environment and basis for the dissertation. PAHMIR was a cooperative 

research project between Airbus Operations GmbH and Hamburg University of Applied Sciences 

(HAW Hamburg). The project was funded by the City of Hamburg and lasted 3.5 years, from 

January 2008 to June 2011. Most of the research was done during this period. In 2016, real-world 

aircraft data were used to verify and refine the developed methods. The goals of PAHMIR were to 

analyse existing in-service aircraft maintenance data, develop a predictive aircraft health 

monitoring system and analyse how such a system might be integrated into a dynamic cabin 

concept. Concepts of condition monitoring, condition prediction and indoor localization were 

developed and tested. 

The goals of PAHMIR were to: 

• Reduce unscheduled maintenance 

• Perform advanced failure prediction 

• Perform condition monitoring 

• Better plan maintenance 

• Improve cabin reconfiguration 

 Problem Description 

One goal of PAHMIR was to forecast and prevent failures. The main driver of the development of 

a failure prediction concept was the cost of delay of an aircraft departure or arrival. Unscheduled 

maintenance can cause delays. Failure prediction should allow the aircraft operator to repair or 

replace a system during scheduled maintenance, if the system is not yet broken but will be before 

the next scheduled maintenance. Figure 1 shows the handling of an aircraft fault without 

predictive health monitoring (i.e., failure prediction). 
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Figure 1: Unscheduled maintenance without failure forecasting 

The maintenance case in Figure 1 is the following: a fault happens in flight. Sensors detect the fault 

and report the fault to the cockpit. The pilot/aircraft sends a maintenance request to the airport. 

A maintenance mechanic checks the aircraft when it is on the ground. The mechanic performs a 

fault search and a fault diagnosis. Spare parts are ordered and a repair plan is made after the fault 

has been identified. When the spare parts arrive, it is possible to do the repair. The aircraft is ready 

again after the repair. If the fault identification, diagnostics and spare parts management take too 

much time, the aircraft departure is delayed or even cancelled. A delay causes significant costs for 

an aircraft operator. 

In the ideal case, most faults are repaired during scheduled maintenance (Figure 2). However, a 

fault still may occur. Delays of the type mentioned above can be prevented by repairing future 

faults in the hanger; this reduces the number of unscheduled maintenance cases. 

 
Figure 2: Unscheduled maintenance with failure forecasting 

The costs of a delay can be quite large if the delay is long or the flight is cancelled. Gerdes, Scholz, 

Galar and Randerath (Gerdes, et al., 2009) (Gerdes, et al., 2016) have analysed the costs of a delay 

and determined what can be saved by forecasting faults and making repairs during scheduled 

maintenance. 
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 Purpose and Objectives 

Following the PAHMIR project, the goals of the dissertation can be formulated as: 

• Create adaptable system condition monitoring 

• Find simple and verifiable monitoring algorithms  

Perform failure prediction 500 flight hours in advance 

• Perform condition monitoring both online and offline  

• Make condition monitoring and prediction usable in a changeable cabin layout 

• Decrease the number of needed sensors 

• Lower the hardware profile 

• Use new and existing sensors 

• Extend research beyond the aircraft domain 

• Decrease the required human interaction 

Briefly stated, the goals are to develop a condition monitoring and forecasting concept that is 

usable in the aircraft environment, that can be used for different systems and can be used by 

operators without much system knowledge or knowledge of the monitoring and prediction 

concept. The system should be easy to use in different aircraft systems. In addition, the algorithms 

should be easily verified and understood to ensure the system correctly monitors and forecasts 

the system condition. 

The concept following from these goals is software that can be embedded in different 

environments. In this concept, most computation takes place during the configuration of the 

failure prediction system, not during operation. Most anticipated computations and methods are 

fast and need little hardware power or memory. The concept needs sensor input and a way to 

output the predictions. 

 Research Questions 

The following research questions (RQs) are answered in this work: 

RQ1: Is it possible to predict a failure of the air conditioning system 400 flight hours before a 

failure occurs so that it can be prevented during scheduled maintenance? This is the core research 

question that motivated this project and set the scope and limitations.  
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RQ2: Is it possible, with established signal processing and pattern recognition methods, to 

monitor and predict the health of aircraft fans and filters in real time? This second question was 

derived from the first question and expanded it. The goal of this question is to limit the available 

methods and to ensure that the developed method can be run on embedded and integrated 

devices. 

RQ3: Is it possible to monitor the aircraft fans and filters by using existing sensors or by 

monitoring using only sound and vibration data? The installation and aircraft certification of new 

sensors and devices is an expensive and complex process. Therefore, it would be of considerable 

interest if the condition monitoring of an aircraft system could be done without installing new 

sensors. Existing sensors monitor systems indirectly by process data, error messages and 

interaction with other systems. 

The six appended papers address the three RQs as shown in Table 1. 

Table 1: Relationship between RQs and appended papers 

RQ Paper 1 Paper 2 Paper 3 Paper 4 Paper 5 Paper 6 

RQ 1 X    X X 

RQ 2  X X X X X 

RQ 3   X X  X 

 Research Methodology 

This section explains the research methodology and strategy. The first subsection focuses on the 

research approach; the second subsection explains the validation strategy. Application of the 

research methodology appears in later sections. 

1.5.1 Research Strategy 

The dissertation research used an iterative and experimental approach based on the iterative 

development and rapid prototyping of software development. This approach was selected 

because the result of the research was intended to be software using available tools to handle a 

problem in a new domain by combining those tools and using the strength of computer powered 

machine learning. Before the software development, however, a cost-benefit analysis verified the 

validity of the research goals. 

The idea of iterative development and software prototyping is to create fast and functional 

software that does not necessarily contain all required features. Only the most important features 
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are implemented and tested. In later iterations, more required features are added to the prototype 

until the software is complete. 

The advantage of this approach is that fundamental errors can be detected at an early stage and 

corrected to ensure the basic features are working before more advanced features are added. For 

this research, in the first iteration, only one part of the method was implemented and tested. Each 

iteration relates to a published paper (papers 2, 3, 4, 5). The first iteration contained only decision 

tree learning for feature selection/extraction. The second compared different learning and 

optimization methods to improve the feature selection/extraction. The third added fuzzy 

evaluation of the classification results. The fourth iteration added forecasting to the software. 

Using this approach reduced the risk of research going in the wrong direction and time being 

wasted on methods that did not add to the research goal.  

1.5.2 Validation and Verification 

The initial plan was to use test rig and real-world data to validate and verify the prototypes, but 

because of regulations and time issues, it was not possible to get real-world data from an aircraft 

until the end of the project. This meant only test rig data were used to validate the method. This 

proved problematic, because the method had to be reworked once real-world data were available 

(Gerdes, et al., 2017). 

Each prototype was validated and verified using different kinds of test data. The first prototype 

was tested with basic data that were not related to the problem domain. Instead, these data were 

specifically created to validate the features of the first prototype. The second and third prototypes 

were tested with data from a test rig that simulated parts of the problem domain, but not all parts. 

The fourth prototype was tested with the full test rig and data that were like those in the problem 

domain. For the final validation, real-world data were used to ensure the method performed well 

and yielded the desired results. 

 Scope and Limitations 

The research explores how established simple pattern recognition and signal processing methods 

can be used to predict system health. The proposed approach uses established methods like Fast 

Fourier Transformation, decision trees and genetic evolution. The limitations of this research are 

the following: 



26 

 

• The method was developed with the aviation environment in mind. Thus, it was tested 

with aircraft data. The method has not been tested in other domains, so its applicability is 

unknown. 

• Simple methods were chosen to allow real time processing of sensor data within a low 

power processor. Originally, it was planned to embed the data evaluation in electronic 

fasteners. These devices have little processing power and small memory. However, after 

the start of the project, the partnership company was sold, and the new owner ended the 

cooperation. But real time on-aircraft monitoring (with low power processors) is still 

needed to reduce the data that are transmitted to the ground. 

• The method focused on decision trees as the main method for pattern recognition. There 

are better and more powerful algorithms available. Decision trees were selected because 

they can easily be modified by a human operator and are easy to understand and 

test/verify and deterministic. This is important for software in the civil aviation 

environment. 

• The method was developed to complement the existing aircraft maintenance policies, not 

to replace them. Current aircraft maintenance policies state that a part needs to be 

exchanged before it breaks after a certain usage time. Thus, no monitored device will ever 

show observable failure. The planned replacement of a component was therefore 

considered as the end of life. 

 Authorship of Appended Papers 

Table 2 summarises the contribution of each author to the appended papers. Contribution is 

divided into the following tasks: 

1. Study conception and design 

2. Data collection 

3. Data analysis and interpretation 

4. Manuscript drafting 

5. Manuscript critical revision  

Table 2: Contribution of each author to the appended papers 

Author Paper I Paper II Paper III Paper IV Paper V Paper VI 

Mike Gerdes X X X X X X 

Diego Galar X X X X  X 

Dieter Scholz X X X   X 
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 Outline of Thesis 

This thesis presents a concept for adaptable predictive aircraft health monitoring using decision 

trees. The project (PAHMIR - Preventive Aircraft Health Monitoring with Integrated 

Reconfiguration) that led to this dissertation began in 2008 as a cooperative project between 

Hamburg University of Applied Sciences and Airbus Operations GmbH. The dissertation is 

organized as follows. 

Introduction 
The introduction explains the problem, the motivation for the research, the research background, 

and the concept of the solution. It begins by describing the project which motivated the research. 

This is followed by an explanation of the motivation for and necessity of the research. The 

introduction also gives a full description of the research objectives. It closes with a review of the 

concepts applied to solve the problem and reach the objectives. 

Background 
The second section explains the theoretical background of the concepts used: aircraft 

maintenance, condition monitoring, signal analysis, feature extraction, data fusion, decision trees, 

heuristic search and time series analysis. The order of the topics is based on the order they appear 

in the text. The section closes with a summary. 

Proposed Concept 
This section discusses, in detail, the method used for condition monitoring and prediction. First, 

the training process is explained, then the monitoring and prediction process. The training 

process is divided into input data, classification training and prediction training; the monitoring 

process is divided into classification and prediction. The prediction is based on an interactive 

approach, where one data point after another is calculated. Validation attempts using real-world 

aircraft data, however, showed the method does not work very well with noisy data. Thus, a new 

prediction method was developed. The reworked method is shown in section 4.3. 

Validation 
The experiments described in this section show how feasible and usable the developed concepts 

really are. The section is divided into the evaluation of the condition monitoring concept and the 

evaluation of the condition prediction. The experimental setup was different for each, so 

evaluation was also different. Condition monitoring was validated on a test rig at Airbus; the 

prediction of condition was validated using computer generated data and real-world data from an 

in-service aircraft. The validation attempts with the real-world data showed the concept needs to 

be modified to accommodate these data. 
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Conclusion 
The concluding section summarizes the results, answers the research questions and suggests 

future work and improvements. 

 Concept 

The developed concept can predict failures so that maintenance can be planned. It is based on two 

processes (condition monitoring and condition forecasting) that work together to create a 

complete concept. Decision trees are used to make decisions in the concept and are at the core of 

both processes. In the first process (condition monitoring), the task is to decide which condition 

the sensor data represent, and in the second process (condition prediction), the task is to decide 

how to predict data points. Both tasks are solved by decision trees. 

The core idea behind the concept is to use machine learning to create an expert system that adapts 

to different aircraft types through machine learning. A human expert is needed to configure the 

starting parameters and link sensor data to a system condition during the training. After the 

training, the system can work without a human expert. The system is designed as a statistical 

system model to allow a high level of adaptability. A statistical system allows the user to use 

measurement data to create a system model without needing full system knowledge. The two 

processes use parameter optimization to improve the performance of the decision trees and the 

overall performance. Optimization reduces the need for human input after the initial data and 

parameter configuration. All process parameters that may change can be changed until an optimal 

parameter set is found or until several different decision trees have been calculated. 

The concept can be embedded in most hardware platforms and is system independent. The 

training of the decision algorithms can be done on any platform, and the resulting code is based 

on simple "if-then-else" statements, which can also be implemented in most platforms. Digital 

signal processors (DSP) are especially suited for condition monitoring, because they can calculate 

the signal processing very quickly. With optimal hardware architecture and good implementation, 

it is possible to perform condition monitoring and condition prediction in real time. Signal 

processing and prediction parameter approximation parameter calculations take more time. 

1.9.1 Condition Monitoring 

The condition monitoring concept uses sensor data to calculate the current condition of the 

system. This can be the system state (e.g. normal, error 1, error 2 ...) or the remaining lifetime. The 

concept does not rely on a special type of sensor or sensor data from one source or kind. It is 

possible to use any kind of data or combination of data. The concept works best with sensor data 

which change multiple times per second. If the data are not numerical, preprocessing cannot be 
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applied, but it is still possible to use all other parts of the process, making it possible to merge data 

from different sources and of different kinds into one system condition. An extra output of the 

concept is the similarity of the sensor data to other system conditions beyond the class they were 

mapped onto.  

Condition monitoring is based on a decision tree which makes a decision based on signal features. 

The decision tree needs to be trained with data samples. Condition monitoring is a simple process 

compared to training. Preparation of training samples (signal feature extraction) is a complex task 

controlled by parameters. If it can be optimized, both performance and adaptability will be 

improved. To sum up, the following methods and technologies are used for the concept: 

• Decision trees 

• Signal analysis 

• Optimization 

Fuzzy decision tree evaluation provides continuous results (percentage values) in addition to the 

discrete decisions of the decision tree. The continuous results are possible because of the 

similarity of the data belonging to another class. A failure case is used as an input to the condition 

prediction process, which needs a continuous value. 

1.9.2 Condition Prediction 

Condition prediction requires time series data (chronological ordered data points) and predicts 

future data points based on learned patterns/knowledge. It is possible to train the system to 

predict data points in the close future or in the far future. Prediction is done by calculating a 

suitable approximation based on learned experience. Decision trees are used to decide what the 

best approximation method is for the current condition time series. Health conditions sometimes 

change quite quickly, so a prediction method needs to be able to detect indications for a fast 

change and change its prediction method based on the new information. 

As in condition monitoring, training the decision tree is the most complex task of the process. The 

time series data need to be prepared and features need to be extracted. Again, an optimization 

process will improve performance. While the process looks more complicated than condition 

monitoring, it is easy to compute, and the steps are easy to understand. The following methods 

and technologies are used for the concept: 

• Decision trees 

• Time series analysis 
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• Optimization 

1.9.3 Remaining Useful Life Prediction 

Remaining useful life prediction combines the condition monitoring and the condition prediction 

processes into one complete process that can be used to forecast a failure. The condition 

monitoring gives the current system state (if correctly trained). However, there is no direct need 

to know the current system state for failure prediction. What the user needs to know is the 

similarity of the current state to a failed state. Fuzzy decision tree evaluation (Gerdes & Scholz, 

2011) (Gerdes & Galar, 2016) can calculate how similar a sample is to another class. A side effect 

is that the fuzzy evaluation converts the discrete result of the decision tree classification into a 

continuous number; this can be useful if the user wants to know how similar a sample is to a 

specific class. To predict RUL, the following methods and technologies are required: 

• Condition monitoring 

• Fuzzy decision tree evaluation 

• Condition prediction 
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 BACKGROUND  

This chapter gives some background details of the methods, ideas and techniques used in this 

thesis. It starts with an overview of aircraft maintenance and condition monitoring to shed light 

on the idea and constraints of the proposed method. This is followed by a description of various 

aspects of the method and its development. 

 Aircraft Maintenance 

Maintenance is the combination of all technical and associated administrative actions intended to 

retain an item in, or restore it to, a state in which it can perform its required function (Institution, 

1993). The goal is to prevent fatal damage to machines, humans or the environment, to prevent 

unexpected machine failure, to allow condition based maintenance planning and to ensure safety 

of production and quality control (Kolerus & Wassermann, 2011). Figure 3 shows a breakdown of 

the various maintenance strategies.  

 
Figure 3: Maintenance (Williams, et al., 1994) 
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Basically there are three different maintenance strategies (Randall, 2011) (Kolerus & 

Wassermann, 2011):  

• Run-to-break is the simplest maintenance: the machine or system is used until it breaks. 

This method is often used for systems that are cheap, especially when one failure does not 

cause other failures. It is commonly used for consumer products (Kolerus & Wassermann, 

2011).  

• Preventive maintenance is the most common maintenance method for industrial 

machines and systems. Maintenance is performed in fixed intervals. The intervals are 

often chosen so that only 1-2 percent of the machines will have a failure in that time 

(Randall, 2011).  

• Condition-based maintenance is also called predictive maintenance. Maintenance is 

dynamically planned based on the machine or system condition. Condition-based 

maintenance has advantages over the other two strategies, but requires a reliable 

condition monitoring method (Randall, 2011).  

Figure 4 shows a typical machine condition-based monitoring case. First, the machine goes into 

operation and is in normal operation. It is replaced shortly before a failure happens (Kolerus & 

Wassermann, 2011).  

 

 
Figure 4: Machine/system condition over time (Kolerus & Wassermann, 2011) 

Aircraft maintenance is based on reliability centred maintenance (RCM). The goal is to have 

maximum safety and reliability with minimized costs. Tasks are selected in a hierarchy of 
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difficulty and cost, from lowest to highest. Each task must also pass applicability and effectiveness 

criteria. Depending on the consequence of failure (safety, operational, economic, hidden safety 

and hidden non-safety) a single task or a combination of tasks is selected (Nowlan & Heap, 1978). 

Reliability is the probability that an item will perform its intended function for a specified interval 

under stated conditions (US Department of Defense, 1998). 

In the aircraft industry, the Maintenance Steering Group (MSG) has developed different 

maintenance concepts. The most recent is MSG-3 (Federal Aviation Administration, 2012). The 

focus of MSG-3 is the effect of a failure on aircraft operation (Nowlan & Heap, 1978) (Air Transport 

Association of America, 2007). For each item that affects airworthiness, a specific maintenance 

task is described (task oriented maintenance). MSG-3 can use condition-based maintenance or 

predetermined maintenance to achieve its goals. Most airlines and manufacturers use 

predetermined maintenance, as preventive maintenance with scheduled maintenance times 

provides both economic benefits and reliability (Kiyak, 2012).  

The core concept of MSG-3 is Failure Mode and Effect Analysis (FMEA). With FMEA it is possible 

to determine which maintenance actions need to be performed during planned maintenance. This 

includes taking the probability and effects of a failure into account and planning the maintenance 

during system development. The FMEA uses a top-down approach, with analysis starting at the 

highest system level. A lot of detailed analysis is not needed, because most maintenance tasks are 

found at higher levels.  

The FMEA process includes the following steps (Society of Automotive Engineers, 2001): 

Identify Relevant Functions. In this step, all functions of a system are identified. See Table 

3 for an example of a function. 

Identify Functional Failures. The next step is to define the functional failure of a function. 

A function can have multiple failure modes. See Table 3 for an example.  

Identify Failure Effects. The failure is classified by its effect using the process shown in 

Table 3 

Identify Failure Probability. The probability of a failure is calculated based on experience 

or in-service data. 
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Select Maintenance Tasks. It is possible to define maintenance actions to prevent a failure, 

when the causes of a failure are defined. This step also includes determining the maintenance 

intervals, combining maintenance tasks and removing duplicate tasks. 

 

Table 3: Example of functional failure analysis - engine fire detection system (European Aviation Safety Agency, 2005) 

2.1.1 Failure Classes 

Failures are divided into five classes to determine the effect of a failure on the aircraft. A criterion 

for the classification is the severity of the failure for aircraft safety. Table 4 shows how failures are 

classified. 

Table 4: Failure class criteria 

Is the occurrence of a functional failure evident to the operating crew during the 
performance of normal duties? 
Yes No 
Does the functional failure or secondary damage 
resulting from the functional failure have a direct 
adverse effect on operating safety? 

Does the combination of a hidden 
functional failure and one 
additional failure of a system 
related or backup function have 
an adverse effect on operating 
safety? 

Yes No Yes No 
 Does the functional failure have a 

direct adverse effect on operating 
capability? 

  

 Yes No   
Safety Operational Economic Safety Non Safety 
Evident Hidden 

This results in the following failure classes (Air Transport Association of America, 2007): 

Evident Safety. This must be approached with the understanding that a task is required to 

assure safe operation. If this is not the case, a redesign is required. 

Evident Operational. A task is desirable if it reduces the risk of failure to an acceptable level. 

Function Functional Failure Failure Mode 
Provide redundant 
capability of informing crew 
of fire in each of four 
specific areas (right hand 
fan, left hand fan, core 
upper case, core lower case) 
in case of fire. 

Loss of redundancy to 
detect fire in the designated 
engine fire zone. 

Engine fire detector failure. 

 Give false fire warning. Engine fire detector failure. 
Alerts crew of detection 
loop failure. 

Does not alert crew of 
detection loop failure. 

Engine fire detector failure. 

  MAU Failure. 
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Evident Economic. A task is desirable if the cost of the task is less than the cost of repair. 

Hidden Safety. A task is required to assure availability and to avoid the adverse effect on 

safety of multiple failures. If this is not the case, a redesign is required. 

Hidden Non-Safety. A task may be desirable to assure the availability necessary to avoid 

the economic effects of multiple failures.  

2.1.2 Failure Probability 

Ideally, in-service data are used to evaluate the risk of system failure based on the failure of 

different parts. However, during development, no in-service data are normally available. This 

means that during development, assumptions need to be made based on similar parts, tests, 

simulations or experience. Later, when in-service data are available, they can be used to update 

the failure probability. 

Failure class and failure probability define the criticality of the failure. Criticality is used to plan 

the maintenance action. 

2.1.3 Unscheduled Maintenance 

Unscheduled maintenance is maintenance that needs to be done outside the defined periodic 

intervals because an unexpected failure occurs. The aircraft continues to fly safely because of its 

built-in redundancy, but the equipment (generally) needs to be fixed before the next take off. If it 

is not possible to fix the equipment during turnaround time, the flight will be delayed until the 

fault is eliminated. Depending on the failure, it is possible that the aircraft will need to stay on 

ground until the failure is fixed. The decision for the aircraft to stay on the ground (AoG - Aircraft 

on Ground) is based on the Minimum Equipment List (MEL) (International Civil Aviation 

Organization, 2015) (Civil Aviation Regulations Directorate, 2006). The MEL is based on the 

Master Minimum Equipment List (MMEL) (International Civil Aviation Organization, 2015) (Civil 

Aviation Regulations Directorate, 2006), a list accepted by national airworthiness authorities, but 

the MEL is an operator defined list that is stricter than the MMEL. If a faulty part is listed in the 

MEL, the aircraft is not allowed to operate until the failure is fixed. 

Depending on the flight schedule of the aircraft, a departure delay may occur because of the 

maintenance operation. The flight may even have to be cancelled. Delays and cancellations are 

very expensive for an airline (Cook, et al., 2004) and should be avoided if possible. 
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2.1.4 Maintenance Program Development 

Developing a plan for scheduled maintenance based on the MSG-3 method is complex. An Industry 

Steering Committee (ISC) consisting of authorities, aircraft operators and manufacturers is 

created. These actors form groups (MSG Working Groups (MWGs)) which meet and decide on the 

frequency and scope of needed maintenance actions (see Figure 5). First, MSG-3 analysis is 

performed based on aircraft data. Then, a Maintenance Review Board Report (MRBR) proposal is 

created and must be accepted. The MRBR contains the minimum scheduled tasking/interval 

requirements for a newly FAA type-certificated (TC) or derivative aircraft and its engines. The 

accepted MRBR is used by the manufacturer to create a Maintenance Planning Document (MPD) 

(Federal Aviation Administration, 2012) (Federal Aviation Administration, 1994) (European 

Aviation Safety Agency, 2008). 

 

Figure 5: MRBR process 

Revisions requiring formal approval are subject to the same consideration as initial approval 

(Federal Aviation Administration, 1978). Consequently, changing the maintenance plan is a 
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difficult process, and changing maintenance intervals requires a good reason. One problem is that 

there are no in-service data for a new aircraft, so maintenance intervals are created based on 

estimations. Operator in-service data are needed to adapt the maintenance intervals. Despite the 

difficulty, this is an important step; Ali and McLoughlin (2012) show the extent of costs savings 

when maintenance intervals are optimized. 

2.1.5 Preventive Maintenance 

Preventive maintenance (PM) is the standard method for reducing unscheduled maintenance. In 

the aircraft industry, aircraft components are inspected at given time intervals. The intervals 

depend on the component type and can vary from airline to airline. Reducing the time interval can 

increase the need for spare parts; increasing the interval increases the risk of unscheduled 

maintenance (Kolerus & Wassermann, 2011).  

There are three types of preventive maintenance (Air Transport Association of America, 2007) 

(Nowlan & Heap, 1978) (Civil Aviation Authority, 1995) (Federal Aviation Administration, 1978): 

Hard-Time (HT): Scheduled removal of a component before some specified maximum 

permissible age limit. 

On-Condition (OC): Scheduled inspections, tests, or measurements to determine whether 

an item is in, and will remain in, a satisfactory condition until the next scheduled inspection, test, 

or measurement. 

No Maintenance: This approach assumes a component can be used until it breaks and is 

then replaced. In MSG-2, this maintenance process is called “condition monitoring”. This 

maintenance process is not preventive but corrective (reactive); it is used for certain components 

in aircraft maintenance. 

Periodic maintenance for aircraft is organised in five different classes of checks. Each check is 

performed at a different interval and becomes increasingly complex with the size of the interval. 

The intervals can vary depending on the aircraft type and aircraft operation (Air Transport 

Association of America, 2007).  

2.1.5.1 Pre-/Post Flight Check 

The most performed maintenance check is the pre-/post flight check. It is done daily. The pilot 

often does this check by walking around the aircraft and checking its general state. 
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2.1.5.2 A-Check  

A-checks can be performed overnight in a hangar and are done every two months. An A-check 

examines all technical systems required for aircraft operation. 

2.1.5.3 C-Check  

The C-check is a major aircraft check, with the aircraft taken out of operation to be inspected. C-

checks occur every two years and take about two weeks. The aircraft structure is inspected and 

all systems are tested. 

2.1.5.4 IL-Check 

 The IL-check is done every four years and includes detailed checking and maintenance of systems 

and structures. 

2.1.5.5 D-Check 

This check is done every ten years and takes about one month. During this check, nearly the whole 

aircraft is dissembled and checked. Sometimes the paint is removed to check the structure. An 

aircraft has two to three D-checks during its lifetime. 

2.1.6 Condition-Based Maintenance 

Condition-based maintenance (CBM) is based on condition monitoring and aims at preforming 

maintenance based on the system condition and its trend. CBM can be used to realize RCM (Niu & 

Pecht, 2009).  

Condition monitoring constantly measures and analyses relevant mechanical and electrical 

component parameters during operation. The parameters selected for monitoring allow 

determination of the condition and failure state. The need for maintenance of a component is only 

indicated if parameters show a predefined degradation (Kolerus & Wassermann, 2011).  

The difference between CBM and preventive on-condition maintenance is that OC checks a system 

at defined intervals while condition monitoring continuously monitors the system. 

Condition monitoring is used in a wide field of application, including rotary machines (gear boxes, 

gas and wind turbines, bearings etc. (Mahamad, et al., 2010) (Saravanan & Ramachandran, 2009) 

(Sugumaran & Ramachandran, 2011) (Tian & Zuo, 2010) (Zhao, et al., 2009), plants and structures 

(bridges, pipelines etc. (Goode, et al., 2000)). Vibration data are often used to perform the 

condition monitoring (Ebersbach & Peng, 2008).  
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The condition of the system is defined by setting limits on certain values based on experience 

(Mobley, 2002) or on a mathematical or data-driven model (Kolerus & Wassermann, 2011) 

(Williams, et al., 1994). Machine learning techniques, e.g., decision trees (Sugumaran & 

Ramachandran, 2007) (Sugumaran & Ramachandran, 2011) (Tran, et al., 2009), vector support 

machines (Pham, et al., 2012) (Sugumaran, et al., 2007) (Widodo & Yang, 2007) and neural 

networks (Chen, et al., 2012) (Mahamad, et al., 2010) (Tian, 2012), are often used to map the 

features of the input signal to a condition. 

Another option is to use a mathematical model, feed the sensor input to the model, calculate the 

output and check how the output of the theoretical model deviates from the real system. This 

approach can also be used for fault isolation and identification of failures in addition to prognosis 

(Wang, et al., 2008) (Williams, et al., 1994) (Kolerus & Wassermann, 2011) (Jardine, et al., 2006). 

Data-driven models use past data to create models with stochastic or machine learning algorithms 

(Pecht, 2008) (Garcia, et al., 2006) (Jardine, et al., 2006). These models require many data samples 

that represent different conditions of the system. Data-driven models require less human input 

than mathematical models; model validation and testing can be performed almost automatically. 

Trend analysis is a method to achieve CBM. The analysis algorithm looks at recorded parameters 

at a single moment in time, but takes the full parameter history into account. The need for 

maintenance of a component is only indicated if the trend of a parameter shows degradation. 

Based on the parameter time history, the analysis algorithm can forecast the remaining lifetime 

of the component (Kolerus & Wassermann, 2011). A variety of methods are suitable for predicting 

future values. ARMA, ARIMA, artificial neural networks, sequential Monte Carlo and Markov 

models are used to predict values for a complex time series (Chen, et al., 2011) (Caesarendra, et 

al., 2010) (Pham & Yang, 2010) (Tian, et al., 2010). The output of the prediction is normally an 

estimated time to failure (ETTF) and a confidence interval (Sikorska, et al., 2011). The confidence 

interval defines the reliability of a prediction (Schruben, 1983) (Sikorska, et al., 2011) and can be 

calculated using a standard time series. 

Implementing CBM is both difficult and costly. Many systems have barriers to its use. These 

barriers include (among others) (Stecki, et al., 2014): 

• Inability to predict accurately and reliably the remaining useful life of a machine 

(prognostics) 

• Inability to continually monitor a machine (sensing) 

• Inability of maintenance systems to learn and identify impending failures and recommend 



40 

 

what action should be taken (reasoning). 

• Initiation of CBM without full knowledge of how the system can fail 

• Focusing of CBM research on specific techniques (better mousetrap syndrome)  

 

 Condition Monitoring  

There are two strategies of monitoring (Randall, 2011) (Kolerus & Wassermann, 2011):  

• Permanent monitoring is based on fixed, installed measurement systems. These systems 

often need to be very complex to react correctly if a failure occurs. They are used if a fast 

reaction is required after a failure. Permanent monitoring frequently shuts down a 

machine if a dangerous failure is detected (Randall, 2011).  

• Intermittent monitoring is generally used for failure prediction and diagnosis. 

Measurements are taken on a regular basis with a mobile device. Data evaluation is done 

with an external device. Intermittent monitoring is often used to give long-term warnings 

(Kolerus & Wassermann, 2011).  

Permanent monitoring is a better choice than intermittent monitoring when fast reaction times 

are required, but intermittent monitoring can do more complex computations (Randall, 2011). 

Permanent and intermittent monitoring can be combined using the same sensors and working in 

parallel. This allows intermittent monitoring to be carried out more often (hence, data are always 

available (Randall, 2011).  

Methods of condition monitoring include the following (Randall, 2011):  

• Vibration analysis measures the vibration of a machine or system and compares it to a 

given vibration signature. Vibrations can be linked to events in a machine based on their 

frequency. Therefore, a vibration signal is often analysed in the time domain and in the 

frequency domain. Vibration analysis is frequently used for condition monitoring 

(Randall, 2011) (Kolerus & Wassermann, 2011).  

• Lubricant/oil analysis analyses the quality of the fluid and determines whether particles 

are in it. Contaminants in lubrication oils and hydraulic fluids can lead to the failure of the 

machine/system. The physical condition of a fluid can be measured in viscosity, water 

content, acidity and basicity. For a condition monitoring strategy, this means condition-

based oil change. It is also possible to detect wear of mechanical systems with a particle 

analysis (Williams, et al., 1994).  
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• Performance analysis is an effective way of determining whether a machine is 

functioning correctly. Performance analysis monitors process parameters such as 

temperature, pressure, flow rate or processed items per hour (Randall, 2011).  

• Thermography is used to detect hot spots in a system or a machine. It is principally used 

in quasi-static situations.  

Condition monitoring can be one-to-one or one-to-many (Williams, et al., 1994). In one-to-one 

monitoring, a system parameter measured by a sensor is directly forwarded for signal processing 

and condition monitoring (see Figure 6) independent of the sub-system to which the parameter 

belongs (Williams, et al., 1994).  

 
Figure 6: One-to-one condition monitoring (Williams, et al., 1994) 

In one-to-many monitoring, one sensor is used to give condition information on more than one 

parameter (see Figure 7). This type of monitoring helps with failure location (Williams, et al., 

1994).  
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Figure 7: One-to-many condition monitoring (Williams, et al., 1994) 

2.2.1 Diagnosis 

There are several different methods for failure diagnosis using condition monitoring. If only one 

parameter is evaluated, trend analysis or limits can be used (Kolerus & Wassermann, 2011). Using 

a limit is the simplest method. The sensor signal is compared to a given limit; a failure has 

occurred if the signal is greater than the given limit. However, limit-based failure detection cannot 

be used to predict failure (Kolerus & Wassermann, 2011). Trend analysis records time series 

data of the sensor signal. It can be assumed that the machine is operating normally if only small 

changes occur over time. A stronger change in the time series indicates the development of a 

failure. Obviously, then, trend analysis can be used for failure prediction (Kolerus & Wassermann, 

2011).  

If a system is monitored, a system model needs to be created (see Figure 8). The model is used to 

compare the actual system outputs to the theoretical outputs. A difference indicates an error or 

an upcoming error (Figure 9) (Williams, et al., 1994). A system can be modelled by a mathematical 

description using Laplace-based system models or by dynamic (statistical) modelling (Williams, 

et al., 1994).  

 
Figure 8: System model (Williams, et al., 1994) 
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Figure 9: Fault detection with a system model (Williams, et al., 1994) 

The mathematical model tries to describe the system in equations. It can become quite complex 

but a complete definition of the system is often not needed (Williams, et al., 1994). Laplace-based 

system models use the Laplace transformation to model a system with one or more building 

blocks (see Figure 10) (Williams, et al., 1994). System modelling and simulation tools like 

MATLAB Simulink, Modellica etc. use Laplace-like building blocks.  

 
Figure 10: Laplace-based system model (Williams, et al., 1994) 

 Dynamic fingerprinting works without full knowledge of the system. The output for a given 

input is recorded, and the collection of the output makes the model (Williams, et al., 1994). Outlier 

detection uses various methods and techniques to detect an anomaly or a fault in sensor data. An 

outlier often indicates a system fault (Hodge & Austin, 2004).  
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Other methods for system modelling and condition monitoring include the use of neural networks 

and other machine learning techniques. Machine learning and pattern recognition are used for 

condition monitoring and trending in complex systems (Randall, 2011) (Kolerus & Wassermann, 

2011). Brotherton et al. (Brotherton, et al., 1999) give an example of such an approach. Ataei et al. 

(Ataei, et al., 2005) use a neural network for sensor fusion (one-to-many), and Zaher and 

McAurthur (Zaher & McArthur, 2007) give an example of the one-to-many concept for distributed 

agents. Real-time monitoring with a neural network is shown in Smith et al. (Smith, et al., 2003).  

2.2.2 Prognosis 

Prognosis is the art of predicting the remaining useful life (RUL) of a system. Prognosis is related 

to diagnosis and depends on it. Diagnosis is the method of identifying and quantifying damage that 

has occurred (Sikorska, et al., 2011). Prognosis requires information from the diagnosis to 

forecast the future. However, in general, the degradation process cannot be directly observed or 

measured. It can only be investigated indirectly through the time series of features extracted from 

available process measurements (Yan, et al., 2010). This creates two major challenges for 

prognosis (Yan, et al., 2010): 

1. How to design an appropriate degradation indicator (see Detection/Diagnosis) 

2. How to establish a prediction model to estimate failure times 

RUL Prediction methods can be classified according to the approach they use (Figure 11).  

 

Figure 11: Main model categories for prediction of remaining useful life (Sikorska, et al., 2011) 

 

 Signal Analysis  

A signal is an entity whose value can be measured and which conveys information (Owen, 2007). 

Signals can represent sound, vibrations, colour values, temperature etc. There are two types of 

signals: analogue and digital. An analogue signal is continuous, and a digital signal has a finite 
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number of values. The process of transforming an analogue signal into a digital signal is called 

sampling. Sampling represents an analogue signal as several regularly spaced measurements or 

samples (Owen, 2007). Figure 12 shows the sampling of an analogue signal.  

 
Figure 12: Signal sampling (Owen, 2007) 

The number of regular spaced samples per second is the sampling rate measured in Hz. A signal 

has an amplitude and a phase. The amplitude is the sampling value, and the phase is the time delay 

between this motion and another motion of the same speed (Owen, 2007). Signals represented as 

in Figure 12 are in the time domain. It is possible to transform time signals so that they are 

represented in the frequency domain. In the frequency domain, the signal is represented by cosine 

and sine functions with different frequencies (Owen, 2007). The process converting the signal is 

called Fourier transform for analogue signals and discrete Fourier transform for digital signals. 

Equation (1 shows the discrete Fourier transform.  

 

 𝑍(𝑓) = ∑ 𝑧(𝑘)𝑒−2𝜋𝑗𝑓𝑘𝑁

𝑁−1

𝑘=0

 (1) 
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where Z(f) is the Fourier coefficient at frequency f (Owen, 2007), N is the total number of samples 

and k is the current sample. z(k) is x(k) + jy(k), where x and y are the amplitude and the phase of 

the signal, respectively. It is possible to reverse the transform using Equation (2.  

 

 𝑧(𝑘) =  
1

𝑁
∑ 𝑍(𝑓)𝑒2𝜋𝑗𝑓𝑘𝑁

𝑁−1

𝑗=0

 (2) 

 

It is also possible to treat the complex values as real values if the phase is unknown or zero. In the 

case of a real value signal, only 
1

𝑁
 coefficients are independent because Z(N-f) and Z(f) are the same 

if only the real part is considered. In practice, this means 2N samples are needed to get N Fourier 

coefficients. Figure 13 shows a real value signal transformed into the frequency domain.  

 
Figure 13: Time domain to frequency domain 

An algorithm to compute the discrete Fourier transform on a computer is called the Fast Fourier 

Transform (FFT). The FFT requires that N is a power of two (Owen, 2007).  
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A filter is a process which changes the shape of a signal (Owen, 2007), often in the frequency 

domain. Usual types of filters are low-pass, high-pass or band-pass filters. Low-pass filters keep 

low frequency components of the signal and block high frequency ones. A high-pass filter blocks 

low frequencies and keeps high ones. A band-pass filter blocks all but a given range of frequencies 

(Owen, 2007). One way to apply a filter is to transform the time domain signal into the frequency 

domain, apply the filter and transform the signal back into the time domain.  

Band-pass filters can be used to extract frequency components from a signal into a new signal. If 

multiple band-pass filters are applied to a signal to extract different frequencies, the filter is called 

a filter bank. The individual band-pass filters can have the same or different sizes (Rabiner & 

Juang, 1993). Figure 14 shows a filter bank with equal sized band-pass filters, and Figure 15 shows 

a filter bank with band-pass filters of a different size.  

 
Figure 14: Equal sized filter bank (Rabiner & Juang, 1993)  

 

 
Figure 15: Variable sized filter bank (Rabiner & Juang, 1993)  

 Feature Extraction 

Feature extraction is the process of reducing the dimension of the initial input data to a feature 

set of a lower dimension that contains most of the significant information of the original data 

(Fonollosa, et al., 2013). This is done to extract features from noisy sensor data (Lin & Qu, 2000); 

(Fu, 2011) and to avoid the problems caused by having too many input features (especially for 

vibration data) in the classifier learning phase (Yen & Lin, 2000). For these reasons, feature 

extraction is often a first and essential step for any classification (Yen & Lin, 2000).  

Methods for feature extraction include extracting features from the time domain and the 

frequency domain (Fourier transformation, wavelet transformation (Fu, 2011)) and clustering 

them, if necessary. Basic features can be maximum, mean, minimum, peak, peak-to-peak interval 
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etc. (Jardine, et al., 2006). Complex feature extraction methods include principal component 

analysis (PCA), independent component analysis (ICA) and kernel principal component analysis 

(KPCA) (Widodo & Yang, 2007). Other feature extraction methods are: t-test, correlation matrix, 

stepwise regression and factor analysis (FA) (Tsai, 2009). A comparison of feature extraction 

methods is found in Arauzo-Azofra et al. (Arauzo-Azofra, et al., 2011). 

Clustering is needed if the data samples from which the features are extracted have no information 

about what the data represent (Li & Elbestawi, 1996). In such cases, clustering methods can be 

applied to group the data into classes. 

Selecting relevant features for classifiers is important for a variety of reasons, including 

generalization of performance, computational efficiency and feature interpretability (Nguyen & 

De la Torre, 2010). Using all available features can result in over fitting and bad predictions, but it 

is not possible to look at each feature alone because many features are intercorrelated (Meiri & 

Zahavi, 2006). Noise, irrelevant features or redundant features complicate the selection of 

features even more. Thus, features are often selected using methods taken from pattern 

recognition or heuristic optimization or a combination. Sugumaran et al. (2007) show how 

different technologies can be combined for a single goal; they use a decision tree for feature 

selection and a proximal support vector machine for classification. Widodo and Yang (2007) 

combine ICA/PCA plus SVM for feature extraction and classification. A combination of particle 

swarm optimization (PSO) and SVM is used for feature extraction and process parameter 

optimization by Huang and Dun (2008). Many algorithms combine genetic algorithms (GAs) with 

a pattern recognition method like decision trees (DTs), SVM or artificial neural networks (ANNs). 

In these combinations, the GA is used to optimize the process parameters (Samanta, et al., 2003) 

(Huang & Wang, 2006) or to perform feature extraction and pattern recognition for classification 

(Samanta, 2004) (Saxena & Saad, 2007) (Jack & Nandi, 2002) (Samanta, 2004) Another popular 

approach is simulated annealing (SA) plus pattern recognition (Lin, et al., 2008) (Lin, et al., 2008). 

2.4.1 Time Domain Features 

Time domain features can be direct features like the number of peaks, zero-crossings, mean 

amplitude, maximum amplitude, minimum amplitude or peak-to-peak intervals (Jardine, et al., 

2006) (Pascual, 2015). In addition, it is possible to analyse a signal using probabilistic methods, 

like root mean square, variance, skewness or kurtosis, to get features that represent the signal 

(Lambrou, et al., 1998). Mean square, variance, skewness and kurtosis are the four standardized 

moments of the probability distribution (see Table 5). Others are correlation, autocorrelation, 

entropy, PCA, ICA and KPCA (Widodo & Yang, 2007). 
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Moment Degree Definition 

Mean 1 

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)𝑛
𝑖=1

(√1
𝑛

∑ (𝑥𝑖)2𝑛
𝑖=1 )

 

Variance 2 

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)2𝑛
𝑖=1

(√1
𝑛

∑ (𝑥𝑖)2𝑛
𝑖=1 )

2 

Skewness 3 

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)3𝑛
𝑖=1

(√1
𝑛

∑ (𝑥𝑖)2𝑛
𝑖=1 )

3 

Kurtosis 4 

1
𝑛

∑ (𝑥𝑖 − 𝑥̅)4𝑛
𝑖=1

(√1
𝑛

∑ (𝑥𝑖)2𝑛
𝑖=1 )

4 

Table 5: Standardized probability distribution moments 

2.4.2 Frequency and Time-Frequency Domain Features 

The Fast Fourier Transform (FFT) transforms a signal from the time domain into the frequency 

domain. FFT takes a time series and transforms it into a complex vector that represents the 

frequency power in the frequency domain. The basis of the FFT algorithm is the discrete Fourier 

transform (DFT), defined as shown in Equation (3, where xn… xn-1 are complex numbers. 

 

 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘

𝑛

𝑁  𝑘 = 0, … 

𝑁−1

𝑛=0

, 𝑁 − 1 (3) 

An FFT is performed in O(N log N) operations (Ohm & Lüke, 2010) and can be calculated in real 

time because it can be executed in parallel. It is a widely used and well established method (Peng, 

et al., 2002) (Fu, 2011). Recent research uses the discrete wavelet transform (DWT) to represent 

time series data in the frequency domain. The DWT represents the time series in a time-scale form 

(Jardine, et al., 2006) and is especially suited to represent non-stationary signals (Lin & Qu, 2000). 

Existing failure diagnosis is mostly focused on the frequency domain, e.g. using Fourier transform 

or wavelet transform. In the early stages of failure development, damage is not significant, and a 

defect signal is masked by the noise in the acquired signal. The periodicity of the signal is not 

significant. Therefore, spectral analysis may not be effective. When the periodicity is significant, 

however, also using time domain features is recommended because normal and defect signals 

differ in their statistical characteristics in the time domain. Combining time domain features with 

those from other domains can improve the diagnosis accuracy. 
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 Data Fusion 

Having a network of different sensors monitoring a system leads to the need for sensor data 

fusion. Multi-sensor data fusion requires combining sensor data from different sources into one 

consistent model, but this can be difficult. The main problems of sensor fusion are (Basir & Yuan, 

2007): 

• How to get accurate and reliable information from multiple and possibly redundant 

sensors 

• How to fuse multi-sensor data when data are imprecise and conflicting 

Techniques for sensor fusion can be grouped into three levels (Jardine, et al., 2006), (Ross & Jain, 

2003), (Castanedo, 2013):  

• Data-level fusion, e.g., combining sensor data from the same sensors directly (Lu & 

Michaels, 2009) 

• Feature-level fusion, e.g., combining vectors and feature reduction techniques (Ross & 

Jain, 2003) 

• Decision-level fusion, e.g., using vote schemes (Ross & Jain, 2003) 

Sensor data fusion is an important step in condition monitoring. Most systems have more than 

one sensor, and the sensors have different influences on condition monitoring accuracy. Condition 

monitoring data that require fusion come from sensors but they can also be event and process 

data, and these have important information for condition monitoring (Jardine, et al., 2006). Data-

level fusion requires the direct combination of sensor data; the data from sensors of the same kind 

are merged and fed into the condition monitoring system. The difficulty is knowing how to merge 

multiple sensors into one. Sensor fusion at the feature level includes cleaning sensor data and 

combining the data after the features have been extracted and the dimensions reduced. Decision-

level fusion can mean implementing condition monitoring for each sensor separately and using 

voting to decide on the system condition.  

A condition monitoring system can use one or multiple data fusion methods to detect system 

condition. Sensor fusion depends on the target system and sensors. This makes it difficult to select 

a method. One solution is to implement sensor fusion on all levels and use a heuristic optimization 

like genetic algorithms, simulated annealing or hill climbing to get the best sensor fusion method 

for a given problem (data and system conditions). 
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 Decision Trees 

A decision tree is a tool of artificial intelligence. It classifies instances by sorting them from the 

root to a leaf node higher in the tree (Mitchell, 1997). Each node specifies a test on an attribute, 

and each branch from one node to another node or leaf corresponds to a test result (Mitchell, 

1997). A sample decision tree is shown in Figure 16. This decision tree classifies the weather – is 

it suitable to play tennis or not?  

 

 
Figure 16: Example of a decision tree (Mitchell, 1997) 

 
If the decision tree is used to learn a discrete value function (like the example), it performs a 

classification. If the tree is used to learn a continuous function, it performs a regression (Russell 

& Norvig, 2003). Any decision tree can be converted into a logical expression (Russell & Norvig, 

2003). The example in Figure 16 can be expressed as: 

 𝑃𝑙𝑎𝑦 =  (𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑠𝑢𝑛𝑛𝑦 ∧ 𝐻𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 𝑛𝑜𝑟𝑚𝑎𝑙)  

∨ (𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑜𝑣𝑒𝑟𝑐𝑎𝑠𝑡) ∨ (𝑂𝑢𝑡𝑙𝑜𝑜𝑘 = 𝑟𝑎𝑖𝑛 ∧ 𝑊𝑖𝑛𝑑 = 𝑤𝑒𝑎𝑘) 
(4) 

 
Attribute value pairs represent an instance that might be tested. Each instance is described by a 

fixed set of attributes (e.g. Outlook) and their values (e.g. Sunny). Decision tree learning is based 

on several samples which specify the problem. The set of samples is called a training set. Several 

algorithms can be used to learn a decision tree. The basic decision tree learning algorithm works 

as follows (Russell & Norvig, 2003):  

1. Create a new node.  
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2. Split samples based on the values of the best attribute for splitting.  

3. Check for each value of the attribute:  

a. If the remaining samples have a different classification, choose the best attribute 

to split them and create a new child node.  

b. If all remaining samples have the same classification, the tree is trained. It is 

possible to make a final classification. Create a leaf.  

c. If there are no samples left, no such sample has been observed.  

There is an error in the training samples if two or more have the same attribute values but 

different classifications. In this case, it is possible to return the classification of most of the 

classifications or to report the probability of each classification (Russell & Norvig, 2003).  

A common method for selecting the best attribute to split the samples is the ID3  (Mitchell, 1997). 

The idea of ID3 is to select a node based on the information gain. Information needs to be defined 

before we can define information gain and understand the concepts. Information entropy is the 

knowledge contained in an answer depending on prior knowledge. The less that is known, the 

more information is provided. In information theory, information entropy is measured in bits. One 

bit of information entropy is enough to answer a yes/no question about which we have no data 

(Russell & Norvig, 2003). Information entropy is also called information and is calculated as 

shown in Equation (5:  

 
𝐼 (𝑃(𝑣𝑖), … , 𝑃(𝑣𝑛)) =  ∑ − 𝑃(𝑣𝑖)𝑙𝑜𝑔2𝑃(𝑣𝑖)

𝑛

𝑖=1

 (5) 

where 𝑃(𝑣𝑖) is the probability of the answer 𝑣𝑖. 

The information gain from an attribute test (setting the value of a node in a tree; see Figure 16 for 

an example) is the difference between the total information entropy requirement (the amount of 

information entropy needed before the test) and the new information entropy requirement and 

is expressed in Equation 6:  

 
𝐺𝑎𝑖𝑛 (𝑋) = 𝐼 (

𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) −  ∑

𝑝𝑖 +  𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖=1

× 𝐼 (
𝑝𝑖

𝑝𝑖 +  𝑛𝑖
,

𝑛𝑖

𝑝𝑖 +  𝑛𝑖
) (6) 

where 𝑝 is the number of positive answers, and 𝑛 is the number of negative answers (Russell & 

Norvig, 2003). 
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The performance of a decision tree can be tested with test samples from those training data not 

used for the learning. Performance of the decision tree depends on the number of correct 

classified samples.  

A common problem for decision trees is over-fitting if there is noise in the training data or the 

number of training examples is too small (Mitchell, 1997). A model performs poorly with testing 

data if it is over-fitted. A simple method to remove over-fitting is decision tree pruning. Pruning 

means removing a sub-tree from the decision tree. It works by preventing recursive splitting on 

attributes that are not clearly relevant (Russell & Norvig, 2003). Another way to reduce over-

fitting is cross-validation. In cross-validation, multiple decision trees are trained, each with a 

different set of training and testing samples. The decision tree with the best performance is 

chosen. A K-fold-cross-validation means k different decision trees are trained, and each is tested 

with a different set 
1

𝑘
 of samples (Russell & Norvig, 2003).  

Decision trees can be extended to handle the following cases (Russell & Norvig, 2003):  

• Missing data: not all attribute values are known for all samples.  

• Multivalued attributes: the usefulness of an attribute might be low if an attribute has many 

different possible values (e.g., name or credit card data).  

• Continuous and integer-valued input attributes: numerical attributes often have an 

infinite number of possible values. A decision tree typically chooses a split point that 

separates the values into groups (e.g. weight 160).  

• Continuous-valued output attributes: at the leaves, the tree has a linear function rather 

than a single value (regression tree).  

A second method for selecting the best attribute to split the samples is the C4.5 algorithm. It 

addresses some of the problems of the ID3 algorithm; for example, it accepts both continuous and 

discrete features and solves the over-fitting problem by pruning and handling incomplete data 

points. C4.5 uses the normalized information gain or the gain ratio. Split information (Split Info) 

is the information gained from choosing the attribute to split the samples. It is expressed in 

Equation 7 as: 

 
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋) =  − ∑

𝑝𝑖 + 𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖 = 1

 𝑙𝑜𝑔2  (
𝑝𝑖 +  𝑛𝑖

𝑝 + 𝑛
) (7) 
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The gain ratio is the normalized information gain and is defined as shown in Equation (8 (Quinlan, 

1993). 

 
𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑋) =  

𝐺𝑎𝑖𝑛 (𝑋)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋)
 (8) 

 

Pruning refers to the reduction of the depth of a decision tree. The tree gets better at classifying 

unknown samples, but might get worse at classifying the test samples. Normally, pruning 

increases the overall classification accuracy, but too much pruning can increase the number of 

false classifications. 

Another class of decision trees is the fuzzy decision tree. As the name suggests, fuzzy decision 

trees are not based on crisp training data, but on fuzzy training data. Several researchers give 

examples of fuzzy decision tree training and suggest uses of fuzzy decision trees (Olaru & 

Wehenkel, 2003) (Sap & Khokhar, 2004) (Dong, et al., 2001).  

 Local Search and Optimization 

Local search is a special area of search algorithms. In many cases, the search algorithm has a 

memory of the way to the solution. This means the algorithm knows which steps it took. Local 

search algorithms have no memory and know only the current state. Therefore, they might check 

a member of the search space twice. Local search algorithms do not search systematically (Russell 

& Norvig, 2003). They include hill climbing search (greedy local search), simulated annealing and 

genetic algorithm.  

Local search algorithms can also be used to solve pure optimization problems. They work in a 

state space landscape (Figure 17). Each state has a corresponding location, and the elevation of 

the state/location is the value of the heuristic cost function. The goal is to find the state/location 

with the lowest elevation (costs)  (Russell & Norvig, 2003).  
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Figure 17: Example of hill climbing (Russell & Norvig, 2003) 

The hill-climbing algorithm is a simple loop that moves in the direction of the increased value. Hill 

climbing evaluates the neighbour states and choses the best. For this reason, hill-climbing is 

sometimes called greedy local search. Hill-climbing can get stuck, because it makes no downhill 

moves and stays on a plateau or a local maximum (Russell & Norvig, 2003).  

Simulated annealing is a hill-climbing algorithm that can move downwards. The algorithm is 

based on the annealing process in metallurgy. The metal gets into a fixed state as it cools down. 

The simulated annealing algorithm selects a random move and, if it improves the situation, it is 

accepted. If not, the move is accepted based on a probability value. The probability decreases 

exponentially with the move. It also decreases with each step (Russell & Norvig, 2003).  

A genetic algorithm keeps one or more than one state in memory. The states in memory are called 

the population. During each step, new states (individual) are calculated based on the current 

population. The first population is generated randomly. New individuals are calculated through 

cross-over and mutation. In cross-over, two individuals are chosen from the population based on 

their fitness. Then two new individuals are created by taking part of one parent and part of the 

other parent. The first new individual has parts of both parents. The second one is constructed 

out of the not selected parts of both parents. Mutation modifies each individual based on an 

independent probability. Figure 18 shows an example of a genetic algorithm. The new individuals 

or children form a new population. Several authors (Russell & Norvig, 2003) (Mitchell, 1997). 

(Golub & Posavec, 1997) use genetic algorithms to adapt approximation functions from old 

problems to new problems; Stein et al. (Stein, et al., 2005) use genetic algorithms to select features 

for decision trees. 
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Figure 18: Example of genetic algorithm  

 

 Trend Series Analysis and Prediction  

A time series is a chronological sequence of observations on a particular variable (Montgomery, 

et al., 1990). This means time series data are a number of data/time pairs ordered chronologically 

to show some time series. Time series analysis is done to discover historical patterns, which can 

be used for forecasting (Montgomery, et al., 1990). Predictions of future events and conditions are 

called forecasts, and the act of making such a prediction is called forecasting (Montgomery, et al., 

1990). The goal of forecasting is to reduce the risk of decision making (Montgomery, et al., 1990).  
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Figure 19: Examples of time series data analysis (Montgomery, et al., 1990) 

Time series analysis and forecasting are used in many different areas, from economic forecasting 

and logistics management to strategic management (Montgomery, et al., 1990) (Granger & 

Newbold, 1977) (Bowerman & O'Connell, 1993). The following aspects are part of time series 

analysis (Montgomery, et al., 1990) (Bowerman & O'Connell, 1993):  

• Trend is the upward or downward movement of a time series over a period.  

• Cycle refers to recurring up and down movements around trend levels.  

• Seasonal variations are periodic patterns that complete themselves in a calendar year.  

• Irregular fluctuations are movements that follow no pattern.  

Time series data can be split into two categories: continuous and discrete. Continuous time series 

data are recorded at all times, while discrete time series data are recorded at given intervals 
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(hourly, daily etc.) (Granger & Newbold, 1977). Time series forecasting can be influenced by many 

factors, including the availability of data, cost of analysis or management preferences (Bowerman 

& O'Connell, 1993). The various elements of forecasting are defined by Bowerman and O’Connell 

as the following (Bowerman & O'Connell, 1993):  

• Forecasting period is the basic unit of time for which forecasts are made (hours, days, 

weeks etc.).  

• Forecasting horizon is the number of periods in the future covered by the forecast.  

• Forecasting interval is the frequency with which forecasts are made.  

The forecasting interval is frequently the same as the forecasting period, so the forecasting is 

revised after each period (Bowerman & O'Connell, 1993). There are two types of forecasts: 

expected value in the future and prediction interval (Bowerman & O'Connell, 1993) (Montgomery, 

et al., 1990). The prediction interval is an interval with a stated chance of containing the future 

value.  

Forecasting can use qualitative or quantitative methods (Montgomery, et al., 1990) (Bowerman & 

O'Connell, 1993). Qualitative methods involve an expert while quantitative ones analyse historical 

observations to predict the future. The model of the historical data can be based on a single time 

series (uni-variant model) or it can include multiple variables (causal model) (Montgomery, et al., 

1990) (Granger & Newbold, 1977). Bowerman and O’Connell (Bowerman & O'Connell, 1993) give 

examples of simple time series models.  
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Figure 20: Linear model of time series data (Bowerman & O'Connell, 1993)  

 
Several different methods can be used for quantitative forecasting (Montgomery, et al., 1990) 

(Granger & Newbold, 1977) (Bowerman & O'Connell, 1993):  

• Simple linear regression  

• Multiple regression  

• Moving average model  

• Exponential smoothing  

• Box-Jenkins  

Simple linear regression and multiple regression methods can be used to calculate a trend in time 

series data (Montgomery, et al., 1990). Each of the five methods is explained more fully in the 

following sub-sections. 

2.8.1 Simple Linear Regression 

The simplest regression method is simple linear regression. The goal of simple linear regression 

is to model the time series with a single straight line (Montgomery, et al., 1990) (Bowerman & 

O'Connell, 1993). The model has two parameters: the slope and the y-intercept. The model can be 

written as:  

  
𝑦 = 𝑏0 + 𝑏1𝑥 + 𝜖 

(9) 
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A common method to estimate the two parameters 𝑏0 and 𝑏1 is to use least-squares (Montgomery, 

et al., 1990) (Bowerman & O'Connell, 1993). The method tries to find parameters for which the 

sum of the squared errors is the least. As shown in Equation 10, this means the sum of the squared 

errors between the line and the point 𝑦𝑖 . The error sum can be written as: 

 

 
𝑙(𝑏0, 𝑏1) = ∑(𝑦𝑖 − 𝑏0 − 𝑏1𝑥𝑖)

2

𝑛

𝑖=1

 (10) 

  

The complete equation for the calculation of 𝑏0 and 𝑏1 is given in Equation 11 (Montgomery, et 

al., 1990) (Bowerman & O'Connell, 1993):  

 

 
𝑏1 =

𝑛 ∑ 𝑥𝑖𝑦𝑖 − (∑ 𝑥𝑖
𝑛
𝑖=1 )(∑ 𝑦𝑖

𝑛
𝑖=1 )𝑛

𝑖=1

𝑛 ∑ 𝑥𝑖
2 −𝑛

𝑖=1 (∑ 𝑥𝑖
𝑛
𝑖=1 )2

 (11) 

 
and 𝑏0 = 𝑦̅ − 𝑏1𝑥̅  

where 𝑦̅ =
∑ 𝑦𝑖

𝑛
𝑖=1

𝑛
 and 𝑥̅ =

∑ 𝑥𝑖
𝑛
𝑖=1

𝑛
  

 
The fitted simple linear regression model is:  

 

 

 

𝑦̂ = 𝑏̂0 + 𝑏̂1𝑧 (12) 

 

2.8.2 Multiple Regression 

Multiple regression is similar to simple linear regression but depends on more than one variable, 

as expressed in Equation (13 (Montgomery, et al., 1990) (Bowerman & O'Connell, 1993). 

 

 

 
𝑦 = 𝑏0 + 𝑏1𝑥1 + 𝑏2𝑥2 + ⋯ + 𝑏𝑛𝑥𝑛 + 𝜖 (13) 

  

The variables 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 can be different functions of time, like 𝑥1 = 𝑥2 (Bowerman & 

O'Connell, 1993). 𝑥1, 𝑥2, ⋯ , 𝑥𝑛 may also be other time series information, like temperature or 

sales, both of which may influence the time series. Equation (14 shows an example.  
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𝑦 = 𝑏0 + 𝑏1𝑤(𝑡) + 𝑏2𝑠(𝑡) (14) 

 
where w(t) is a function over time, like the weight of a human over time, and s(t) is a function over 

time, like salary. 2𝑛𝑑  order or higher order polynomial models can be used (Montgomery, et al., 

1990). Figure 21 shows some 2𝑛𝑑  order functions.  

 
Figure 21: 𝟐𝒏𝒅 order polynomial models (Montgomery, et al., 1990)  

 
The general representation of the pth order polynomial model is:  

 

 

 
𝑦 = 𝑏0 + 𝑏1𝑥 + 𝑏2𝑥2 + ⋯ + 𝑏𝑝𝑥𝑝 + 𝜖 (15) 

 
Multiple regression also uses the least-squares method to calculate the parameters 𝑏0, ⋯ , 𝑏𝑛. The 

least squares problem is often described in a matrix form as Equations 16 and 17 (Bowerman & 

O'Connell, 1993). 

 

 

 

𝑦 = 𝑍𝑏̂ (16) 

 
 

 

 
(

13
20
5

) = (
3 2

12 4
19 34

) (
𝑏0

𝑏1
) (17) 

 
Normal equations can be used to solve the least-squares problem in a simple way (Equation (18) 

(Bowerman & O'Connell, 1993).  
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𝑏̂ = (𝑍′𝑍)−1𝑍′𝑦 (18) 

 
However, normal equations are not the most stable method to solve the problem. QR factorization 

solves the problem in a more stable way (Schwarz & Käckler, 2004).  

2.8.3 Simple Moving Average Model 

The simple moving average model is a simpler form of the simple linear regression model. The 

complete time series data are not evaluated, only N points of the time series (Bowerman & 

O'Connell, 1993). The simple moving average model is a way to reduce the noise in a time series. 

The simplest case, 𝑦𝑖 , is the mean (arithmetic mean) of the last N values (Bowerman & O'Connell, 

1993). The simple moving average model can be used to forecast a trend by using the following 

equation (Bowerman & O'Connell, 1993):  

 

 
𝑀𝜏 =

𝑦𝜏 + 𝑦𝜏−1 + 𝑦𝜏−2 + ⋯ + 𝑦𝜏−𝑁+1

𝑁
 (19) 

 
Equation 20 calculates a forecast of 𝜏 periods into the future (Bowerman & O'Connell, 1993).  

 

 
𝑦̂𝑇+𝜏 = 2𝑀𝑇 − 𝑀𝑇

[2]
+ 𝜏 (

2

𝑁 − 1
) (𝑀𝑇 − 𝑀𝑇

[2]
) (20) 

 

where 𝑀𝑇
[2]

 is a second-order statistic (moving average of the moving averages), stated as:  

 

 
𝑀𝑇

[2]
 =

𝑀𝑇 + 𝑀𝑇−1 + ⋯ + 𝑀𝑇−𝑁+1

𝑁
 (21) 

  

2.8.4 Exponential Smoothing 

Exponential smoothing is a method for smoothing, much like the moving average model. The 

difference is that the data points are weighted unequally, with the most recent data point weighted 

more than past data points (Montgomery, et al., 1990) (Bowerman & O'Connell, 1993). The 

equation for simple exponential smoothing is:  

 

 

 
𝑆𝑇  = 𝛼𝑥𝑇 + (1 − 𝛼)𝑆𝑇−1 (22) 
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where 𝑆𝑇 is a weighted average of all past observations. To define an exponential smoothing that 

is an n-period, the moving average 𝛼 is set as shown in Equation 23 (Bowerman & O'Connell, 

1993):  

 

 
𝛼 =

2

𝑁 + 1
 (23) 

 
The starting value 𝑆0 can be determined by taking the average of a certain number of past data 

points or by simply choosing a value (Montgomery, et al., 1990) (Bowerman & O'Connell, 1993). 

The forecast for the time period T+1 is 𝑆𝑇  (Bowerman & O'Connell, 1993). A low value of 𝛼 causes 

the forecast to weight the last value more; this makes the forecast react faster to changes and to 

noise. A low value of 𝛼 means the forecast will react more slowly.  

2.8.5 Box-Jenkins  

The Box-Jenkins methodology was developed by Box and Jenkins in 1976. The methodology 

consists of a four-step iterative procedure (Montgomery, et al., 1990):  

1. Tentative identification: historical data are used to tentatively find an appropriate Box-

Jenkins model.  

2. Estimations: historical data are used to estimate the parameters of the tentatively 

identified model.  

3. Diagnostic checking: various diagnostics are used to check the adequacy of the tentatively 

identified model and, if need be, to suggest an improved model, which is then regarded as 

a new tentatively identified model.  

4. Forecasting: once a final model is obtained, it is used to forecast future time series values.  

Box-Jenkins models include autoregressive models, moving average models, autoregressive-

moving average models and autoregressive integrated moving average mode models. 

Autoregressive processes use weighted past data to predict a future value. A white noise signal 

(fixed variance and mean zero) with a defined variance (that is the same for each period t) is added 

to the past data (Granger & Newbold, 1977). The autoregressive process is defined as (Bowerman 

& O'Connell, 1993):  

 

 

 
𝑥𝑡  = 𝜉 + 𝛷1𝑥𝑡−1 + 𝛷2𝑥𝑡−2 + ⋯ + 𝛷𝑝𝑥𝑡−𝑝 + 𝜖𝑡 (24) 
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where +𝛷1𝑥𝑡 is white noise, 𝜉 is a constant and 𝛷1, ⋯ ⋯ , 𝛷𝑝 are parameters (weights) of the 

model. The random shock 𝜖𝑡 describes the effect of all factors other than 𝑥𝑡−1, ⋯ , 𝑥𝑡−𝑝 on 𝑥𝑡 

(Montgomery, et al., 1990). An autoregressive process of the order p is called AR(p) (Bowerman 

& O'Connell, 1993), where p is the number of past data points. Autoregressive processes use the 

fact that the values of the time series data are correlated (Montgomery, et al., 1990). Related to 

the autoregressive processes are the moving average processes. The moving average process is 

defined as (Bowerman & O'Connell, 1993):  

 

 

 
𝑥𝑡  = 𝜇 + 𝜖𝑡 − 𝜃1𝜖𝑡−1 − 𝜃2𝜖𝑡−2 − ⋯ − −𝜃𝑞𝜖𝑡−𝑞 (25) 

 
where 𝜇 is the mean of the time series, 𝜖𝑡, ⋯ , 𝜖𝑡−𝑞are random shocks and 𝜃1, ⋯ , 𝜃𝑞  is a finite set 

of weights. A moving average process of order q is called MA(q). The random shocks for the 

moving average process are also white-noise random shocks; this means they have a mean of zero, 

a normal distribution and are defined by the variance. It is possible to combine the autoregressive 

process and the moving average process into an autoregressive-moving average (ARMA) 

model; the model has two orders, p,q or ARMA(p,q) (Bowerman & O'Connell, 1993). ARMA models 

can only represent stationary time series (Bowerman & O'Connell, 1993). A time series is 

stationary if the statistical properties (for example, mean and variance) of the time series are 

essentially constant through time (Montgomery, et al., 1990).  

It is possible to convert a non-stationary process into a stationary process by calculating the 

differences between two successive values. The first differences of the time series values 𝑦1, ⋯ , 𝑦𝑛 

are (Montgomery, et al., 1990):  

 

 

 
𝑧𝑡  = 𝑦𝑡 − 𝑦𝑡−1 (26) 

 
where 𝑡 = 2, ⋯ , 𝑛  

Taking only one difference is called the first difference. If the first difference has no stationary 

process, it is possible to redo the differences and get a second difference. Figure 22 shows a second 

difference (Bowerman & O'Connell, 1993).  
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Figure 22: Differencing a time series two times (Bowerman & O'Connell, 1993) 

Autoregressive integrated moving average (ARIMA) models use the 𝑑𝑡ℎ difference to model 

non-stationary time series data. An ARIMA model has an order of (p,d,q), where d is the 𝑑𝑡ℎ 

difference of the original series (Bowerman & O'Connell, 1993).  

2.8.6 Other Methods 

There are many different approaches to modelling and forecasting a time series. For example, 

Chaturvedi and Chandra (Chaturvedi & Chandra, 2004) use an artificial neural network to forecast 
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stock prices. Kontaki et al. (Kontaki, et al., 2005) use piecewise linear approximation to detect 

trend in a streaming time series. Others use Bayesian and other probability methods to model and 

forecast a time series (Bao & Yang, 2008) (Bowerman & O'Connell, 1993).  
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 PROPOSED CONCEPT 

The proposed concept for system health monitoring and prediction is presented in this section. 

The concept combines the previously introduced methods from Section 2 into a complete process 

that includes training, testing and operation. The process is separated into two parts. The first 

part is training and testing (Figure 23, Section 3.1) to adapt the method to the system to be 

monitored. Data samples from the system are needed for this step. The result is set of decision 

trees used to create a condition time series. 

 

Figure 23: Training process 

The second part is operation (Figure 24, Section 3.2), where new data samples are acquired, 

stored and evaluated by the system. The output is the current health condition (diagnosis) and a 

prediction of the future health condition (prognosis). This part creates a time series that 

represents the current system health and iteratively adds future data points based on a prediction. 
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Figure 24: Monitoring and iterative prediction process 

The method uses feature extraction and decision tree learning to detect patterns in sensor input 

and a time series. These patterns are then used to calculate the current health condition of the 

system and to select the best method for predicting future data points. The advantage of an 

iterative approach with feature extraction and switching of the extrapolation method is that the 

algorithm can react better to irregular results that are based on physical effects by switching the 

extrapolation method with the prediction based on past data. 

 Training Process 

The training process has three steps. The first is the collection and sampling of training data. The 

second is the training and optimization of the current health condition. Output of this step is a 

system representation of a set of decision trees for calculating the current system’s health based 

on a sensor data sample. The third step is the training of the prediction. The goal of the third step 

is to use the results of the first and second step to create a decision tree to predict the time series. 

3.1.1 System Data 

The condition monitoring concept uses models based on statistical data to classify new data. 

Therefore, many data samples are needed before the "real" training process can start. Multiple 

samples for each class of the system are needed. How much training data are needed is not easy 

to define. It depends on the complexity of the system (Gerdes & Scholz, 2011) (Gerdes & Galar, 

2016). Getting enough data and useful data is a difficult process. For new systems, it is possible to 
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collect data during system testing and prototyping. Data collecting for older systems is possible if 

multiple systems are available and data can be recorded on all systems in parallel. 

System data can come from both internal and external sensors. External sensors were used to 

validate the proposed method. The sensor signals were recorded for one second each minute. 

Different time intervals are possible, however, depending on the dynamics of the system. If the 

system changes quickly, a higher sample frequency is needed. If the system has slow dynamics, a 

lower sampling frequency can be used. 

The proposed concept can work with any kind of input data; however, it is assumed that a data 

sample is a discrete signal with more than one data point. A sample length of one second is enough 

for most systems to extract information; longer sampling periods allow the calculation of 

frequencies smaller than 1 Hz. In most cases, it is enough to get one data sample every ten minutes 

during operation or cruise flight. A sensor sampling frequency of higher than 100 Hz is 

recommended. If a lower frequency is used, the preprocessing must be adapted to that frequency. 

The signal source does not matter; it can be sound, vibration, temperature, power consumption, 

weight or magnetic flow data, as long as it is a one-dimensional time series source. If more than 

one data source is used or a data sample has more than one dimension, the preprocessing 

algorithm needs to be adapted or the data need to be transformed. The simplest solution is to have 

one preprocessing step for each dimension of the data and then concatenate the preprocessed 

data before giving them to pattern recognition. Each data sample needs to be classified/labelled 

by a supervisor. 

 

 
Figure 25: Data sample 

To use the proposed concept, the following requirements must be met. 
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• Stable System behaviour is required to predict the condition. In other words, the system 

should not change its condition frequently. Specifically, the condition should not change 

during the sampling. If the condition changes at this point, the classifier cannot classify the 

current state correctly. 

• Condition monitoring (Continuous Sensor Values) was not developed with discreet 

values and events in mind. The system needs values which change over time. Most physical 

systems fit these criteria unless their operation is triggered by a highly unpredictable 

external source. For example, accelerating a car is a continuous time series, while starting 

the car or closing a door is not. 

• The system works best if the sensor input changes frequently (High Frequency Sensor 

Data) during sampling (e.g. sound, vibration, power consumption etc.). Most data 

preprocessing steps are developed to work with a signal input of more than 1Hz. But it is 

possible to work with slow changing values like temperature, even if less information can 

be extracted from such data. 

• The concept relies on data samples collected during given intervals (Periodical Data 

Sampling), not at discrete or random times. This is less important for condition 

monitoring but is required for condition prediction. No time information is saved in the 

recorded data. 

• Condition monitoring and condition prediction work with fixed sample lengths. It is not 

possible to record continuous data samples without modifying the algorithm and splitting 

the continuous data sample into multiple one-second samples (Discreet Data Sampling). 

• Calculation of a condition takes time (No True Real Time Monitoring). The calculation 

of one condition may take as much as ten seconds, depending on the number of decision 

trees and the number of sensors. If only one tree is used and only a few FFTs need to be 

calculated, it is possible to have a calculation time of less than one second. In fact, this was 

the usual case during the experiments. If the calculation time is less than one second, it is 

possible to calculate the condition while a new data sample is recorded. 

• Data samples of more than one condition are needed for learning patterns and 

classification (Multiple Conditions). With the proposed concept, it is not possible to have 

a "one-class" classifier. A one-class classifier detects incorrect states and conditions based 

only on the data of the usual operation. Condition monitoring always needs data of at least 

two different operation modes or conditions. It is possible to change the concept to find 

incorrect conditions, but this would require a significant change. 
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3.1.2 Classification Training 

The obvious goal of failure prediction is to predict a failure. The prediction process takes a time 

series and predicts the future of the time series. Fuzzy decision tree evaluation returns multiple 

results for each data sample. If the data are in chronological order with the same time between 

each sample, a multiple time series is derived, one for each possible class. The prediction process 

can only predict one time series at a time. The user of the failure prediction needs to decide what 

class he or she wants to predict. A drawback of the fuzzy decision tree evaluation is that the class 

of the current sample always has a result of 100 %. This means it is not possible to use the 

condition prediction for the no-failure state, if there is only one, because the time series will have 

multiple 100 % values in a row, making the prediction impossible. The algorithm does not "know" 

at which position in time it is, so a class that is not the no-failure class needs to be monitored. If 

there is only one failure class, that class is selected for the prediction; otherwise, one prediction 

must be made for each failure class. Each predictor has to be individually trained, significantly 

increasing the training time. 

3.1.2.1 Data Classification 

An important part of the training process is to classify each data sample. The learning algorithm 

needs all training samples to determine the number of features and classification. The 

classification of the data samples should describe the condition of the system for which the data 

sample stands. Some possible classifications are given below. 

• Each system has a lifetime after which it needs to be replaced. Lifetime can be measured 

in operating hours. If lifetime is used as a condition, it is often useful to use the past lifetime 

or the remaining useful lifetime (RUL) of the system. Lifetime should be represented as a 

percentage value or in blocks to prevent too many different classes. More classes slow the 

training and make the system more sensitive to noise (over-fitting) (Quinlan, 1986).  

• System mode refers to normal operation or failure. This classification is useful to detect 

failures in a system.  

Good classification can significantly influence the performance of the condition monitoring. Many 

or very specific classes may cause over-fitting and make the system sensitive to noise. 

3.1.2.2 Feature Extraction 

Signal analysis and machine learning are used to detect the condition of the system. For learning 

and classification, the data samples need to be prepared (Gerdes & Scholz, 2009) (Gerdes, et al., 

2017). The process depends on different parameters, each of which is adapted to the data. In this 
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concept, the selection of the optimal parameters is performed by a genetic algorithm. The 

parameters include: 

• Signal transformation from the time domain into the frequency domain 

• Noise reduction 

• Grouping of frequencies 

• Calculation of the maximum and mean frequency power of every frequency group 

• Calculation of the number of peaks of all groups 

• Transformation of the frequency groups back into the time domain 

• Calculation of the maximum and mean amplitudes 

• Calculation of the maximum and mean values of the complete signal 

Noise and the amount of data are reduced, and extra information is added to the data during 

preprocessing. First, the data are transformed into the frequency domain, and the noise is 

reduced. Then, frequencies are grouped. The frequency span of the groups may overlap. For 

example, if the frequencies 1 to 50 belong to one group and have an overlap of 50 %, then the 

second group contains the frequencies from 26 to 75, and the third group contains the frequencies 

from 51 to 100. Mean and maximum powers are calculated for each frequency group, as are the 

number of peaks. Each group is transformed back into the time domain, where the mean and 

maximum amplitudes are calculated. The mean and maximum frequency power and mean and 

maximum amplitude of the complete signal are calculated as a last step. Table 6 shows the 

parameters of the preprocessing and the possible values.  
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Figure 26: Signal preprocessing 

Figure 26 shows the preprocessing steps. The steps are: 

• Fast Fourier Transform 
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• Noise Reduction  

• Frequency Grouping 

• Group Mean/Max 

• Group Peaks 

• Global Min/Max 

• Group Inverse Fast Fourier Transformation: Each frequency group is separately 

transformed back into the time domain. With this transformation, it is possible to analyse 

the individual groups or frequencies in the time domain, without all other frequencies in 

the signal. 

• Group Mean/Max 

• Global Mean/Max 

• Output: The outputs of the algorithm are the mean and maximum values of the frequency 

groups in the time and frequency domain, the number of peaks and the mean and 

maximum values of the complete signal in the time and frequency domain. These are much 

less data than pure signal data. The total number of the values depends on the width of the 

frequency groups (blocks).  

Parameter Possible Values Default Value 
Block Width 5/50/100/200 100 
Noise Reduction Factor 0/1/2/5 1 
Maximum Amplitude Yes/No Yes 
Mean Amplitude Yes/No Yes 
Maximum Power Yes/No Yes 
Maximum Frequency Yes/No Yes 
Mean Power Yes/No Yes 
Number of Peaks Yes/No Yes 
Peak Border 1/2/5 2 
Global Maximum Amplitude Yes/No Yes 
Global Mean Amplitude Yes/No Yes 
Global Maximum Power Yes/No Yes 
Global Mean Power Yes/No Yes 
Global Number of Peaks Yes/No Yes 
Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001 

Table 6: Preprocessing parameters 

Data samples can usually be divided into two categories: high and low frequency data. Low 

frequency data have a sampling frequency less than 1kHz. High frequency data are any data with 

a higher sampling rate than 1 kHz. 

The low frequency data were not processed in this research. There were too few data for 

frequency analysis and compression. 
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The high frequency data are processed by taking the following steps. First, the data are 

transformed into the frequency domain, and noise reduction is applied. Next, the frequency data 

are partitioned into small blocks. Finally, each block group is enhanced with extra information. 

Fast Fourier Transform and Grouping 

The fast Fourier transform (FFT) takes a number of time-domain samples and transforms them 

into the frequency domain. The basis of the FFT algorithm is the discrete Fourier. A fast Fourier 

transform is performed in 𝑂(𝑁 𝑙𝑜𝑔(𝑁)) operations, resulting in the full transformation of the 

sampling frequency. After the fast Fourier transform, the frequencies are divided into blocks. Note 

that a frequency group is called a "block". Frequency groups may overlap; this means if a 

frequency group is from 1 to 100 and the overlap is 50 %, the next frequency group is from 51 to 

150 and the following frequency group is from 101 to 200. If the overlap is 0 %, the first block is 

from 1 to 100, the second from 101 to 200 and the third from 201 to 300. The overlap is controlled 

by the block overlap parameter. The number of frequencies grouped in one block is determined 

by the calculation parameter block width. If not enough block width frequencies are available, all 

frequencies are treated as one block. After partitioning, all blocks are transformed back into the 

time domain to get information about the behaviour of the block-signal over the time. Figure 27 

shows how a signal in the frequency domain is separated into blocks and how they are 

transformed back. 

 

 
Figure 27: Blocks and inverse Fourier transform 
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Noise Reduction 

Noise reduction is applied to the signal to remove random data from the samples to improve the 

feature detection of the undisturbed signal. The maximum frequency power is calculated and each 

frequency signal that is below a given fraction of the maximum frequency power is reduced to 

zero to remove noise from the sample. The exact fraction of the maximum frequency power for 

noise reduction is a parameter in the experiments performed for this research (noise reduction 

factor).  

Additional Information and Data Compression 

Each block of the sampled data is enhanced with extra information to give the following algorithm 

more information about the signal in the time and the frequency domains. The added information 

for the time domain is: 

• Maximum amplitude of each block 

• Mean amplitude of each block 

• Maximum amplitude of the complete signal 

• Mean amplitude of the complete signal 

 

In the frequency domain, the following information is added: 

• Mean frequency power of each block 

• Maximum frequency power of each block 

• Frequency with the highest power of each block 

• Number of peaks higher than a given magnitude of the mean frequency power 

• Mean frequency power of the complete signal 

• Maximum frequency power of the complete signal 

The extra information is also calculated for the complete signal sample. Our experiments showed 

that the added information is more useful for the algorithm than the raw data as it allows data to 

be compressed. For example, the information for 100 frequencies can be reduced down to four 

attributes (maximum and mean power, the frequency with the maximum power and the number 

of peaks). Almost the same result is achieved in the time domain. Instead of calculating the 

amplitude for each frequency in the time domain, only two attributes (maximum and mean 

amplitude) are calculated for 100 frequencies. 
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𝐹𝑟𝑒𝑞 𝐼𝑛𝑓𝑜 =  4

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠

𝐵𝑙𝑜𝑐𝑘𝑊𝑖𝑑𝑡ℎ
 (27) 

 
𝑇𝑖𝑚𝑒 𝐼𝑛𝑓𝑜 =  2

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠

𝐵𝑙𝑜𝑐𝑘𝑊𝑖𝑑𝑡ℎ
 (28) 

 𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑓𝑜 =  𝐹𝑟𝑒𝑞 𝐼𝑛𝑓𝑜 + 𝑇𝑖𝑚𝑒 𝐼𝑛𝑓𝑜

= 6
𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠

𝐵𝑙𝑜𝑐𝑘𝑊𝑖𝑑𝑡ℎ
 

(29) 

 𝑁𝑜𝑟𝑚𝑎𝑙 𝐼𝑛𝑓𝑜 =  2𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑖𝑒𝑠 (30) 

 
𝐶𝑜𝑚𝑝𝑟𝑒𝑠𝑠𝑖𝑜𝑛 =  

𝑇𝑜𝑡𝑎𝑙 𝐼𝑛𝑓𝑜

𝑁𝑜𝑟𝑚𝑎𝑙 𝐼𝑛𝑓𝑜
=

3

𝐵𝑙𝑜𝑐𝑘𝑊𝑖𝑑𝑡ℎ
 (31) 

 
The data required are reduced to 3 % if BlockWidth = 100 and Frequencies = 11000. 

3.1.2.3 Decision Tree Building 

The sensor data samples are converted to training samples in the preprocessing step. All training 

samples now have a number of features and a class. Decision tree calculation uses any of the 

available algorithms (ID3, C4.5, random forests, CART etc.). After the decision tree is calculated, it 

needs to be tested and evaluated. If the performance of the decision tree is below a limit, 

depending on the required accuracy, it is possible to try to improve the performance by modifying 

the preprocessing parameters. 

3.1.2.4 Performance Evaluation 

The performance of a decision tree can be improved by modifying the preprocessing process 

(Gerdes & Scholz, 2009) (Gerdes, et al., 2017). The processing option can be turned on or off, and 

parameters can be changed. It might be unfeasible to calculate the optimum parameter set 

depending on the number of the options and their possible combination. If one decision tree 

calculation takes a long time, and if the solution space is large, it is not possible to test all possible 

combinations. Instead, a heuristic optimization approach is needed. Greedy Search, Simulated 

Annealing and Genetic Algorithm are the most common heuristic optimization methods. Some 

methods may be more useful than others depending on the problem. As advantage of the genetic 

algorithm is that it can be executed in parallel, thus reducing the overall calculation time. 
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The number of correctly classified samples defines the fitness of the decision tree. This checking 

is done by classifying a test data set. The test data set can contain data samples used for building 

the decision tree, but it is preferable to keep the test set separate from the training set. A new 

parameter set for the feature extraction is created using the genetic algorithm, and a new input 

vector for the next iteration is created. A decision tree is calculated with each new generated 

preprocessing parameter set. The optimization continues until a given number of decision trees 

has been calculated or until a decision tree has a better performance than the limit (Gerdes & 

Scholz, 2011) (Gerdes & Galar, 2016). 

3.1.2.5 Selecting Decision Trees 

The best three performing decision trees from the training are used. Only three are selected to 

allow real time condition monitoring while increasing the accuracy in a noticeable way (Gerdes & 

Scholz, 2011) (Gerdes, et al., 2016).  

3.1.3 Prediction Training 

The prediction training step takes the decision trees and parameters from the condition training 

step and uses these together with the data samples to create a time series made from similarity 

values for a class. The first step is to create a time series using fuzzy evaluation and to average the 

result of all three decision trees. Next, data samples for training are extracted and labelled with 

the best approximation method; after this step, the time series features are extracted, and a 

decision tree is trained to give the best approximation method for a given data sample. The goal 

of the prediction is to predict when the system will fail (the RUL is zero). For this reason, it is 

recommended to try to predict the similarity curve for the 90% RUL time series. 

3.1.3.1 Fuzzy Evaluation 

Fuzzy decision tree evaluation takes a normal decision tree, evaluates all possible paths and 

calculates the similarity of the input data to each class, where the correct class has a similarity of 

1 or 100 %. The evaluation of all paths is done by assigning each decision a weight based on the 

Boolean decision. The "true" decision is given a weight of one, while the "false" decision gets a 

value lower than one and higher than zero. The value of the "false" decision is calculated based on 

the distance of the data from the "true" border (decision split). The method selected to calculate 

the distance is based on the problem. During the evaluation, the values for each path are calculated 

by taking the sum of the weights of the path and dividing the sum by the depth of the path (taking 

the average of the path values). This results in a value for each leaf on the decision tree. It is 

possible for one class to have multiple leaves; in this case, the largest value of all leaves for one 
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class is used as the result for the class. The advantage of this evaluation is that the decision tree 

creation algorithm does not to be changed and can be applied to any decision tree. 

3.1.3.2 Create Samples 

The creation of samples for the prediction is controlled by prediction constraints. The samples 

created are parts of a time series created by using fuzzy evaluation and storing the results. First, 

a data sample is evaluated using fuzzy evaluation for all three selected decision trees. Then, the 

average similarity value for each class is taken and added to the similarity time series for the class.  

A time series data sample consists of two parts. The first contains the past data from which the 

features are extracted and which are used as an input to calculate the approximation methods. 

The second contains additional data points used to select the best approximation method for this 

data sample. The extrapolation ability of the method is improved by using more data points for 

the approximation than for the later prediction. This way, the method will use extrapolation 

methods that are better suited for long term prediction.  

Time series data samples can be created in a static or a dynamic way. The basic time series data 

sample generation process is shown in Figure 28. 

3 2 4 3 1 5 3 0 6 3 2 4 3 1 3 3

3 2 4 3 1

2 4 3 1 5

4 3 1 5 3

3 1 5 3 0

3

3

Trend Learning Sample 1

Trend Learning Sample 2

Trend Learning Sample 3

Trend Learning Sample 4

Feature Sub Series

Prediction Sub Series

Time Series

4 3 1 3 3 Trend Learning Sample 12

...

 
Figure 28: Time series sample generation 
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Multiple time series data samples are generated from one or more time series. A time series data 

sample is generated by moving a window over the time series. All data points in the window form 

a time series data sample. The window is shifted by one or more data points after a sample is 

taken. The number of data points the window is shifted depends on how many training data 

samples are needed. The static window size is: 

 𝑤 =  𝑑𝑝 + 𝑑𝑓 (32) 

where w is the window size, 𝑑𝑝is the number of past data points and 𝑑𝑓  is the prediction horizon. 

It is possible to create and mix time series data samples from different time series for the training, 

if multiple time series data are available for a problem. 

A dynamic window is also possible. In this case, the window size starts with only a few data 

points, but grows with each step. This is normally the case when the training data represent the 

time series data as they grow and also include all past data points. A dynamic window can only be 

used if no features are dependent on the number of data points. 

 

 
Figure 29: Dynamic window 
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A static window can include the complete time series. In this case, only the separation between 

past data points and future data points is changed to create samples for training. 

 

 
Figure 30: Dynamic time series separation 

The data classification step needs the past data and the future data points of a training sample. 

Data preprocessing needs only the past data points. 

3.1.3.3 Select Approximation Method 

Data classification is used to calculate the best prediction method for the current time series 

sample. The calculation is done by testing which of the available approximation methods has the 

least approximation mean square error for the approximated future data points. A constraint is 

that the approximation/extrapolation can only be calculated for past data points of the training 

sample and cannot use those data points that are marked as future data points because the 

decision tree will also be limited to those data points. This means an approximation/extrapolation 

is only calculated for the constrained time series sample (only past data points), but the mean 

square error for the future data points needs to be low. The following methods can be used to 

predict data points: 

• Linear regression 

• Multiple regression 

• Moving average 

• Exponential smoothing 

• Autoregressive integrated moving average (ARIMA) 
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Which similarity time series will be predicted needs to be decided during this step. It is possible 

to predict all time series, but it is recommended to predict only one. The most recommended 

option is to predict only the 90% remaining useful life (RUL) time series. An important 

consideration for maintenance decisions is knowing when the RUL is reached or is close, i.e., when 

data samples are classified as 90% RUL.  

3.1.3.4 Feature Extraction 

Data preprocessing transforms a time series data sample into a training data sample by calculating 

the time series features. Different features for each sample are calculated. Those features plus the 

classification, calculated in a previous step, form the training data sample. Which features are 

calculated and how they are calculated depends on the preprocessing parameters. This step is 

similar to preprocessing in the condition monitoring process. The following features are possible: 

• Maximum value 

• Mean value 

• Minimum value 

• Gradient 

The process is controlled by the following variable parameters: 

• Maximum number of past data points 

• Use of maximum value 

• Use of mean value 

• Use of minimum value 

• Use of gradient 

• Use of other time series if available.  

 

It is possible to use other features and parameters that are not listed if they can be applied to time 

series data. Preprocessing is only applied to the data points marked as past data points. The data 

points are the same as those used to calculate the classification. 

3.1.3.5 Decision Tree Building 

A decision tree can be calculated after the training data have been calculated. Decision tree 

calculation can be done with any available algorithm. The result is a decision tree that decides 

which method will be used to predict data points. 
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Testing the decision tree for prediction is more complex than testing it for condition monitoring. 

Standard methods cannot be used, because the time series prediction is the goal, not decision 

making. The decision tree is tested by calculating the prediction for the original time series data 

that were used to create the time series data samples. For this step, the prediction process is 

executed multiple times. The prediction is calculated for every possible starting point of the 

original time series. For each prediction, the following values are calculated: 

• Maximum squared prediction error  

• Mean squared prediction error 

• Minimum squared prediction error 

• Confidence range for a maximum prediction error of 10 % 

• Confidence range for a maximum prediction error of 5 % 

• Confidence range for a maximum prediction error of 1 % 

The confidence range is the forecasting horizon, where the maximum prediction error is below a 

defined limit. Confidence range is measured as a fraction of the forecasting horizon that should 

have been predicted. For example, a forecasting horizon of 10 data points out of a trained 

prediction horizon of 100 data points would be a confidence range of 0.1. The measurement of the 

overall performance is: 

 𝑃𝑃𝑟𝑒𝑑 =  6 −
𝑤0

1 + 𝑒𝑟𝑟𝑚𝑎𝑥
+

𝑤1

1 + 𝑒𝑟𝑟𝑚𝑒𝑎𝑛
+

𝑤2

1 + 𝑒𝑟𝑟𝑚𝑖𝑛

+ 𝑤3𝑐𝑟10 + 𝑤4𝑐𝑟5 + 𝑤5𝑐𝑟1 

(33) 

 
where 𝑤0, ⋯ , 𝑤5 are weights between 0 and 1, 𝑒𝑟𝑟𝑚𝑎𝑥, 𝑒𝑟𝑟𝑚𝑒𝑎𝑛, 𝑒𝑟𝑟𝑚𝑖𝑛 are the calculated 

prediction errors, 𝑐𝑟10, 𝑐𝑟5, 𝑐𝑟1 are the confidence ranges and 𝑃𝑃𝑟𝑒𝑑 is the prediction performance 

value. A lower value indicates a better prediction performance. 

3.1.3.6 Performance Evaluation 

If the performance of the prediction is lower than a limit, an optimization loop is started. The 

optimization loop works exactly like the optimization loop for the condition monitoring process. 

A heuristic optimization is used to modify the parameters for the data classification and the data 

preprocessing. The parameter for the maximum past data points may be not increased past the 

maximum past data points limit. The number of the future data points to be predicted may not be 

changed. 
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 Monitoring and Interactive Prediction Process 

The process for the actual monitoring of the system health and health prediction is divided into 

two processes; first, the classification process and second, the iterative prediction process. In 

order to make a prediction, the current system health condition needs to be classified.  

The first step (system data) is taking a new sensor data sample; the sample needs to be compatible 

with the data samples used to train the system. The second step is the classification of a data 

sample using fuzzy evaluation and attaching the result to a time series. In the last step, the time 

series data are analysed and an iterative prediction is made based on their features. Each 

prediction iteration predicts only the next data point. That data point is added to the time series, 

and a new iteration is begun to predict the next data point. 

3.2.1 System Data 

The same sensors and data sources are used to create a sample with the same parameters as in 

the training process. Just one sample is taken; there is no history of past samples. However, past 

samples may be stored and added to the training set to improve the accuracy of the decision tree 

after a new training iteration. 

3.2.2 Condition Classification 

The classification of condition step uses the decision trees and feature extraction parameter sets 

from the training process. The parameter sets are used to create three different feature vectors 

for the three different decision trees. The decision trees evaluate these feature vectors and classify 

them using fuzzy decision tree evaluation. As a result, the sample is applicable to all ten health 

classes. The result is added to a time series that contains the classification of the past data samples. 

3.2.2.1 Feature Extraction 

The feature extraction is performed once for each decision tree using the parameter sets for each 

tree. Input for the feature extraction is the currently recorded sensor sample.  

3.2.2.2 Classification 

The previously generated feature vectors are now classified using fuzzy decision tree evaluation. 

This generates a set of similarities for each decision tree. The next step is the fusion of the 

classification results using a voting mechanism.  

1. For each decision tree result select the class with 100% similarity, i.e., the class to which 

the sample was classified. 
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2. Decide which tree to use. The decision tree (DT) with the highest classification accuracy 

has the highest priority. 

a. Take the first DT if it and another DT have the same classification. 

b. Take the first DT if all DTs have different results. 

c. Take the second DT if it and the third have the same classification. 

3. Select the 100% class of the previously selected DT for the classification of the time series. 

4. Select the goal class of the previously selected DT to add it to the prediction of the time 

series. 

3.2.2.3 Time Series 

Two time series are generated by this process, as indicated in the previous step. The first is the 

classification time series, containing the actual states of the monitored system. The second is the 

prediction time series. These data contain the similarity values of the goal class (normally the 90% 

RUL class; see Section 3.1.3.3).  

3.2.3 Iterative Prediction 

The main goal of the proposed method is to predict the RUL. The prediction uses the training 

prediction decision tree and the fuzzy classification result of the condition monitoring. The 

process extracts features of the time series and uses them to decide which extrapolation method 

will be used to forecast the next data point. The new generated data point is added to the time 

series, and the process is repeated until the target number of future data points is calculated. 

3.2.3.1 Feature Extraction 

The first step is to preprocess the data and calculate the features of the time series to be predicted. 

Data preprocessing depends on the windowing of the training data. If a static window and static 

data separation are used, the preprocessing should use the same number of past data points as in 

the training. If a dynamic window or dynamic data separation is used, this needs to be considered 

when choosing which past data points to use. Data preprocessing uses the same parameters as 

the training of the final decision tree. 

3.2.3.2 Select Extrapolation Method 

The trained decision tree and feature vector are used to select the best extrapolation method for 

the time series which the features represent. The extrapolation method can only be selected from 

the set of previously trained approximation methods. 
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3.2.3.3 Calculate Next Data Point 

The next future data point in the time series is calculated using the selected extrapolation method 

and the current data point of the time series. A possible modification is to calculate multiple data 

points instead of one. This depends on the goal of the prediction and is applicable when only one 

iteration is calculated. 

3.2.3.4 Iterate 

 Summary 

The condition prediction process is more complex than condition monitoring. But if the 

parameters are set, the process works automatically and creates a prediction method for the 

current problem. The prediction can be optimized for a certain prediction horizon. It is possible 

to calculate different decision trees and preprocessing parameters to have short-term or a long-

term forecasting. Both methods give different information to the user. 
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 VALIDATION 

The validation of the method required three steps. First, it was validated for condition monitoring 

using data from a test rig at Airbus; second, computer generated data were used to validate the 

condition prediction; third, real-world data from an aircraft were used to validate the complete 

method. 

 Condition Monitoring: Test Rig Validation 

The test rig experiments were divided in two parts, one for each step of the process (monitoring 

and prognosis). A test rig built together with Airbus Operation GmbH was used for the condition 

monitoring experiments. Matlab was used for condition prediction, because it was not possible to 

use the test rig to generate a time series that would represent the reality. Both experiments tried 

to simulate the filter clogging of the high-pressure air filters in the air conditioning of the A340-

600 aircraft. This system was chosen because it has no active parts; it is completely passive and 

thus difficult to monitor. But the system is connected to fans and air flows through the filters. 

4.1.1 Test Rig 

The test rig was built by Airbus Operations GmbH during the PAHMIR project to provide a testing 

environment. The test rig was built into an aircraft hull and consisted mostly of aircraft parts. The 

goal was to reassemble the real environment as closely as possible. The test rig included the 

following parts:  

• HP recirculation fan of the A340-600  

• HP air filter of the A340-600  

• Ducting  

• Electronic vibration measurement box  
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Figure 31: Test rig 

An electronic vibration measurement box (EVB) equipped with two vibration sensors and two 

microphones was used to record sensor data. One of each sensor type was attached to the fan and 

to the filter housing. The EVB (Figure 32) is hardware developed for PAHMIR. Ten boxes were 

created for different tasks. The design goal was to have a box able to record and store different 

sensor data for a long time (8 weeks). During the project, the EVB was used to record data from 

different experiments and for the ground test rig. It was also used on an Airbus Operations test 

flight in Toulouse to record data (Gerdes, 2008) (Grieshaber, 2009).  

Parts breakdown:  

• Enclosure  
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• Autonomic electronic board  

• 8 AA batteries  

• SD card (16 GB) stored in the enclosure.  

• 4 sensors (2 microphones and 2 acceleration sensors)  

Dimensions: 

• Sensor: 2200mm (cable) 

• Enclosure: 105mm x 55mm x 190mm  

 
Figure 32: Open EVB 

The autonomic box and the SD card are stored in the enclosure. The battery pack that powers the 

autonomic sensor box is equipped with overcharge and short circuit protection. It has eight 

Panasonic LR6AD AA primary batteries, which comply with IEC 60086. The EVB contains two 

internal sensors in addition to the external attachable sensors: a temperature and a pressure 

sensor. With the pressure sensor, it is possible to detect if the aircraft is in cruise flight or not. 

With the temperature sensor, it is possible to detect the temperature setting of the environment, 

specifically, if the air conditioning is turned too low or high. Up to four external sensors can be 

attached to the EVB. Sensor data are recorded as a four-channel wave file.  

The EVB has a simple configuration file stored on the SD-card. Configuration options are:  

• Sampling frequency (default: 48000 Hz)  

• Number of thousands of samples that will be recorded each time (default: 48000)  

• Number of seconds the device will sleep between two recordings (default: 600 seconds)  

• How much time the sensors take to stabilize at power on (default: 50 milliseconds)  

• Gain for each channel (default: 1)  
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4.1.2 Validation 

The experiments discussed here show the ability of the concept to detect clogging of air filters. 

The condition monitoring experiment simulated the clogging of an air filter with dust. Other 

experiments tested the preprocessing, optimization and fuzzy decision tree evaluation. The 

parameter optimization experiments appear in (Gerdes & Scholz, 2009) (Gerdes, et al., 2017), the 

optimization experiments appear in (Gerdes & Scholz, 2011) (Gerdes, et al., 2016) and the fuzzy 

decision tree experiments are in (Gerdes & Scholz, 2011) (Gerdes & Galar, 2016).  

4.1.2.1 Setup 

Data for the experiments were collected at the ground test rig. Data included fan and filter 

vibration and sound data. During the data collection, each filter was polluted with dust (MIL-Spec 

(quartz) dust). The dust was added in 25 gram steps, going from 25 grams up to 200 grams per 

filter for a total of eight possible classes. The classifier was trained by applying the optimization 

process with genetic optimization, with 10 generations each for 20 members. The starting 

population was a random parameter list. Fifteen data samples were used for every class (pollution 

grade). To test if the classification accuracy could be increased, the experiments were performed 

with a single tree classifier and also with a classifier built out of three different decision trees using 

the decision selected by the majority of the classifiers.  

4.1.2.2 Results 

The goal was to detect how much dust was in the filters. The complete data set was used for the 

experiment. For test data, the training data were arranged by increasing weight. The classification 

should detect a nine-step function. Table 7: Number of classified samples per classes for one and 

three decision trees 

shows the number of detected samples per class (15 samples per class were recorded). Figure 33 

shows that the calculation resembles a step function, and only a few classes were classified 

wrongly. With three classifiers (same training data, different parameters), the number of wrong 

classified classes dropped even more (Figure 34).  

Figure 35 shows the results of the optimization. The red line is the average fitness, and the green 

line is the best fitness. The figure clearly shows that more generation would have given better 

performance. The average and maximum fitness of the population steadily increased. 
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Dust Classification results using 
1 decision tree (samples per 
class) 

Classification results using 
3 decision trees (samples 
per class) 

25 gram 15 15 
50 gram 15 15 
75 gram 15 15 
100 gram 13 13 
125 gram 13 17 
150 gram 14 14 
175 gram 16 16 
200 gram 19 15 

Table 7: Number of classified samples per classes for one and three decision trees 
 

 

 
Figure 33: Classifications as a time series with one decision tree 
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Figure 34: Classifications as a time series with three decision trees 

 

 
Figure 35: Genetic optimization performance 
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 Condition Prediction: Validation with Generated Data Validation 

The goal was to predict a typical system health condition function (Kolerus & Wassermann, 2011) 

and follow the function as closely as possible. The experiment used the condition prediction 

method presented earlier to predict the goal function. Details about the experiment and results 

are shown in (Gerdes, 2013). Kret (Kret, 2011) shows how the concept can be used for long 

horizon forecasts. Kret (Kret, 2011) also evaluates time series models like moving average, 

exponential smoothing, ARMA and ARIMA. 

4.2.1 Setup 

The experiment used Matlab to generate the data. Figure 36 shows the function used as the basis 

to generate data and which should be reproduced as closely as possible by the algorithm. 

 

Figure 36: Test function for validation with generated data 

The function should represent the typical health degradation of a component. First, there is a slow 

rise in the degradation and then a sudden rise until the system breaks. Equation (34 defines the 

function until data point 80; Equation (35 defines the remaining 40 data points. 

 
𝑓(𝑥) =  

0.1

80
𝑥 (34) 

 
𝑓(𝑥) =  (

𝑥 − 81

40
)

2

+ 0.1 (35) 

The function was transformed into a set of features representing the function at a certain data 

point. The features were: 
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• Short term gradient calculation [Boolean]. This parameter defines whether the gradient 

for the data points in the current window should be calculated. 

• Long gradient calculation [Boolean]. This parameter defines whether the gradient for the 

complete time series until the last data points should be calculated. 

• Mean value calculation [Boolean]. This parameter defines if the mean of the sample data 

points should be calculated. 

• Maximum value calculation [Boolean]. This parameter defines if the maximum of the 

sample data points should be calculated. 

• Minimum value calculation [Boolean]. This parameter defines if the minimum of the 

sample data points should be calculated. 

• Dimensions used for classification [Boolean list]. This parameter defines which 

dimensions should also be used to calculate characteristics. 

• Zero Crossing [Boolean]. This parameter decides if the number of zero crossings in the 

current window should be calculated.  

The “class” for each feature best approximated the function up to the data point for which the 

current feature set was generated. The following functions were available: 

• 𝑓(𝑥) = 𝑎𝑥 + 𝑏 

• 𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 

• 𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 

• 𝑓(𝑥) = 𝑎 𝑒𝑏(𝑥+𝑐) + 𝑑 

• 𝑓(𝑥) = 𝑎 log(𝑏(𝑥 + 𝑐)) + 𝑑 

• 𝑓(𝑥) = 𝑎 sin(𝑏(𝑥 + 𝑐)) + 𝑑 

• 𝑓(𝑥) = 𝑎 cos (𝑏(𝑥 + 𝑐)) + 𝑑 

• 𝑓(𝑥) = 1 − 𝑎 𝑒𝑏𝑥(𝑥+𝑐) 

• 𝑓(𝑥) = 𝑎𝑏𝑥+𝑐 

• 𝑓(𝑥) = 𝑎(𝑏(𝑥 + 𝑐))2 + 𝑑 

The function was predicted based on three different starting points: 30, 60 and 90. Three different 

experiments were performed to show how well the algorithm could predict the function. The first 

experiment had no noise in the data; the second had noise in the range between -0.02 and 0.02 

added to the function; the third added noise between -0.05 and 0.05. The second and third 

experiments were done once with noise-less training data and noisy test data and once with noisy 

training and test data. 
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4.2.2 Results 

The results show (Figure 37, Figure 38 and Figure 39) that the method can predict the function 

quite well if the data are not disturbed by noise. If noise is added, the performance is worse. The 

method does not discern its position in time and starts to predict the “exponential part” of the goal 

function too early.  

 

Figure 37: Prediction results with no noise 
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Figure 38: Prediction results with noisy test samples 

 

Figure 39: Prediction results with noisy data samples 
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 Condition Monitoring and Prediction: In-Service Aircraft Validation 

The method was evaluated using sensor data from the air conditioning system of an A320 aircraft 

operated by ETIHAD Airways in the Middle East. The sensor data included 589 flights over two 

years. No additional information was available – no data about maintenance, weather or number 

of passengers in the aircraft.  

4.3.1 Data 

Each sensor reading included over 80 values, consisting of continuous (numerical) and discrete 

data (Boolean) and sampled with a frequency of 1 Hz. Data came from bus systems in the air 

conditioning system and flight data system. Most were temperature data and valve state data. The 

sensor data are described in the following multi-page table (Table 8).  
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Description Bus Type 

Total Air Temperature Air Data 
Computer 

Numerical 

Date Flight Data 
Interface Unit 

Calendar 
Date 

UTC Hours  Flight Data 
Interface Unit 

Numerical 

UTC Minutes  Flight Data 
Interface Unit 

Numerical 

UTC Seconds  Flight Data 
Interface Unit 

Numerical 

Pressure Altitude (1013 hPa)  Air Data 
Computer 

Numerical 

Present Position Lateral Inertial 
Reference System 

Numerical 

Present Position Longitude Inertial 
Reference System 

Numerical 

Cabin Compartment Temperature Group 1  Zone Control Numerical 

Cabin Compartment Temperature Group 2  Zone Control Numerical 

Cabin Compartment Temperature Group 3  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 1  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 2  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 3  Zone Control Numerical 

Duct Overheat Warning Group 1  Zone Control Boolean  

Duct Overheat Warning Group 2  Zone Control Boolean  

Duct Overheat Warning Group 3  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 1  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 2  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 3  Zone Control Boolean  

Duct Temperature Group 1  Zone Control Numerical 

Duct Temperature Group 2  Zone Control Numerical 

Duct Temperature Group 3  Zone Control Numerical 

G + T Fan OFF  Zone Control Boolean  

Hot Air Switch Position ON  Zone Control Boolean  

Minimum Bleed Air Pressure Demand  Zone Control Numerical 

Nacell Anti Ice - Engine 1  Zone Control Boolean  
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Nacell Anti Ice - Engine 2  Zone Control Boolean  

Recirculation Fan Left Hand Fault  Zone Control Boolean  

Recirculation Fan Right Hand Fault  Zone Control Boolean  

Trim Air Pressure Regulation Valve Disagree  Zone Control Boolean  

Trim Air Pressure High  Zone Control Boolean  

Trim Air Pressure Regulation Valve Close  Zone Control Boolean  

Trim Air System Inoperational  Zone Control Boolean  

Zone Main Control Inoperational Zone Control Boolean  

Zone Secondary Control Inoperational Zone Control Boolean  

Abnormal Pressure - Engine 1    Bleed Monitoring 
Computer  

Boolean  

Abnormal Pressure - Engine 2   Bleed Monitoring 
Computer  

Boolean  

APU Bleed Push Button ON   Bleed Monitoring 
Computer  

Boolean  

APU Bleed Valve Fully Closed Bleed Monitoring 
Computer  

Boolean  

APU Command Bleed Monitoring 
Computer  

Boolean  

Bleed Push Button Position ON - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Bleed Push Button Position ON - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Auto Closure Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Auto Opening  Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Manual Closure Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Manual Opening  Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Position Fully Closed Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Position Fully Open   Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Selected Position Open   Bleed Monitoring 
Computer  

Boolean  

Cross Feed Valve Selected Position Shut   Bleed Monitoring 
Computer  

Boolean  
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Cross Pressure Regulation Valve Command Close   Bleed Monitoring 
Computer  

Boolean  

Engine 1 Precooler Inlet Pressure Bleed Monitoring 
Computer  

Numerical 

Engine 1 Precooler Outlet Temperature Bleed Monitoring 
Computer 1  

Bleed Monitoring 
Computer  

Numerical 

Engine 1 Precooler Outlet Temperature Bleed Monitoring 
Computer 2  

Bleed Monitoring 
Computer  

Numerical 

Engine 2 Precooler Inlet Pressure  Bleed Monitoring 
Computer  

Numerical 

Engine 2 Precooler Outlet Temperature Bleed Monitoring 
Computer 1  

Bleed Monitoring 
Computer  

Numerical 

Engine 2 Precooler Outlet Temperature Bleed Monitoring 
Computer 2  

Bleed Monitoring 
Computer  

Numerical 

Flap Actuator Valve Position Fully Closed - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Flap Actuator Valve Position Fully Closed - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Flap Actuator Valve Position Fully Open - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Flap Actuator Valve Position Fully Open - Engine 2   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Fault - Engine 1   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Fault - Engine 2   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Position Full Open - Engine 1   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Position Full Open - Engine 2   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Position Fully Closed - Engine 1   Bleed Monitoring 
Computer  

Boolean  

High Pressure Valve Position Fully Closed - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Over Pressure Valve Position Full Open - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Over Pressure Valve Position Full Open - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Overheat - Engine 1   Bleed Monitoring 
Computer  

Boolean  
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Overheat - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Over Pressure - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Over Pressure - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Precooler In Pressure 10/60 - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Precooler In Pressure 10/60 - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Auto Closure Control - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Auto Closure Control - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Low Regulation  Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Position Full Open - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Position Full Open - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Position Fully Closed - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Pressure Relief Valve Position Fully Closed - Engine 2   Bleed Monitoring 
Computer  

Boolean  

Start Valve Closed - Engine 1   Bleed Monitoring 
Computer  

Boolean  

Start Valve Closed - Engine 2  Bleed Monitoring 
Computer  

Boolean  

Transferred Pressure - Engine 1  Bleed Monitoring 
Computer  

Numerical 

Transferred Pressure - Engine 2  Bleed Monitoring 
Computer  

Numerical 

X Feed Command   Bleed Monitoring 
Computer  

Boolean  

Pack 1 Out Temperature Pack Control  Numerical 

Pack 2 Out Temperature Pack Control  Numerical 

Pack Flow 1  Pack Control  Numerical 

Pack Flow 2  Pack Control  Numerical 

Pack Water Extractor Temperature 1  Pack Control  Numerical 
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Pack Water Extractor Temperature 2  Pack Control  Numerical 

Pack Outlet Temperature 1  Pack Control  Numerical 

Pack Outlet Temperature 2  Pack Control  Numerical 

Table 8: A320 sensor data description 

Figures 40 and 41 show where the sensors are located in the aircraft. 

 

Figure 40: A320 AeroBytes data description 1 
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Figure 41: A320 AeroBytes data description 2 

Data analysis showed a maintenance action after approximately 930 flight hours (FH) (Gerdes, et 

al., 2017). Samples for the decision tree generation were created by taking 1024 sensor data 

points after the aircraft reached a height of 30,000 ft. This equals 17 minutes of data in cruise flight 

and yields about 3400 data samples; 25% were used for training and 25% were used for testing. 

Samples were randomly taken from the flight data to avoid having the training data overlap with 

the test data and to ensure that the number of samples per class was not equally distributed. The 

data samples were divided into ten categories. The first category equalled all data samples with a 

time stamp lower than 10% of the RUL of the system, i.e., 930 FH. The maintenance action during 

the duration of the recorded data was assumed to be the end of the lifetime and the first data point 

is the beginning. We did this because no data above the whole life of the system are available. 

However, this should be sufficient to validate the concept. The last category contained samples 

with a timestamp between 90% and 100% of the RUL. All categories in between were split equally, 

each covering a 10% range of RUL.  

4.3.2 Data Analysis 

The results of applying the method to the real-world data are mixed. The condition monitoring 

works quite well if the system has collected some history, but the prognosis does not work well. 

As Figure 38, and Figure 39 show, the similarity of one class over time varies a great deal and is 

strongly influenced by noise. This is partly due to the data used. There are many discrete values 
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in the data, and the variations in the data are very small. Small changes can strongly affect the 

classification and similarity results. 

Data analysis shows a maintenance action after approximately 840 flight hours (FH). The nature 

of the maintenance action is unknown, but an examination of the sample classifications shows that 

the data samples after 840 FH are like the ones at the beginning of the data recording. This 

indicates that the maintenance action reset the system condition and hints at a major maintenance 

action.  

Table 9: Misclassification matrix without maintenance action shows the misclassification of 

samples if it is assumed that there was no maintenance action. This is also visible in Figure 42, 

Figure 43, Figure 44 and Figure 48, where the misclassifications are often the current class +/- 

“50”. The green marked entries are the correct classifications. On their left and right are 

misclassifications that are very similar. Parallel to the correct classifications are two other groups 

of misclassifications. The misclassifications in these groups indicate that the class "50" is like the 

class "10", class "60" is like class "20", class "70" is like class "30" … In other words, after class 

"40", the health condition is very like the beginning of the time series so something has reset the 

system health condition. Table 10 shows the misclassifications after it is assumed that at flight 

hour 840, the system health condition was reset. Now the misclassifications are neighbours of the 

correct classification; this is a good sign, because neighbouring classes should have similar 

features. This also shows that the assumption of the maintenance action at 840 was correct. 
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 Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 36 24 23 10 24 29 16 28 6 

10 19 0 40 3 4 45 21 12 1 17 

20 16 38 0 4 0 29 68 9 0 0 

30 28 0 3 0 37 8 6 12 72 4 

40 16 6 0 45 0 9 0 20 38 29 

50 21 49 28 0 4 0 36 9 0 32 

60 30 48 35 1 0 42 0 7 0 0 

70 31 30 11 38 20 21 32 0 29 6 

80 29 0 0 67 55 0 0 25 0 13 

90 23 20 0 10 46 23 0 6 17 0 

Table 9: Misclassification matrix without maintenance action 

  

Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 21 32 21 7 8 9 6 7 47 

10 22 0 32 25 9 23 18 21 10 24 

20 23 19 0 36 36 8 17 6 2 25 

30 26 49 35 0 54 15 16 0 0 0 

40 31 4 29 32 0 36 8 0 0 0 

50 16 15 28 41 34 0 20 0 0 0 

60 19 22 15 16 5 10 0 10 27 23 

70 14 21 15 0 0 0 51 0 25 54 

80 2 5 6 0 0 0 68 43 0 73 

90 30 28 29 0 0 0 33 48 46 0 

Table 10: Misclassification matrix with maintenance action 

As mentioned above, the maintenance action during the duration of the recorded data is assumed 

to be the end of the lifetime, and the first data point is the beginning. We made this assumption 

because no data above the whole life of the system were available. However, this should be 

sufficient to validate the concept. The RUL of the system was set to 840 FH, because of the 

maintenance action around FH 840. All samples between 0 FH and 840 FH were labelled 
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accordingly into the 10 classes; the same was done for the samples between 840 FH and 1700 FH, 

thus simulating two total lifetimes of the system.  

 

Figure 42: 90% RUL similarities 

The similarity graphs also show the maintenance action around 840 FH. The classifications after 

840FH seem to have a mirror “line” located four classes “below” the diagonal. The three sample 

graphs show a very different behaviour, but the curves before and after the maintenance action 

are similar, indicating a fixed correlation between the similarity curves and the RUL. However, the 

patterns in a single similarity curve are too weak and unsuited for the iterative prediction 

approach. This makes the prediction of the time series for the “90% RUL” class very unreliable 

using an iterative approach as initially proposed. A more complex prediction using more than one 

curve might solve the issue.  

4.3.3 Extrapolative Prediction Method 

To handle the high noise in the data, a different predication method was developed. This method 

does not use the similarity data; instead, it uses the switch from one RUL class to another. In this 

approach, the FH is noted when a class switch occurs; after two switches are recorded, it is 

possible to predict the RUL by using those two points for extrapolation (creating a linear model of 

the time series).  
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Figure 43: Remaining useful life prediction 

Figure 44 shows the modified training process for this method. The major difference is that only 

the condition detection is trained; this time, the prediction method is not included.  

 

Figure 44: Alternative classification training process 

The rest of the training process is unmodified. The alternative prediction process is completely 

new and shown in Figure 45. 
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Figure 45: Alternative classification monitoring and prediction process 

The process to predict the condition is based on the results of continuous condition monitoring 

and classification. Each classification adds a new data sample to the class time series. The process 

has three steps. The first is the recording of new sensor data; the second is classifying the sensor 

data and adding the classification result to a time series. A new data sample is taken and processed 

according to the feature extraction parameter set of each of the three selected trees. A voting 

process classifies the sample. If two or more trees classify a data sample as the same class, this 

class is taken. If all three trees get a different result, the result of the first tree is taken. The third 

step is marking when the system condition switches from one state to another and using these 

data points to extrapolate the data into the future.  

The resulting time series data are subject to noise in form of wrong classifications (Figure 46). To 

reduce the noise, each data point is set to the class of the majority of its 20 preceding data samples 

(Figure 47) (this value may change depending on the noise in the time series). The noise can be 

even more reduced for the extrapolation if it is assumed that the health condition can only degrade 

and not improve unless a maintenance action is performed. A maintenance action restarts the 

monitoring process and “forgets” all previous classifications. 
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Figure 46: Classification time series with noise/wrong classifications 

 
Figure 47: Classification time series with applied noise reduction 

Condition prediction uses past condition monitoring data to predict the RUL of the monitored 

system. The prediction is done by detecting when the system health condition changes from one 

condition to another and marking these state changes on a FH time axis. Ideally, this plot should 

be a linear function with the health condition changes equally spacedFigure 100. Maintenance 
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action can alter the gradient of the function and/or introduce a discontinuity, so the prediction 

needs to be restarted from the maintenance action data point. 

Depending on the usage of the system and the operation environment, the health condition 

changes may not be equally spaced. This indicates a change in the degradation and, thus, in the 

RUL. Prediction is possible when two or more state changes have been detected. Because the plot 

does not have more than 11 data points, it is possible to use a simple approximation method. The 

classification rules (the rules determining in which RUL class a sample belongs) are automatically 

generated by the samples used to train the decision tree. The threshold for an RUL of zero is 

determined by extrapolating the already classified samples (see Figure 48). This means the RUL 

is based on experience and not on physical models or aircraft regulations (e.g., maximum number 

of flight hours). 

 
Figure 48: Remaining useful life prediction 
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4.3.4 Extrapolative Prediction Results 

To test the performance of the new process, we created a training data set and a testing data set using 

the data set from Section 4.3.1. Each set (835 samples) randomly includes 25% of the available data 

samples (3340 samples). This introduces some noise in the distribution of the samples across different 

conditions. The process can classify the test set correctly with an error rate of 346 wrong samples 

from a total of 835 samples or 41%. This large error rate stems from the high noise in the data 

and the fact that data are not 100% correctly divided into two time series (two total lifetimes). It 

is difficult to reduce the noise at the source level, because direct data from the aircraft are being 

used, but it is possible to reduce the noise before the feature extraction step by applying noise 

reduction. Noise reduction needs to be applied carefully so that no significant features (especially 

for the Boolean data sources) are removed. For this reason, noise is not reduced for each channel; 

instead, noise reduction is performed on the results, because without maintenance, the RUL can 

only increase. The wrong classifications are spread over nine classes; correct classification is 

possible by taking the most common class over a range of 20 classifications (three flights or 10 

FH) in the time series. Note that that the misclassifications are mostly misclassifications to 

neighbouring classes (seeTable 10) where samples close to the border of a class are wrongly 

classified as the neighbouring class. 

The resulting condition time series is shown in Figure 49. The figure shows the points at which 

the current system condition switches are nearly equally spaced; even with many 

misclassifications in the data source, there is little deviation from the correct data points. 
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Figure 49: Start of different system health conditions 

The results and the calculated “switching points” show that the process can handle the noise very 

well to make a prognosis. However, a drawback is the “lag” of the detected condition switches of 

20 samples. This lag can be compensated with better noise reduction and the application of 

restrictions on the possible conditions (the system may only degrade unless a maintenance action 

is done) or a higher sampling rate (smaller data samples or overlapping data samples). 

 Summary 

Testing showed the proposed concepts facilitate reliable condition monitoring and condition 

prediction. Condition monitoring was tested on a system developed by Airbus. Condition 

prediction was tested using both generated data and real-world data from an A320 aircraft. The 

validation with real-world data showed that the monitored system did not have a clear 

degradation pattern and was subject to noise. Condition monitoring worked for the real-world 

data, but prediction did not work as it should. Consequently, the concept had to be slightly 

reworked to employ a simpler and more noise resistant method of prediction. With the reworked 

concept, it is possible to reliably predict the remaining useful life of the system more than 400 

flight hours in advance. 

The concept had to be modified for RUL prognosis using real-world data. The iterative prediction 

process, as described in this thesis, does not work well with noisy data. Patterns are visible in the 

data after the fuzzy decision tree evaluation (e.g. the maintenance action is clearly visible and the 
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curves before and after the maintenance action are similar). The iterative approach does not work, 

because the curves of the similarity classes are based on a complex non-linear function. 
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 CONCLUSIONS 

It is possible to monitor and predict the health condition of a system with the proposed concept. 

The concept combines the use of decision trees, genetic algorithms, signal analysis and 

approximation methods to create a system that can learn and adapt to various problems. It is 

easily understood by a human operator and can be applied to different monitoring problems.  

The use of a decision tree together with the optimization algorithm during the training of the 

system monitoring enables the process to use only the signal analysis methods that give the most 

useful information to solve a given problem. During the system monitoring, the decision tree uses 

the data from the signal processing to classify the signal data and detect the current system 

condition.  

The advantages for forecasting/prediction are similar. The decision tree and the optimization are 

used to select different forecasting methods based on experience. The iterative forecasting 

method can be switched dynamically during the prediction to enable the process to react to events 

and to handle non-linarites in the observed data. The alternative forecasting method proposed 

here is based on the fact that the decision tree uses crisp classes; it uses the change of one class to 

another to predict the remaining useful life. Both approaches have advantages and disadvantages. 

The iterative approach is well suited for short-term prediction or for data with low noise. The 

alternative approach needs more data points before the first prediction can be made, but it is 

much more robust against noise. 

Experiments showed that training and using multiple classifiers for the same problem and then 

taking the class to which the majority belongs, improves the accuracy of the classification. For 

fuzzy decision tree forest evaluation, this means the similarity values of the other classes need to 

be averaged over the decision trees selected for the same class.  

The processes are mostly autonomous and require little human interaction. Humans are only 

needed to collect and label data samples. The algorithms can work alone after the data are 

prepared and the algorithm is trained. Because of the simplicity of the concepts, it is possible to 

change the algorithms and include new functions. Different decision tree algorithms and time 

series models can be used.  

Another interesting result was that the process had to be changed to work with the real-world 

data from an aircraft. The process developed with lab data was not suitable for the characteristics 

of the real-world data. Therefore, two methods for forecasting are suggested here. First, an 
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iterative method calculates each future data point based on a past time series and, second, an 

extrapolative method uses the switching of one health condition to the next for prediction. 

 Research Questions 

RQ1: Is it possible to predict a failure of the air conditioning system 400 flight hours before 

the failure occurs so that the failure can be prevented during scheduled maintenance? 

The results show that it is indeed possible to predict failures in advance. The aircraft environment 

is extremely noisy because of the passengers, turbines, environmental conditions, speed and flight 

height. Even under these conditions, it is possible to predict the health of the system and when a 

failure will likely occur. However, the planned iterative approach does not work with the noise. A 

different method was developed to be more robust to noise. This was unexpected at the start of 

the research but proved to be an advantage. The modified method for prediction is simpler than 

the iterative prediction but, at the same time, more robust to noise. This comes at the cost of 

precision, but the prediction is still accurate enough. 

RQ2: Is it possible, with established signal processing and pattern recognition methods, to 

adequately monitor and predict the health of aircraft fans and filters in real-time? 

The proposed method for condition monitoring uses only basic signal processing methods like 

calculating the mean and maximum amplitude in the time and frequency domains. When used for 

pattern recognition and prediction, a genetic algorithm and decision trees proved powerful 

enough to make a reliable health prediction. The validation also showed these methods provide a 

very fast way to compute a variety of meaningful features without using much computation or 

electrical power. This combined with the simple decision tree evaluation allows health monitoring 

(not prediction) using small embedded devices which are not connected to the conventional 

aircraft health monitoring system to monitor sound and vibration (Internet of Things, IoT). The 

project also developed a sensor box that could last for six months without battery replacement 

while recording at a high rate. If the box were further developed, a much longer life span is 

possible.  

RQ3: Is it possible to monitor the aircraft fans and filters using existing sensors or by 

monitoring only sound and vibration data? 

The validation with real-world data showed it is possible to make predictions using only existing 

sensors and process data. But as mentioned, the prediction method needed to be modified to be 

more robust against noise. The experimental validation in a test rig showed it was possible to 
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detect the health condition of the vales, the fan and filter using only a vibration or sound sensor. 

Thus, it is possible to use a very simple method to retrofit existing parts to provide health 

information. 

 Further Research 

Future research could include improving the preprocessing for the condition monitoring, better 

labelling of samples for condition prediction and using a combination of short and long horizon 

forecasts for the iterative method. Feature extraction could be improved by using more advanced 

feature extraction concepts for the time and frequency domain to get more meaningful features. 

The concepts cannot replace another maintenance method, but the system can be operated in 

parallel to the currently used one. Sensors collect data and they are correlated with maintenance 

actions and the system/machine age. Over time, the new maintenance concept can replace the old 

one. 

Another improvement area would be to develop sensoring equipment that can be installed in/at 

unmonitored devices and connected to the aircraft network. The power supply of these devices 

could prove to be a problem, but with low power WLAN and clever design, it would be possible to 

create a small, long lifetime health monitoring device, which can be loaded with a trained decision 

tree monitoring algorithm.  
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 PAPER 1: EFFECTS OF CONDITION-BASED MAINTENANCE ON COSTS 

CAUSED BY UNSCHEDULED MAINTENANCE OF AIRCRAFT 

 Introduction 

This section introduces the concepts and specifics of the aircraft environment. It explains the goals 

of aircraft maintenance and the applicable regulations. 

6.1.1 Aircraft Maintenance 

Aircraft maintenance is based on Reliability Centred Maintenance. The goal is to have maximum 

safety and reliability with minimal costs. Tasks are selected in a hierarchy of difficulty and cost, 

from lowest to highest. Each task must also pass the applicability and effectiveness criteria. 

Depending on the consequence of failure (safety, operational, economic, hidden safety and hidden 

non-safety) a single task or a combination of tasks is selected (Nowlan & Heap, 1978) 

Reliability is the probability that an item will perform its intended function for a specified interval 

under stated conditions (US Department of Defense, 1998). 

The Maintenance Steering Group (MSG) was formed to develop maintenance concepts for aircraft. 

The most recent is MSG-3 (Federal Aviation Administration, 2012). The focus of MSG-3 is the effect 

of a failure on the aircraft operation (Nowlan & Heap, 1978) (Air Transport Association of 

America, 2007). For each item that affects the airworthiness, a specific maintenance task is 

described (task oriented maintenance). MSG-3 can use condition-based maintenance or 

predetermined maintenance to achieve its goals. Most airlines and manufacturers use 

predetermined (preventive) maintenance, as it provides both economic and reliability benefits 

(Kiyak, 2012).  

The core concept of MSG-3 is Failure Mode and Effect Analysis (FMEA). With FMEA it is possible 

to determine which maintenance actions need to be performed during planned maintenance. This 

includes taking the probability and effects of a failure into account and planning the maintenance 

during system development. MEA uses a top-down approach, with analysis starting at the highest 

system level. A lot of detailed analysis is not needed, because most maintenance tasks are found 

at higher levels.  

The FMEA process has the following steps (Society of Automotive Engineers, 2001): 



 117 

 

Identify Relevant Functions: In this step, all functions of a system are identified. See Table 

11 for an example of a function. 

Identify Functional Failures: This step defines failures of a function. A function can have 

multiple failure modes. See Table 11 for an example.  

Identify Failure Effects: The failure is classified using the process in Table 11. 

Identify Failure Probability: The probability of a failure is calculated based on experience 

or in-service data. 

Select Maintenance Tasks: It is possible to define maintenance actions to prevent a failure 

when the causes of a failure are defined. This step also includes determining the maintenance 

intervals, combining maintenance tasks, and removing duplicate ones. 

Function Functional Failure Failure Mode 
Provide redundant 
capability of informing crew 
of fire in each of the four 
specific areas (right hand 
Fan, left hand Fan, Core 
upper case, Core lower 
case). 

Loss of redundancy to 
detect fire in the designated 
engine fire zone. 

Engine fire detector failure. 

 Provides false fire warning 
indication. 

Engine fire detector failure. 

Alerts crew of detection 
loop failure. 

Does not alert crew 
detection loop failure. 

Engine fire detector failure. 

  MAU Failure. 
Table 11: Example of functional failure analysis - engine fire detection system (European Aviation Safety Agency, 2005) 

6.1.1.1 Failure Classes 

Failures are divided into five classes depending on the effect of the failure on the aircraft. A 

criterion for the classification is the severity of the failure for aircraft safety. Table 12 shows how 

failures are classified. 
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Is the occurrence of a functional failure evident to the operating crew during the 
performance of normal duties? 
Yes No 
Does the functional failure or secondary damage 
resulting from the functional failure have a direct 
adverse effect on operating safety? 

Does the combination of a hidden 
functional failure and one 
additional failure of a system 
related or backup function have 
an adverse effect on operating 
safety? 

Yes No Yes No 
 Does the functional failure have a 

direct adverse effect on operating 
capability? 

  

 Yes No   
Safety Operational Economic Safety Non-Safety 
Evident Hidden 

Table 12: Failure class criteria 

This results in the following failure classes (Air Transport Association of America, 2007): 

Evident Safety: This must be approached with the understanding that a task is required to 

assure safe operation. If this is not the case, a re-design is required. 

Evident Operational: A task is desirable if it reduces the risk of failure to an acceptable 

level. 

Evident Economic: A task is desirable if the cost of the task is less than the cost of repair. 

Hidden Safety: A task is required to assure the availability necessary to avoid the adverse 

effect on safety of multiple failures. If this is not the case, a redesign is required. 

Hidden Non-Safety: A task may be desirable to assure the availability necessary to avoid 

the economic effects of multiple failures.  

6.1.1.2 Failure Probability 

Ideally, in-service data are used to evaluate the risk of a failure. However, during development, no 

in-service data are generally available. During development, assumptions need to be made based 

on similar parts, tests, simulations or experience. Later, when in-service data are available, they 

can be used to update the failure probability. 

Failure class and failure probability define the criticality of the failure. The criticality is used to 

plan the maintenance action. 
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6.1.2  Scheduled Maintenance 

Periodic maintenance actions are organised in five different classes of checks. Each check is 

performed at a different interval and gets more complex with the size of the interval. The given 

intervals can vary depending on the aircraft type and aircraft operation (Air Transport 

Association of America, 2007).  

6.1.2.1 Pre-/Post Flight Check 

The most performed maintenance check is the pre-/post flight check, and it is done daily. This 

check is often done by the pilot by walking around the aircraft and checking the general state of 

the aircraft. 

6.1.2.2 A-Check  

A-checks can be performed overnight in a hangar and are done every two months. During an A-

check, all technical systems required for aircraft operation are checked. 

6.1.2.3 C-Check  

The C-check is a major aircraft check, where the aircraft is taken out of operation to be inspected. 

C-checks occur every two years and take about two weeks. The aircraft structure is inspected and 

all systems are tested. 

6.1.2.4 IL-Check 

 The IL check is done every four years and includes the detailed checking and maintenance of 

systems and structure. 

6.1.2.5 D-Check 

This check is done every ten years and takes about one month. During this check, nearly the whole 

aircraft is dissembled and checked. Sometimes the paint is even removed to check the structure. 

An aircraft has two to three D-checks during its lifetime. 

6.1.3 Maintenance Program Development 

The process to develop a maintenance plan for scheduled maintenance based on the MSG-3 

method is complex. An Industry Steering Committee (ISC) consisting of authorities, aircraft 

operators and the manufacturer is created. These actors, in turn, form groups (MSG Working 

Groups (MWGs)) which frequently meet and decide on the frequency and scope of needed 

maintenance actions (see Figure 50). First, the MSG-3 analysis is performed based on aircraft data. 

Then, a Maintenance Review Board Report (MRBR) proposal is created and accepted. The MRBR 

contains the minimum scheduled tasking/interval requirements for a newly FAA type-certificated 
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(TC) or derivative aircraft and its aircraft engines. The accepted MRBR is used by the 

manufacturer to create the Maintenance Planning Document (MPD) (Federal Aviation 

Administration, 2012) (Federal Aviation Administration, 1994) (European Aviation Safety 

Agency, 2008). 

 

Figure 50: MRBR process 

Revisions requiring formal approval are subject to the same consideration as initial approval 

(Federal Aviation Administration, 1978). Changing the maintenance plan is a difficult process, and 

there must be good reasons to change the maintenance intervals. European Aviation Safety 

Agency (2008)  has defined a process to update maintenance intervals. This process is needed 

because initially no in-service data for a new aircraft are known, and the maintenance intervals 

are created based on estimations. Operator in-service data are needed to adapt the maintenance 

intervals. 

Ali and McLoughlin (2012) show how much can be saved by optimizing the maintenance intervals. 
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6.1.4 Unscheduled maintenance 

Unscheduled maintenance is done outside the defined periodic intervals because an unexpected 

failure has occurred. The aircraft continues to fly safely because of its built-in redundancy, but the 

equipment (generally) needs to be fixed before the next take off. If it is not possible to fix the 

equipment during turnaround time, the flight will be delayed until the fault is eliminated. 

Depending on the failure, the aircraft may have to stay on the ground until the failure is fixed. The 

decision to stay on the ground (AoG - Aircraft on Ground) depends on the Minimum Equipment 

List (MEL) (International Civil Aviation Organization, 2015) (Civil Aviation Regulations 

Directorate, 2006). The MEL is based on the Master Minimum Equipment List (MMEL) 

(International Civil Aviation Organization, 2015) (Civil Aviation Regulations Directorate, 2006), 

accepted by national airworthiness authorities. The MEL is an operator defined list that is stricter 

than the MMEL. If a faulty part is listed in the MEL, the aircraft is not allowed to operate until the 

failure is fixed. 

Depending on the flight schedule of the aircraft, departure may be delayed because of the 

maintenance operation. Instead of a delay, the flight may need to be completely cancelled. Delays 

and cancellations are very expensive for an airline (Cook, et al., 2004) and should be avoided if 

possible. 

6.1.5 Preventive Maintenance 

Preventive maintenance (PM) is the standard method for reducing unscheduled maintenance. 

Aircraft components are inspected at given time intervals, depending on the component type and 

varying from airline to airline. Reducing the time interval can increase the need for spare parts, as 

increasing the interval increases the risk of unscheduled maintenance (Kolerus & Wassermann, 

2011). Preventive maintenance can be divided into the following three types (Air Transport 

Association of America, 2007) (Nowlan & Heap, 1978) (Civil Aviation Authority, 1995) (Federal 

Aviation Administration, 1978): 

Hard-Time (HT): Scheduled removal of a component before some specified maximum 

permissible age limit. 

On-Condition (OC): Scheduled inspections, tests or measurements to determine whether an 

item is in, and will remain in, a satisfactory condition until the next scheduled inspection, test or 

measurement. 
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No Maintenance: This approach assumes the component can be used until it breaks, at 

which point it is replaced. This is not preventive maintenance but corrective (reactive) 

maintenance; nonetheless, it is used for certain components in aircraft maintenance. 

6.1.6 Condition-Based Maintenance 

Condition-based maintenance (CBM) is based on condition monitoring and aims at preforming 

maintenance based on the system condition and trend of the system condition. CBM can be used 

to realize reliability centred maintenance (RCM) (Niu & Pecht, 2009).  

Condition monitoring constantly measures and analyses relevant parameters of mechanical and 

electrical components during operation. The parameters selected for monitoring allow 

determination of the condition and failure state. The need for maintenance of the component is 

only indicated if parameters show a predefined degradation (Kolerus & Wassermann, 2011).  

The difference between CBM and preventive on-condition (OC) maintenance is that OC checks a 

system at defined intervals while condition monitoring continuously monitors the condition. 

Condition monitoring is used in a wide field of applications, including rotary machines (gear 

boxes, gas and wind turbines, bearings etc. (Mahamad, et al., 2010) (Saravanan & Ramachandran, 

2009) (Sugumaran & Ramachandran, 2011) (Tian & Zuo, 2010) (Zhao, et al., 2009), plants and 

structures (bridges, pipelines etc. (Goode, et al., 2000)). Often vibration data are used to perform 

the condition monitoring (Ebersbach & Peng, 2008).  

The condition of the system is defined by setting limits on certain values based on experience 

(Mobley, 2002) or based on a mathematical or data-driven model (Kolerus & Wassermann, 2011) 

(Williams, et al., 1994). Machine learning techniques, such as decision trees (Sugumaran & 

Ramachandran, 2007) (Sugumaran & Ramachandran, 2011) (Tran, et al., 2009), vector support 

machines (Pham, et al., 2012) (Sugumaran, et al., 2007) (Widodo & Yang, 2007) and neural 

networks (Chen, et al., 2012) (Mahamad, et al., 2010) (Tian, 2012), are often used to map the 

features of the input signal to a condition. 

Another option is to use a mathematical model, feed the sensor input into the model, calculate the 

output and check whether the output of the theoretical model deviates from the real system. This 

approach can also be used for fault isolation, identification of failures and prognosis (Wang, et al., 

2008) (Williams, et al., 1994) (Kolerus & Wassermann, 2011) (Jardine, et al., 2006). 



 123 

 

Data-driven models use past data to create models with stochastic or machine learning algorithms 

(Pecht, 2008) (Garcia, et al., 2006) (Jardine, et al., 2006). These models require many data samples 

that represent different conditions of the system. Data-driven models require less human 

intervention than mathematical models; model validation and testing can be performed almost 

automatically. 

Trend analysis is a method to achieve CBM. The analysis algorithm doesn’t just look at recorded 

parameters at a single moment in time; it also takes the full parameter history into account. The 

need for maintenance of a component is only indicated if the data trend of parameters shows a 

degradation of the component. Based on the parameter time history, the analysis algorithm also 

allows a forecast of the remaining lifetime of the component (Kolerus & Wassermann, 2011). 

There are several different methods to predict future values. ARMA, ARIMA, artificial neural-

networks, sequential Monte Carlo and Markov models are used for prediction for a complex time 

series (Chen, et al., 2011) (Caesarendra, et al., 2010) (Pham & Yang, 2010) (Tian, et al., 2010). 

Output of the prediction is normally an estimated time to failure (ETTF) and a confidence interval 

(Sikorska, et al., 2011). The confidence interval defines how reliable a prediction is (Schruben, 

1983) (Sikorska, et al., 2011). It can be calculated using standard time series. 

Implementing CBM is a difficult and costly task. Many barriers prevent the use of CBM on all 

systems. These barriers include (among others) (Stecki, et al., 2014): 

• The inability to predict accurately and reliably the remaining useful life of a machine 

(prognostics); 

• The inability to continually monitor a machine (sensing); 

• The inability of maintenance systems to learn and identify impending failures and 

recommend what action should be taken (reasoning); 

• The initiation of CBM programs without full knowledge of how the system can fail; 

• The general focus of CBM research on specific techniques (better mousetrap symptom).  

 Maintenance Costs 

Hard and soft costs are very common in maintenance. When defining a model of costs, it is 

necessary to select those that are easily measurable, from which soft indicators, representing an 

intangible aspect of a much more complex measurement, can be extracted. However, soft 

indicators, such as the cost of not having carried out training or the non-availability of condition 

monitoring equipment that could have detected an anomalous vibration, are not measurable using 
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a traditional collection of data. Therefore, it is necessary to look for more easily seen hard costs 

with the required information. 

In the first step, the objectives of the system must be properly defined. The costs of a system’s 

maintenance cannot be modelled when the inherent objectives of its design or the operational 

objectives for which it has been acquired are not known. Thus, for example, in the case of a spare 

or redundant centrifugal pump, the objective of the system is its condition of redundancy; its 

maintenance costs will be entirely different from an identical pump used in an area of high 

criticality due to the vastly different operating conditions. 

Once the objectives have been identified, the next step is to select the equipment, if this it has not 

been already done, and to identify the alternate systems in which it is used. Finally, the optimal 

configuration for each system is determined, using a method of economic evaluation. 

The criteria of evaluation at the time of selecting equipment must balance aspects of both life cycle 

cost and operational effectiveness. These criteria are shown in Figure 51. 

COST VERSUS EFFICIENCY

LIFE CYCLE 

COST

SYSTEM 

EFFECTIVENESS

Cost of R+D

Cost of investment

Cost of operation and maintenance

Cost of disposal

Safety PerformanceAvailability

Design

Complexity of operation

Human factors

Maintainability

Reliability

Safety

Maintenance planning

Spare parts

Personnel training

Transport

Logistic support

Depedencies

 
Figure 51: Effectiveness-cost relationship 

 

A priori, it is less difficult to establish the cost criteria than the criteria of effectiveness using the 

manufacturer’s data or drawing on similar experiences in similar equipment. This does not mean 

that the estimation of the cost is simple; it only means that the various classifications are normally 

better understood. 
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Maintenance costs are an inherent part of life cycle cost (LCC) and cannot be dissociated from the 

LCC concept. The cost of the maintainability of a system cannot be assessed if it is not considered 

from its conceptual design stage until its disposal. Therefore, a model of costs must cover the 

system’s entire life cycle; it must include costs associated with research and development, 

engineering, design, production, operation, maintenance and disposal, as shown on the left side of 

Figure 51. 

6.2.1 Estimation of Maintenance Global Cost 

As explained by Komonen and Akatemia (Komonen & Akatemia, 1998), the costs of maintenance 

can be divided into two groups: 

• Costs that appear in the operation of maintenance (administrative costs, cost of 

manpower, cost of material, cost of sub-contracting, cost of storage, cost of capital). 

• Costs of loss of production due to shutdowns of production assets or reductions in the 

production rate, and loss of quality in the product due to equipment malfunctions.  

This classification emphasizes the two main objectives of the maintenance function, both 

corresponding to the desired balance of effectiveness and efficiency: 

• High availability of production assets;  

• Low maintenance costs. 

The global cost of maintenance  is the sum of four components (AFNOR, 1994): 

• Cost of interventions (𝐶𝑖);  

• Cost of failures (𝐶𝑓); 

• Cost of storage (𝐶𝑠); 

• Cost of over-investment (𝐶𝑜𝑖). 

 𝐶𝑔 =  𝐶𝑖 + 𝐶𝑓 + 𝐶𝑠 + 𝐶𝑜𝑖  (36) 

The objectives of all facets of the maintenance organization must be aligned so that an attempt to 

reduce one factor of the global cost will not produce an increase in another. The global cost can be 

calculated for a specific machine, group of machines or whole plants, but policies like RCM that 

rationalize the observance and application of maintenance only require the calculation of the costs 

of that equipment whose criticality or economic relevance affects the overall performance of the 

gC
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entire system under consideration. For this reason, the equipment that most affects the global cost 

will receive more attention and be the subject of more detailed cost analysis. 

There will be a problem if there is a mismatch between data and information, for example, 

overwhelming amounts of data yielding too little information. For this reason, the data 

contributed by a cost model to the set of financial indicators will only come from critical 

equipment or equipment consuming a high percentage of the allocated money (i.e. relevant in the 

maintenance budget). 

6.2.2 Downtime Cost and Failure Cost 

These costs correspond to the loss of profit because of a maintenance problem that has reduced 

the production rate. They are the result of the following: 

• Preventive maintenance badly defined; 

• Preventive maintenance badly executed; 

• Corrective maintenance performed over an overly long period, badly executed, using bad 

or low quality spare parts. 

It is important to highlight that the cost of failure of the asset corresponds to the loss of profit 

margin caused by a defect that brings unacceptable losses of production. The dilemma is whether 

the cost is attributable to the reasons cited above or to the following: 

• Errors of use (misuse) that imply degradation of the asset; 

• Environmental conditions outside normal working conditions specified by the asset 

manufacturer. 

Such costs must be charged to the production, purchases or even engineering functions, not to 

maintenance. By slotting the costs of failure into the various functional areas, not just into 

maintenance, those responsible in each area can take corrective measures and, in some cases, 

assume full responsibility for the expenses. A single policy which puts all shutdowns and costs of 

failures under maintenance whatever the reason and no matter who is responsible should not be 

adopted. 

For example, a maintenance failure should not be mistaken with a machine failure caused by 

buying unreliable equipment. Decisions to purchase or re-engineer equipment almost never 

depend on the maintenance department but are driven by productivity criteria, making it absurd 

to transfer that cost to maintenance.  
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Consider an organization with an engineering department which deploys projects or makes 

productive improvements using assets of low reliability, maintainability, safety, etc. without 

consulting or considering maintenance in any phases of any of the projects. The maintenance 

department is not involved at all in the decisions and therefore is not responsible for any of the 

resulting problems. However, as the general perception is that these costs should be attributed to 

maintenance, there is friction between departments about the imputation of the failure costs, even 

though these obviously result from making poor decisions at the outset. 

6.2.3 Evaluation of the failure cost 

The failure cost, 𝐶𝑓 , can be calculated using the following formula: 

𝐶𝑓= unperceived income + extra production expenses - raw material not used. 

The components of this cost are: 

• Unperceived income: This factor will depend on the possibility of recovering lost 

production by rescheduling, working weekends etc. In cases of continuous production, 

however, there is no chance to recover; therefore, the production of that time slot and all 

incomes which could have been generated during the shutdown must necessarily be 

imputed to this first part of the equation. 

• Extra production expenses: If it is possible to recover part of the production in other 

temporary slots, the following additional costs will be incurred: 

• Energy required for production; 

• Raw materials; 

• Expendable materials; 

• Services related to quality, purchases, maintenance, etc. 

• Unused raw material: When it is not possible to recover production, the cost of the unused 

raw material will be subtracted from the failure cost. Although the raw material has not 

been used (unless it is a perishable product that must be thrown out), it will be consumed 

if the productive plan is recovered, possibly with some extra storage costs, transport cost 

or costs related to the degradation of the materials. 

The most popular model used to calculate of the cost of failure when there are productive assets 

that totally or partially assume the tasks of the assets under maintenance is the Vorster method. 

It is used to calculate the maintenance costs and other financial indicators. 
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 Delays in Aviation 

Delays are incurred when an aircraft is prevented from leaving for its destination for an interval 

of 15 minutes or more (Federal Aviation Administration, 1995). Delays can originate from traffic, 

passengers, weather or aircraft. A delay causes additional operating costs, including crew-related, 

ramp-related, aircraft-related and passenger-related (hotel and meals, re-booking and re-routing, 

luggage complaints and revenue losses) costs (Poubeau, 2002). Delay costs can be calculated from 

Scholz (1995), Scholz (1998) or Cook et al. (2004). 

The average departure delay in 2014 for European air traffic was 26 minutes (Eurocontrol, 2015). 

Most flights were not delayed, but delays longer than 30 minutes occurred in 8% of all departures 

(Eurocontrol, 2015) (US Department of Transportation, 2014). Flight cancellations represented 

between 1% and 2% of all scheduled departures (Eurocontrol, 2015) (US Department of 

Transportation, 2014). 

6.3.1 Delay Causes 

Delays can be reactionary or caused by the airline. Reactionary delays are caused by late arrival 

of aircraft, crew, passengers or load (Eurocontrol, 2015). These delays cannot be controlled 

because an external source causes them. Airline delays include aircraft and ramp handling, 

technical reasons, flight operation and crewing or passenger and baggage handling (Eurocontrol, 

2015). Figure 52 shows the distribution of the delays in minutes per flight. Note that ATFCM 

stands for “Air Traffic Flow and Capacity Management”; government reasons for delay include 

security and immigration (Eurocontrol, 2015). 

 

Figure 52: Causes of departure delays in 2014 in Europe (Eurocontrol, 2015) 
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Airline delays include delays caused by unscheduled maintenance. It is difficult to find data 

sources that show what percentage of the airline-caused delays are maintenance delays or which 

system caused the problem. However, Knotts (1999) shows that about 20% of the delays for the 

Boeing 747 are caused by technical problems, and the Civil Aviation Authority (2009) shows how 

aircraft maintenance is distributed over the aircraft systems. This gives an indication of the 

systems likely to cause maintenance delays. 

A large problem is delays caused by No Fault Found (NFF) problems; these can represent a 

significant part of the unscheduled maintenance actions (International Air Transport Association, 

2015). The NFF rate for the Generator Control Unit is about 71%. 

Airline maintenance policy also affects the number and significance of delays. Rupp et al. (2006) 

explain how an airline policy influences the number of flight cancellations. Flights with fuller 

aircraft or on routes with higher competition are cancelled less often. It can be assumed that a 

similar effect can be observed for “normal” delays, because repairs can be deferred as per the 

Minimum Equipment List (MEL). Sachon and Patè-Cornell (2000) analyse how an airline 

maintenance strategy affects delays, cancellations and safety using a probabilistic risk analysis. 

The model shows a marginal trade-off between minimizing delays and maximizing safety for the 

Leading-Edge slat system of an aircraft. Models like this can help to adapt the maintenance policy 

to reduce delays at the management level; this includes qualification of maintenance personnel, 

timing of maintenance operations, number of deferrals allowed etc.  

6.3.2 Costs of Delays 

The costs of an aircraft delay can be calculated several different ways (Cook, et al., 2004). Cook et 

al. (2004) provide a method for calculating delay costs and their impact. One example is the 

calculation of the costs for a “network reactionary delay”. The network effect is the effect of 

consecutive delays caused either by the aircraft incurring the initial delay or by other aircraft. 

These costs and effects can have a large influence on the overall number of delays (see Figure 54). 

The specific cost elements of a delay are: 

• Fuel burn costs plus commentary on airborne delay 

• Maintenance costs 

• Flight and cabin crew salaries and expenses 

• Handling agent penalties 

• Airport charges 

• Costs of passenger delay to airlines 
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The average delay costs (without network effects) are about 47 US$/min. With network effects, 

this value increases to 78 US$/min. 

Cook and Tanner (2011) (see also Cook et al. 2004) divide the costs of a delay into strategic, 

tactical and reactionary costs. Strategic costs are accounted for in advance, e.g. buffer costs. 

Tactical costs are incurred on the day of operations and not accounted for in advance. Reactionary 

costs are caused by network effects. In Europe, for each minute of a primary delay, another 0.8 

minutes of reactionary delay are caused. These values can vary significantly from airline to airline. 

Ferguson et al. (2013) show that the data and method from Cook et al. (2004) can be applied to 

the US airline industry. 

Maintenance, repair and overhaul (MRO) companies want to reduce their costs to provide low 

cost maintenance services to airlines (Wagner & Fricke, 2006). For this, they need to know how 

many unscheduled maintenance events can be expected and how many man hours (MH) they 

need to be able to handle. Wagner and Fricke (2006) propose a method to estimate the number of 

needed MHs to handle unscheduled maintenance for a given fleet. 

 Unscheduled Maintenance Causes 

Unscheduled maintenance is caused by equipment that shows an unexpected fault during flight. 

This fault needs to be fixed before the next scheduled flight as per MEL. If it is not possible to fix 

the equipment during turn-around time (due to a long repair time, missing spare parts or difficult 

failure identification), the flight will be delayed until the fault is fixed. In extreme cases, flights 

could be cancelled and passengers may have to be redirected or compensated. Figure 533 shows 

a typical sequence of events leading to unscheduled maintenance and delay (Sachon & Pate-

Cornell, 2000). 

 

 

Figure 53: Sequence of events during unscheduled maintenance leading to delays (Sachon & Patè-Cornell 2000) 
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Mechanical/technical problems are not the only reason for unscheduled maintenance. Humans 

are also an error source. Failure symptoms are misinterpreted or not noticed or new failures are 

introduced during scheduled maintenance (Civil Aviation Authority, 2009). This may have an 

effect on the safety of the aircraft (Sachon & Pate-Cornell, 2000) or lead to an increased number 

of NFF (International Air Transport Association, 2015). Incorrect or incomplete maintenance 

comprises up to 61% of all maintenance actions. Most cases of incorrect or incomplete 

maintenance occur because parts are not correctly fitted or not set correctly (Civil Aviation 

Authority, 2009). 

 Aircraft System and Database 

The Airbus A340-600 was selected for this study because it is quite new (entry into service in 

2002) but there is already enough experience and data. By November 2008, 84 of the Airbus A340-

600 aircraft were in service (Airbus SAS, 2008). The focus of the paper is on the air conditioning 

system (ATA (Air Transport Association) Chapter 21). The air conditioning system is suitable for 

analysis because it is flight critical, monitored (auxiliary power unit (APU), fans etc.) and consists 

of a combination of mechanical and electrical components. Reliable information on it is available 

in the database of the Airbus In-Service Report (ISR) (Airbus SAS, 2008). 

 Empirical Study: AC System of A340 

6.6.1 Delay Analysis 

The delay analysis is based on in-service data from Airbus (2008). The analysis is restricted to the 

air conditioning system to reduce the number of entries to check and to focus on the effects of one 

system on delays. Note that we did not consider flight cancellations. The delays caused by faults 

of the air conditioning represent about 6 % (Airbus SAS, 2008) of the total delays caused by 

unscheduled maintenance. Figure 544 shows the distribution of the lengths of delays caused by 

the air conditioning of an A340-600. 

The delay costs caused by the air conditioning system are calculated to show the importance of 

reducing delays. Delay costs caused by the air conditioning system are calculated based on Cook 

et al. (2004) with updated economic data from Eurocontrol (2006). The costs of a delay are 

assumed to be a linear function of delay time. The base value for delay costs is given in US$/min. 

The average delay costs (without network effects) are about 47 US$/min. With network effects, 

this value increases to 78 US$/min. Based on Airbus SAS (2008), it is possible to calculate an 

average delay time caused by the air conditioning system of 90minutes. Multiplying this value by 

the average delay costs (47 US$/min) yields delay costs of 4230 US$ for a 90-minute delay. In 50 
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% of the studied cases, however, the delay is less than 50 minutes (see Figure 55). In these cases, 

the average delay costs are below 2350 US$. The total cost for 100 delays is about 432,990 US$. 

These costs are quite substantial, so efforts to reduce delays are welcome. 

 

Figure 54: Delay length distribution (Airbus SAS 2008a) 

 

 
Figure 55: Cumulative probability of delay (Airbus SAS 2008a) 
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6.6.2 Integrating Condition-Based Maintenance into Preventive Maintenance 

Several methods have been suggested to avoid unscheduled maintenance. In preventive 

maintenance, components are replaced after a given period or at scheduled intervals; in this 

method, maintenance is scheduled hopefully before the component shows a fault. Condition 

monitoring and trend analysis use dynamic intervals. 

The default aircraft maintenance strategy is preventive maintenance (Muchiri, 2012). Preventive 

maintenance is well established and understood in the aviation industry. The maintenance 

intervals for systems are constantly updated and optimized by in-service data (Ahmadi, et al., 

2010). 

Condition-based maintenance uses variable maintenance intervals for maintenance planning 

based on the system condition and the condition trend, if available. Condition-based maintenance 

is difficult to implement in the aviation industry because it can cause more maintenance actions if 

wrongly implemented (Shin & Jun, 2015) (Sondalini, 2015), and this will cause more delays. The 

goal is not to increase the number of maintenance actions but to reduce them, as the following 

explains: 

“For example, stadium lights burn out within a narrow period. If 10 percent of the lights have burned 

out, it may be accurately assumed that the rest will fail soon and should, most effectively, be replaced 

as a group rather than individually.” (Mobley, 2002) 

However, it is possible to use condition-based maintenance (CBM) to complement preventive 

maintenance (PM). Preventive maintenance would still be the major maintenance strategy, but 

condition-based maintenance can be used to plan maintenance actions required outside the 

maintenance intervals of preventive maintenance, for example, if a system is under stronger stress 

than planned. Reasons for this unplanned stress can be that an aircraft is mainly used in difficult 

environments or it has been exposed to other natural effects like heavy weather. Condition-based 

maintenance can also help to detect incorrect or incomplete scheduled maintenance. Muchiri 

(2012) analyses the two different strategies and finds that the difference between PM and CBM 

gets smaller for older aircraft because PM for older aircraft uses CBM principles. 

Condition-based maintenance actions are performed to prevent a failure before it occurs. This 

allows the aircraft operator to place the maintenance action outside the regular flight traffic and 

avoid unscheduled maintenance. 
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Regular maintenance intervals are unchanged to ensure airworthiness and to perform preventive 

maintenance actions.  

Hölzel et al. (2014) propose a method to use CBM to optimize scheduled maintenance planning 

and explain the benefits. 

6.6.3 Strategy of Overinvestment  

When designing a product, it is wise to select production equipment that minimizes the global 

cost, 𝐶𝑔, of maintenance during its service life. This equipment will require a higher initial 

investment to fulfil the same productivity requirements as cheaper equipment, but the costs of 

maintenance intervention and spare parts storage will be lower. As given previously, in Equation 

36, the global cost can be expressed as: 

 𝐶𝑔 =  𝐶𝑖 + 𝐶𝑓 + 𝐶𝑠 + 𝐶𝑜𝑖  (37) 

where 𝐶𝑖 is the cost of investment, 𝐶𝑓 is the cost of failures, 𝐶𝑠 is the cost of storage and 𝐶𝑜𝑖 is the cost 

of over-investment. 

To include over-investment in a global cost analysis, the initial price difference is amortized over 

the life of the equipment, making it possible to determine the extra investments required to 

minimize the other components of the cost. 
 

A common problem in financial models of maintenance systems is that the original costs have 

been modified several times in successive applications of methodologies or technologies trying to 

reduce the global cost using what are called avoided costs. 

In the indiscriminate implementation of policies of reduction of costs, three of the four parameters 

that constitute the global cost are affected: 

• Costs of interventions (𝐶𝑖): Normally these are reduced in frequency and in volume; most 

of the predictive technologies lead to less aggressive failures, with a reduction of 

corrective maintenance and an increase of preventive maintenance. 

• Costs of failures (𝐶𝑓): These costs are reduced in determined predictive policies where 

complete overhauls are replaced by small inspections performed without shutting down 

the process. 

• Cost of over-sized investments (𝐶𝑜𝑖): Expensive equipment and planned inspections are 

the most noticeable items in this cost because the budget is increased. 
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The following equation shows the impact of the costs avoided with their double dimension, i.e. 

when a technology or concrete methodology implies an investment. The cost of intervention and 

failure will be reduced but the cost of over-investment will increase if the technique is not 

applicable to the company and does not result in a return on investment. 

 𝐶𝑔 = 𝐶𝑖 + 𝐶𝑓 + 𝐶𝑎 + 𝐶𝑠𝑖 + 𝐶𝑎𝑣 (38) 

 𝐶𝑔 = (𝐶𝑖 − 𝐶𝑎𝑣_𝑖) + (𝐶𝑓 − 𝐶𝑎𝑣_𝑓) + 𝐶𝑎 + (𝐶𝑠𝑖 + 𝐶𝑎𝑣_𝑠𝑖)  (39) 

6.6.4 Reduction of Delays and Costs using CBM 

The study assumes that not all delays are caused by the air conditioning system (e.g. oil smell 

which originates from the engines); in addition, not all can be fixed by a reset action and some are 

not preventable. All other failures are preventable in theory (e.g. valve failures, leakages, fan 

faults, regulation faults etc.), by using condition monitoring and additional sensors (e.g. vibration 

monitoring). Data in the ISR database (Airbus SAS, 2008) show that about 80 % of all failures are 

preventable (see Figure 57). 

When preventable failures are, in fact, prevented, this gives a new average delay of 40 minutes, a 

reduction of 50 minutes in the average delay shown in Figure 58, a 56 % improvement over the 

original A340-600 value of 90 minutes. This also means a reduction of the average costs of delays 

caused by the air conditioning system by 2350 US$ or 56 %. The total costs for 100 delays are 

reduced by 382,250 US$ to 41,740 US$ or by 90 %. Figure 58 and Figure 59 show the distribution 

and probability of the preventable delays. 
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Figure 56: Delay length distribution of non-preventable faults 

  
Figure 57: Cumulative delay probability of non-preventable faults  
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Figure 58: Delay length distribution of preventable faults 

 

 

Figure 59: Cumulative delay probability of preventable faults 
 

The above discussion assumes that reliable condition monitoring is available in all fault-causing 
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components with integrated sensors (fan faults, pack faults etc.) can be prevented and other faults 

of other components (latches, connections, valves, sensors, leaks etc.) cannot be prevented. 

 

 
Figure 60: Delay length distribution of realistically non-preventable faults 

  
Figure 61: Cumulative delay probability of realistically non-preventable faults  
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Figure 62: Delay length distribution of realistically preventable faults 

 

 

Figure 63: Cumulative delay probability of realistically preventable faults 

 

Figure 62 shows that most preventable delays are shorter delays, and only a few longer ones can 

be prevented. However, some significant delays (longer than 170 minutes) can be prevented. 
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Figure 63 shows that it is realistically possible to prevent about 35 % of the delays, which is 

certainly a good goal to aim for. Figure 60 and Figure 61 show the distribution of the remaining 

delays. The average time of the remaining delays is about 88 minutes, and the average time of the 

prevented delays is about 97 minutes. The total costs for 100 delays are reduced by 108,891 US$ 

to 315,097 US$ or by 25 %. As only 6 % of unscheduled maintenance delays are caused by the air 

conditioning system, that system’s total delays costs are reduced by 1.5 %. 

Note: The cost saving calculations use 47 US$ per minute costs. All US$ values increase by 66 %. 

6.6.5 Influence of CBM on Aircraft Costs 

It is difficult to calculate the effect of CBM per flight hour, because only delays are analysed and 

delays occur on a “per flight” basis. The influence is stronger or weaker depending on the usage 

of the aircraft. In other words, the delay costs cannot be mapped onto the direct operating or direct 

maintenance costs. Instead, the effect is analysed on a “per flight” basis. Thus, the effects of CBM 

are based on the mission of the aircraft, when delays are considered. 

CODA data for 2014 (Eurocontrol, 2015) show that the average delay per flight for all causes is 

9.7 minutes. Technical issues cause 20% or 1.94 minutes of these delays (Knotts, 1999). This 

means that the air conditioning causes 0.12 minutes of delay per flight, as 6% of the technical 

delays are caused by the air conditioning system. In US$ this means the air conditioning costs 5.5 

US$ (using the 47 US$) per flight.  

CBM can save 1.1 US$ per flight (if the delays are reduced by 20%) for the air conditioning system 

based on the results of the analysis. This value seems low, but if it is multiplied by the number of 

flights per year, the effect is obvious. Eurocontrol (2014) forecast about 9,852,000 flights in 

Europe in 2015. In addition, this cost saving can be achieved with no additional hardware. Only 

new software needs to be installed to evaluate existing sensor data. 

 Discussion and Conclusion 

This study shows that when condition-based maintenance and trend analysis are applied to 

components of the air conditioning system, the delays caused by unscheduled maintenance can 

be reduced by about 80 %. However, it is very unrealistic to assume that condition monitoring 

will be available for most aircraft parts. It is more realistic to assume that the existing sensors in 

aircraft systems will be used; thus, unscheduled maintenance delays will only be reduced by about 

20 %. In addition, aircraft maintenance regulations are very conservative and restrictive. It would 

require a lot testing and verification to implement CBM in an aircraft environment and replace 

preventive maintenance, especially for critical systems. Using CBM to complement PM and to 
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gather data so that the preventive maintenance intervals can be optimized is possible, if scheduled 

PM maintenance actions are performed as required.  

The major aircraft manufacturers (Airbus and Boeing) and the airlines flying their planes are 

interested in trend analysis to reduce maintenance, save costs and gain higher aircraft usage. 

However, significant work is needed to implement condition monitoring that makes useful 

predictions and does not cause an unnecessary work load. It would be optimal if existing sensors 

could be used for the condition monitoring, but this would reduce the number of possible 

detectable failures. Still it could possible to prevent delays of more than 30 minutes. Given the 

large number of delays due to factors the airline cannot control, it is worth putting more research 

and engineering effort into reducing unscheduled maintenance. 
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 PAPER 2: DECISION TREES AND THE EFFECTS OF FEATURE 

EXTRACTION PARAMETERS FOR ROBUST SENSOR NETWORK DESIGN 

 Introduction 

This paper proposes a condition monitoring system with sensor optimization capabilities to 

prevent unscheduled delays in the aircraft industry. Unscheduled delays cost airlines a great deal 

of money but can be prevented by condition monitoring (Gerdes, et al., 2009). The aim is to 

develop a simple condition monitoring system that can be understood by humans and modified 

by experts to incorporate knowledge that is not in the learning data set, using decision trees as 

the main tool. Decision trees satisfy the requirements and provide a ranking of data sources for 

condition monitoring.  

The first section of the paper gives the motivation for developing a condition monitoring system 

with sensor optimization capabilities and explains the basic concepts of the proposed method. 

The second section explains the method in detail. Section three discusses the experiments 

validating it. The results of the validation experiments are given in section four. The paper 

concludes with a discussion of the results. 

New and better monitoring approaches are required for condition monitoring, because systems 

are becoming more complex and more difficult to monitor (Scerbo & Bailey, 2007). Condition 

monitoring requires reliable sensors. To obtain enough sensing data, special attention should be 

given to optimizing sensor allocation to ensure system diagnosability, lower sensing cost and 

reduced time to diagnosis (Sun, et al., 2009). Sensors can be used to determine the system health 

of control systems, but a failed sensor can lead to a loss of process control (Li, 2011) because the 

information about a system is incomplete if a sensor fails. Therefore, multiple sensors often 

monitor complex systems. An advantage of a multi-sensor system is that a single failed sensor 

shows its effects in multiple sensors (Li, 2011) and the system condition is defined by all 

information from the sensors. However, the system’s health status becomes uncertain when a 

sensor fails or sends wrong data. This could trigger incorrect maintenance, including maintenance 

on a part with no failure, or long maintenance times to find the correct fault or not noticing the 

fault at all.  

The Safety Integrity Level (SIL) defines the probability that the system safety function can be 

executed on a Safety Instrumented System (SIS). There are four SILs; level four is the level with 

the highest probability that the safety function can be performed. Sensor failure detection (sensor 

validation) is a critical part of the safety function. When a failure is detected, the SIS is put into a 
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safe state to avoid risk and damage to humans and machines (International Electrotechnical 

Commission, 2003) (International Electrotechnical Commission, 2010).  

Redundancy is used to reduce the risk of model uncertainty (Emami-Naeini, et al., 1988). One way 

to create sensor redundancy is hardware redundancy; another is analytical redundancy (Emami-

Naeini, et al., 1988). Analytical redundancy assumes multiple sensors deliver the same 

information, and, thus, a sensor fault can be compensated for. Hardware redundancy is not always 

possible, as it can be difficult to install multiple sensors because of physical or cost constraints 

(Novis & Powrie, 2006) (Yan & Goebel, 2003).  

The proposed condition monitoring method uses a data-driven model, with machine learning 

methods to learn the model. Data-driven modelling is a popular approach, especially as data 

harvesting is often cheaper than creating a physical model, offering cheap electronics, high 

computation power and advanced algorithms. Decision trees are used for machine learning 

because they create a comprehensive model, which can easily be modified and adapted. Decision 

trees are numerically stable, the learning is deterministic, and they are easy to test. The decision 

tree algorithm also sorts inputs of the model based on information gained. This latter feature is 

used for sensor optimization. 

The novelty of this approach is that it presents a method for condition monitoring suitable for the 

very restricted aircraft environment. It combines decision trees with very stable and simple 

feature extraction methods. The method offers fast, testable and low footprint online condition 

monitoring for aircraft. The added sensor optimization allows the aircraft manufacturer to install 

redundant sensor hardware for the significant sensors, if software redundancy is not possible. 

The inputs for the classifier are feature vectors (representing healthy and unhealthy states) and 

classifications of the vectors. The vectors for the supervised learning phase need to contain the 

classification of the data, because decision tree learning is supervised learning. These vectors 

represent the knowledge on which the classifier is based and are used to classify new unknown 

samples. 

 

Figure 64: Basic condition monitoring process (Jardine, et al., 2006) 
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The basic condition monitoring process shown in Figure 644 has three steps: 

1. Data acquisition: All data required for the monitoring are gathered, including data from 

multiple sources. 

2. Data processing: The collected data are processed and analysed. The goal is to create a 

meaningful collection of features for the decision-making step. Operations include signal 

processing and feature extraction. The focus of the present research is on this step. 

3. Maintenance decision making: The features are evaluated, and a decision is made based 

on this evaluation. The result can be a failure classification, a maintenance action or other 

relevant actions. Results are obtained by using a decision maker based on logic rules, 

pattern recognition, probability or some other method. 

7.1.1 Civil Aerospace Software Development 

Software development, documentation, testing and certification in the civil aerospace industry are 

regulated by the DO-178B/C standard [TODO]. DO-187B/C defines how the software 

development process can be regulated to ensure safe software is written. More specifically, it 

defines a requirements-based development process with high and low-level requirements. High 

level requirements concentrate on functionality, while low level requirements are often written 

in pseudo code or source code. 

The most important step in the software development process is to define to which DAL (Design 

Assurance Level) the software belongs. There are five DALs; each is associated with a 

hazard/failure condition class defining how dangerous a software failure can be. The DALs are the 

following: 

- DAL A: Catastrophic; normally with hull loss and multiple fatalities. 

- DAL B: Hazardous; large reduction in functional capabilities and serious or fatal injury to 

a small number of passengers or crew. 

- DAL C: Major; significant reduction of functional capabilities and physical distress or 

injuries for passengers or crew. 

- DAL D: Minor; slight reduction in functional capabilities and physical discomfort for 

passengers. 

- DAL E: No effect; no effect on operational capabilities and no inconvenience for 

passengers. 
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The objectives of a software developing agency are based on the DAL. DAL A requires 66 

objectives, DAL B 65 objectives, DAL C 57 objectives, DAL D 28 objectives, and DAL E 0 objectives. 

The objectives are achieved by completing ten processes in the development of the software: 

1. Software planning process 

2. Software development process 

3. Verification of outputs of software requirements process 

4. Verification of outputs of software design process 

5. Verification of outputs of software coding & integration process 

6. Testing of outputs of integration process 

7. Verification of verification process results 

8. Software configuration management process 

9. Software quality assurance process 

10. Certification liaison process 

The most complex step (besides coding) for a software developer is testing the coded software. 

Based on the DAL, the testing needs to satisfy certain code coverages. For DAL D and E, for 

example, no code coverage is required; only the requirements need to be tested. DAL C adds 

statement coverage to the testing requirements. This means the tests need to address each line of 

code. No dead code is allowed. In addition, DAL B requires decision coverage; each possible path 

in the code must be taken. For DAL A, developers must show that each variable for a decision in 

the code can influence the result (modified condition/decision coverage) and satisfy all other code 

coverages. All software testing needs to be done as black box testing. The tester cannot know the 

code but must work only with the compiled code, requirements and testing tools. 

Robustness tests require broader numerical values and decisions to be tested and invalid or 

missing data to be identified. There can obviously be problems if algorithms use the wrong data 

type. 

7.1.2 Feature Extraction 

Feature extraction is the process of reducing the dimension of the initial input data to a feature 

set of a lower dimension containing most of the significant information of the original data (Friedl 

& Brodley, 1997). Extraction is done to extract important features from noisy sensor data (Fu, 

2011) (Lin & Qu, 2000) and to avoid having too many input features (especially for vibration data) 

in the classifier learning phase (Lin & Qu, 2000). For these reasons, feature extraction is often a 

first and essential step for any classification (Lin & Qu, 2000). Accordingly, it is part of the data 

processing step in the basic condition monitoring process (Figure 64). 
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Features are extracted from the time domain and the frequency domain (Fourier transformation, 

wavelet transformation (Fu, 2011)). Basic features to extract are maximum, mean, minimum, 

peak, peak-too-peak interval etc. (Jardine, et al., 2006). Complex feature extraction methods 

include principal component analysis (PCA), independent component analysis (ICA) and kernel 

principal component analysis (KPCA) (Widodo & Yang, 2007). 

7.1.2.1 Time Domain Features 

Time domain features can be direct features like the number of peaks, zero-crossings, mean 

amplitude, maximum amplitude, minimum amplitude or peak-to-peak interval (Jardine, et al., 

2006) (Pascual, 2015). In addition, it is possible to analyse a signal using probabilistic methods 

like root mean square, variance, skewness or kurtosis to get features that represent the signal 

(Lambrou, et al., 1998). Other methods include using correlation, autocorrelation, entropy, 

principal component analysis (PCA), independent component analysis (ICA) and kernel principal 

component analysis (KPCA) (Widodo & Yang, 2007). 

7.1.2.2 Frequency and Time-Frequency domain 

The Fast Fourier Transformation (FFT) transforms a signal from the time domain into the 

frequency domain. FFT takes a time series and transforms it into a complex vector that represents 

the frequency power in the frequency domain. The basis of the FFT algorithm is the discrete 

Fourier transformation (DFT), defined as shown in Equation (40) with x n … xn-1 as complex 

numbers. 

 

 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘

𝑛

𝑁  𝑘 = 0, … 

𝑁−1

𝑛=0

, 𝑁 − 1 (40) 

An FFT is performed in O(N log N) operations and can be calculated in real time because it can be 

executed in parallel. It is a widely used and well-established method (Emami-Naeini, et al., 1988) 

(Peng, et al., 2002). Recent research uses the discrete wavelet transformation (DWT) to represent 

time series in the frequency domain. The DWT represents time series in a time-scale form (Jardine, 

et al., 2006) and is especially suited to represent non-stationary signals (Lin & Qu, 2000). 

7.1.3 Decision Trees 

Decision trees are a method from the area of artificial intelligence and are used for machine 

learning. They are often binary trees, where each node has an if-then-else function on an attribute 

of the sample data. The ID3 algorithm (Iterative Dichotomiser 3, (Quinlan, 1986)) was the first to 

construct decision trees. ID3 had some problems and was improved. The improved version, C4.5 
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(Quinlan, 1993), enhances the ID3 algorithm with the ability to handle both discrete and 

continuous attributes; it can handle samples with missing attributes and supports pruning of the 

tree at the end of the algorithm (removing branches from the tree).  

Decision trees in the proposed method are used to calculate and order the features based on the 

information gain of each feature. During the method validation, they are used for failure 

classification to show the influence of distinctive features on the classification performance. 
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Figure 65: Decision tree algorithm flow chart 

The result of the algorithm is a binary decision tree; the root of the tree is the attribute with the 

highest normalized information gain. Nodes in the following levels of the tree represent attributes 

with lower normalized information gain. If pure information gain is used for splitting, the classes 

with the most cases are favoured (Quinlan, 1993). 

Information entropy is the knowledge contained in an answer depending on prior knowledge. The 

less is known, the more information is provided. In information theory, information entropy is 

measured in bits. One bit of information entropy is enough to answer a yes/no question about 

which one has no data (Russell & Norvig, 2003). Information entropy is calculated as shown 

below, where P(vi) is the probability of the answer vi. 

 
𝐼 (𝑃(𝑣𝑖), … , 𝑃(𝑣𝑛)) =  ∑ − 𝑃(𝑣𝑖)𝑙𝑜𝑔2𝑃(𝑣𝑖)

𝑛

𝑖=1

 (41) 

The information gain from an attribute test is the difference between the total information 

entropy requirement (the amount of information entropy needed before the test) and the new 

information entropy requirement, where p is the number of positive answers and n is the number 

of negative answers (Russell & Norvig, 2003). 

 

 
𝐺𝑎𝑖𝑛 (𝑋) = 𝐼 (

𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) −  ∑

𝑝𝑖 +  𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖=1

× 𝐼 (
𝑝𝑖

𝑝𝑖 + 𝑛𝑖
,

𝑛𝑖

𝑝𝑖 +  𝑛𝑖
) (42) 

Algorithm C4.5 uses the normalized information gain or the gain ratio. Split information (Split 

Info) shown in Equation 43 is the information gained from choosing the attribute to split the 

samples. 

 

 
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋) =  − ∑

𝑝𝑖 + 𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖 = 1

 𝑙𝑜𝑔2  (
𝑝𝑖 + 𝑛𝑖

𝑝 + 𝑛
) (43) 

Gain ratio is the normalized information gain and is defined as shown in Equation (44) (Quinlan, 

1993). 
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𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑋) =  

𝐺𝑎𝑖𝑛 (𝑋)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋)
 (44) 

Pruning is the reduction of the depth of a decision tree. The tree gets better at classifying unknown 

samples, but might get worse at classifying the test samples. Pruning normally increases the 

overall classification accuracy, but too much pruning can increase the number of false 

classifications.  

Decision trees are good for diagnostics in the context of condition monitoring. They classify data 

and have low computation needs and the generated decision trees are highly comprehensible by 

humans. Another advantage of decision trees for condition monitoring is that they can be 

transformed into simple logical equations for each class that can be checked and modified by a 

human expert. 

Decision trees are used to solve a large variety of problem, e.g. tag speech parts (Schmid, 1994), 

land cover mapping (Friedl & Brodley, 1997), text mining (Apte, et al., 1998) or condition 

monitoring (Saimurugan, et al., 2011) (Sakthivel, et al., 2010) (Sugumaran & Ramachandran, 

2007). 

7.1.4 Basic Condition Monitoring Process Enhancements 

Sensor optimization and sensor data fusion are enhancements of the basic condition monitoring 

process (Figure 64). Figure 666 shows how sensor optimization and sensor fusion can be 

embedded in the basic CM process.  

 

Figure 66: Enhanced condition monitoring process 

Sensor optimization is the basis for condition monitoring; it is performed before the monitoring 

process (sensor locations) or new sensors can be added (Fijany & Vatan, 2005). Sensor fusion is 

done before the actual data processing to improve the performance of the data processing by 

improving the input from the sensors (removing redundant and low influence features). 

7.1.5 Sensor Optimization 

Often multiple sensors (sensor network) are used to give a more complete overview of the 

environment than a single sensor can give (Jardine, et al., 2006) (Xiong & Svensson, 2002). This 
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increases the diagnosis ability (failure detection and localization (Emami-Naeini, et al., 1988)) of 

a system and makes sensor optimization critical for failure diagnosis. The problem of designing a 

sensor network is to find a set of sensors so that costs, observability, reliability, estimation 

accuracy and flexibility are satisfied (Kotecha, et al., 2008).  

Sensor optimization can help to design a sensor network that satisfies all requirements. 

Definitions of sensor optimization are: 

- Optimizing the position of sensors (Smith, 2005) (Fijany & Vatan, 2005). 

- Optimizing the processing of sensor data (Farrar, et al., 2006). 

- Optimizing the information gain of sensors. 

Sensor optimization also means hardware redundancy optimization by identifying significant 

sensors from several available sensors to determine which ones give the most information about 

a system and increase the information gain.  

The goal of sensor optimization is to prevent unnecessary hardware redundancy and to improve 

the reliability of the condition monitoring system. This optimization can be supported by 

identifying redundant information in sensor data (Emami-Naeini, et al., 1988). Traditional sensor 

optimization methods do not consider the requirements for prognostic and health monitoring 

(Shuming, et al., 2012). 

7.1.6 Multi-Sensor Data Fusion 

Having a network of different sensors monitoring a system leads to the problem of sensor data 

fusion. Multi-sensor data fusion combines sensor data from different sources into one consistent 

model. The main questions of sensor fusion are (Basir & Yuan, 2007): 

- How to get accurate and reliable information from multiple and possibly redundant 

sensors; 

- How to fuse multi-sensor data with imprecise and conflicting data. 

Techniques for sensor fusion can be grouped into three levels (Castanedo, 2013) (Jardine, et al., 

2006) (Ross & Jain, 2003):  

- Data-level fusion, e.g. combining sensor data from same sensors directly (Lu & Michaels, 

2009); 
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- Feature-level fusion, e.g. combining vectors and feature reduction techniques (Ross & Jain, 

2003); 

- Decision-level fusion, e.g. vote schemes (Ross & Jain, 2003). 

Sensor data fusion is an important part of condition monitoring. Most systems have more than 

one sensor, and the sensors have different influences on the condition monitoring accuracy. Data 

for condition monitoring that need to be fused are often from sensors but they can also be event 

and process data (Jardine, et al., 2006). 

At the data level, fusion means the direct combination of sensor data; the data from sensors of the 

same kind are merged and fed into the condition monitoring system. The difficulty is how to merge 

multiple sensors into one. Sensor fusion on the feature level includes cleaning sensor data and 

combining the sensor data after the features have been extracted and the dimensions reduced. 

Decision-level fusion can mean implementing condition monitoring for each sensor separately 

and then using a voting process to decide on the system condition.  

A condition monitoring system can use one or multiple data fusion methods to detect the system 

conditions. Sensor fusion is difficult, as it depends on the target system and the sensors. One 

solution is to implement sensor fusion on all levels and use a heuristic optimization like genetic 

algorithms, simulated annealing or hill climbing to get the best sensor fusion methods for the 

given problem (data and system conditions). 

 Proposed Methodology 

A decision tree is built using feature extraction to increase the classification accuracy. The decision 

tree is analysed to generate a ranking of the sensors and features. This ranking is used to decide 

which sensors add significant information/features and which do not.  

Sensor fusion may be performed at the feature level. The decision tree represents the feature 

fusion sorted according to information gain. If sensor fusion is on the feature level, event data can 

be added to the feature vector. Conventional methods use a fixed set of features to create feature 

vectors for the decision tree training and neglect sensor fusion.  

Decision trees are applicable in the aircraft environment. Their task is to merge features from 

different sensors into one system health model and to use this model to classify the condition. 

The focus is on hardware redundancy based on information gain; the goal is to avoid having 

redundant sensors and to focus on those giving significant information for failure detection and 
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identification. Information gain is used to rank sensor importance and measure sensor 

optimization. Feature extraction can increase the information gain and significance of different 

sensors. 

 

 

Figure 67: Feature selection process 

7.2.1 Feature Extraction and Sensor Fusion 

Feature extraction includes features from the time and the frequency domain. Time-frequency 

domain features are not used here; the method only uses basic methods so Fast Fourier 

Transformation (FFT) is selected. Elementary feature extraction operations can be executed in 

any order and allow the creation of a set of feature extraction operations that can be different for 

each problem (Mierswa & Morik, 2005). This makes elementary extraction operations applicable 

for machine learning. The operations are also fast to compute and can be used for online 

monitoring. 

The data from the different sensors are not merged at the sensor level but at the feature extraction 

level. A feature set is calculated for each input from each sensor. These features are merged into 

one feature input vector for the decision tree learning phase (Figure 67). No frequency features 

are calculated for signals that are nearly constant (Boolean switches, discrete system settings, 

certain process parameters). 

7.2.2 Decision Tree Generation 

The decision tree is generated using algorithm C4.5. Algorithm C4.5 is more advanced than the 

basic ID3 algorithm (accepts both continuous and discrete features, solves over-fitting problem 
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by pruning, handles incomplete data points) and is available as an open source implementation 

J48. Input for the decision tree generation is a set of features extracted from the sensor data. The 

parameters controlling the feature extraction are listed in Table 13. 

Parameter Possible Values Default Value 
Block Width 5/50/100/200 100 
Noise Reduction Factor 0/1/2/5 1 
Maximum Amplitude Yes/No Yes 
Mean Amplitude Yes/No Yes 
Maximum Power Yes/No Yes 
Maximum Frequency Yes/No Yes 
Mean Power Yes/No Yes 
Number of Peaks Yes/No Yes 
Peak Border 1/2/5 2 
Global Maximum Amplitude Yes/No Yes 
Global Mean Amplitude Yes/No Yes 
Global Maximum Power Yes/No Yes 
Global Mean Power Yes/No Yes 
Global Number of Peaks Yes/No Yes 
Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001 

Table 13: Feature extraction parameters 

The data types can range from Boolean data generated by switches or system conditions 

(event data) to high frequency data generated by sound and vibration data. Four specific 

parameters are explained in more detail below. 

7.2.2.1 Block Width 

The block width defines how the frequency domain is partitioned to get features for each 

partition. The sampling frequency is used for a full transformation. After the FFT, the frequencies 

are partitioned into blocks. The number of the frequencies grouped in a block is decided by the 

parameter block width. After partitioning, all blocks are transformed back into the time domain to 

get information about the behaviour of the block-signal over time. 

7.2.2.2 Noise Reduction Factor 

Noise reduction is applied to the signal to remove random data from the samples to improve the 

feature detection of the undisturbed signal. The maximum frequency power is calculated; every 

frequency signal below a defined fraction of the maximum frequency power is reduced to zero to 

remove noise. The exact fraction of the maximum frequency power for noise reduction is a 

parameter of the experiments (NoiseReductionFactor). Noise reduction is done as shown in the 

box below, Matlin Listing 1. 
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Y = fft(y); 
x = mean(abs(Y)) * NoiseReductionFactor; 
Y = Y. * (abs (Y)>x ); 

Listing 1: Noise Reduction 

7.2.2.3 Peak Border 

The peak border is used to count the number of frequencies with a power above multitude of the 

mean power. The MATLAB Listing 2 shows how the peaks are calculated. In the diagram, 

peakBorder is the parameter that can be varied; it defines when a spike counts as a peak. 

currPeakNum = 0;  
for X = 1: blockWidth  
  if (Y_block (X) >= meanPower * peakBorder) 
    peaks_block = peaks_block +1; 
  end 
end 

Listing 2: Peak Calculation 

The additional information is also calculated for the complete signal sample.  

7.2.2.4 Confidence Factor 

The confidence factor is a parameter of the software WEKA (Waikato, 2009) used to create the 

decision trees; it defines how much tree pruning is done. A confidence factor greater than 0.5 

means no pruning is done. The lower the confidence factor, the more pruning is done. 

7.2.3 Sensor Optimization 

The calculation of the information gain and learning of the decision tree is done with the C4.5 

algorithm that is used to construct decision trees for classification problems. Features are 

extracted for each sensor signal and merged into one feature vector; this is the input for the C4.5 

algorithm. The features are then sorted by the learning algorithm according to the information 

gain. The feature with the highest information gain is placed at the root of the tree. Nodes with 

less information gain are placed in higher levels of the tree. For a binary decision tree, this means 

two nodes are in the second level of the tree, four nodes in the third level and so on. Each feature 

corresponds to a sensor. 

The features in the decision tree are replaced with the sensor names for sensor ranking. If a sensor 

name appears on a level, it is removed from all lower levels, so that each sensor matches one level 

in the decision tree. The sensors are now ranked by the decision tree level with which they are 

linked. Two sensors may be at the same level.  
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 Validation 

Two experiments were performed to validate the concepts and ideas. The first experiment shows 

the effects of feature optimization, and the second shows feature and sensor selection. 

7.3.1 Feature Extraction Parameter Influence 

To show the performance and concepts of the algorithm, a sensitivity analysis was performed 

using different process parameters. Figure 6868 shows the experimental process and the 

generation of results. The process is the following: samples are created and then feature 

extraction parameters (see Table 13) are modified. The influence of the modified parameters is 

measured by comparing the classification accuracy. 

 

Figure 68: Experiment process diagram 

7.3.1.1 Data Sampling 

The data for the experiments and the feature extraction were sampled with an autonomous box 

(Figure 69) containing sensors and logic to save the data on a SD card. A test rig was used for the 

data collection. Vibration data with a sampling rate of 44 kHz were collected from a simple PC fan 

(Figure 71) to show the principles of the method. Data were saved in a raw wave format onto a SD 

card and transferred onto a PC. In addition to the raw sensor data, the condition of the component 

was saved. The fan is operated at standard speed, but three different conditions were sampled. 

Data were collected for the following conditions: 

- No additional weight 

- A very small weight (less than one gram) added to one blade 

- A small coin (one Eurocent) added to one blade 
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Figure 69: Data recording box 

 

Figure 70: Data recording box architecture 
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Figure 71: Used PC fan 

For each case, 900 samples were collected. Every sample contained the vibration data of one 

second. Ten minutes passed between the individual samples. Samples were collected during office 

work hours, so a variety of noise is contained in the samples. The experiment used 900 “No 

weight” (no added weight), 450 “Small weight” (a very small weight) and 450 “Big weight” (a small 

coin) samples. The decision tree of the J48 algorithm (an implementation of C4.5) in WEKA was 

validated with a 3-fold cross-validation (all samples were used for testing and training and the 

cross-validation process was repeated three times).  

7.3.1.2 Calculating the Decision Tree 

The decision tree was calculated with the open source Java software WEKA (Waikato, 2009). 

WEKA allows the user to test different algorithms and shows the classification errors. The correct 

data format is generated using a Java program that transforms the output files from MATLAB into 

input files for WEKA. J48 was chosen for classification; it is an implementation of the C4.5 decision 

tree algorithm and has a confidence factor of 0.0001. The confidence factor defines how much 

pruning is done to the resulting decision tree. The complete processed data were used as training 

data. After the generation of the decision tree, the same data were used to test the decision tree. 

In general, the training and the testing data should not be the same, but in this case, it was exactly 

what was required. The goal was not to classify new objects correctly, but to check how well the 

available data were classified and what part of the data gave the most information about the 

system. 

7.3.1.3 Experiment Parameters 

Calculations used the same input data but different parameter values to show the influence of the 

parameters on the results. Table 14 shows the available parameters with their values. All 

“Yes/No”-parameters are Boolean parameters; they toggle the calculation of that parameter 
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during processing. Default parameters are the values used when the effect of a parameter on the 

algorithm is tested. Only one value per test varies, while all other parameters keep their default 

value. The data processing with MATLAB generates several different input sets for the J48 

algorithm. For every input set, a decision tree is generated, and the influence of the modified 

parameter is evaluated. 

7.3.2 Sensor Optimization 

The method was evaluated using aircraft sensor data from the air conditioning system of an A320 

aircraft operated by ETIHAD Airways in the Middle East. The sensor data from the aircraft 

included 589 flights over two years. Each sensor reading included over 80 values consisting of 

continuous (numerical) and discrete data (Boolean). The data were sampled with a frequency of 

1 Hz. The sources of the data were bus systems from the air conditioning system. Most data were 

temperature data and valve states. The sensor data are shown in Table 14.  

Description Bus Type 

Cabin Compartment Temperature Group 1  Zone Control Numerical 

Cabin Compartment Temperature Group 2  Zone Control Numerical 

Cabin Compartment Temperature Group 3  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 1  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 2  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 3  Zone Control Numerical 

Duct Overheat Warning Group 1  Zone Control Boolean  

Duct Overheat Warning Group 2  Zone Control Boolean  

Duct Overheat Warning Group 3  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 1  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 2  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 3  Zone Control Boolean  

Duct Temperature Group 1  Zone Control Numerical 

Duct Temperature Group 2  Zone Control Numerical 

Duct Temperature Group 3  Zone Control Numerical 

G + T Fan OFF  Zone Control Boolean  

Hot Air Switch Position ON  Zone Control Boolean  

Minimum Bleed Air Pressure Demand  Zone Control Numerical 

Table 14: A320 sensor data description 
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 Result Analysis 

This section analyses the results of the data processing of the previous section. It begins by 

evaluating the experiments and their parameters and goes on to discuss the results of the best 

parameter configuration. 

 

Figure 72: Validation process 

Figure 722 summarises the validation process. The default parameter set was used to generate 

results; then, each parameter was varied based on its type. Boolean values were simply inverted, 

but continuous values were changed. A sensitivity analysis was performed after each parameter 

variation. After the parameter variation, a new decision tree with the same sensor data was 

created, and the change in the number of correctly classified samples was noted. 

7.4.1 Parameter Evaluation 

This section examines the results of the input sets, based on parameter variations. The influence 

of a parameter is judged by the number of correctly classified samples for every input set. Finding 

an optimal set of all parameters for the given samples, i.e., those giving the lowest overall false 

classification rate, is a complex problem. The problem is so complex that it cannot solved in a fixed 
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time, so heuristic methods must be used. The results below are not the optimal parameter values; 

they only show the influence of the different parameter values on the classification accuracy and 

suggest the importance of optimizing the feature extraction parameters. 

The first calculation was performed using the default parameters. The results are shown in Table 

15. The numbers imply that about three quarters of the test cases are correctly classified. The 

error rate is quite high, but that is to be expected, because a non-optimal parameter set was 

selected as the default parameter set. 

Correct Classified False Classified 

73.4 % 26.6 % 

Table 15: Results for default parameter set 

Table 16 splits the classification error into different classes. As the table shows, most of the 

samples are correctly classified. For samples with no added weight and a big added weight, the 

classification is very good, but samples with a small added weight are often classified as samples 

with no added weight. The results are still good, however, because the small attached weight is 

quite light, and sensing accuracy is not very high. 

Sample Class Classified as No Classified as Small Classified as Big 

No 755 103 76 

Small 175 218 57 

Big 41 61 348 

Table 16: Distribution of wrongly classified samples 

When only no added weight and big added weight samples are used, the number of wrongly 

classified samples drops to 5 %. This is to be expected, because there are bigger differences 

between them than between the small and no added weight classes. 

Sample Class Classified as No Classified as Big 

No 862 38 

Big 60 390 

Table 17: Results for default parameter set with no small weight samples 

Table 18 shows the results achieved when the block width varies. The decreasing numbers imply 

that at some point, an optimal block width can be reached, and a minimum number of falsely 

classified samples can be obtained. The error rate increases after the optimal point if the block is 

too wide; more features are calculated if the block width is low. 
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Block Width False Classified 

5 43.3% 

50 27.4% 

100 26.6% 

200 24.3% 

Table 18: Results for block width 

Table 19 shows the experimental results for a varying noise reduction. The results indicate the 

accuracy of the classification can be improved by removing all frequencies with a power below 

the mean level. However, removing more frequencies with a high power can reduce the 

classification accuracy significantly because significant information about the signal is removed. 

This result also shows the noise frequency features have a considerable influence on the accuracy 

of the classification.  

Noise Reduction False Classified 

0 26.6% 

1 24.2% 

2 27.6% 

5 42.6% 

Table 19: Noise reduction 

The calculation of the maximum amplitude can be turned on or off. Table 20 and Table 21 show 

the results of each of these, respectively. Results show the maximum amplitude does not have a 

considerable influence on the classification in this problem. This indicates a high resilience of the 

input data to noise, something relevant to entropy. The finding suggests the data samples have a 

lot of information, with little uncertainty. This is even more interesting, because amplitude is the 

value recorded by the vibration sensors; it can be taken as an input without added processing. 

Maximum Amplitude False Classified 

Yes 26.6% 

No 26.5% 

Table 20: Results for maximum amplitude per block 

Global Maximum Amplitude False Classified 

Yes 26.6% 

No 26.6% 

Table 21: Results for global maximum amplitude 
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Table 22 and Table 23 show the influence of the mean amplitude values. Again, the influence is 

quite small. This is to be expected when the earlier results are taken into account. The amplitudes 

are the only features based on the time domain data. This can indicate that the time domain 

features are not very significant for the classification as is often the case for rotary movements. 

More time domain features should be added to the feature extraction operations (like 

probabilistic moments) to give more information about the significance of the time domain signal. 

Mean Amplitude False Classified 

Yes 26.6% 

No 27.7% 

Table 22: Results for mean amplitude per block 

Global Mean Amplitude False Classified 

Yes 26.6% 

No 26.6% 

Table 23: Results for global mean amplitude 

Table 24 and Table 25 show the results of the parameter variations for the maximum frequency 

power. Again, these features do not influence the result of the classification very much. It is 

interesting to note that the classification error is reduced if the block-based maximum frequency 

power feature is turned off. This example clearly shows that having many features and features 

with little information gain can decrease the classification performance. It also highlights the 

importance of good feature selection.  

Maximum Frequency Power False Classified 

Yes 26.5% 

No 25.0% 

Table 24: Results for maximum frequency power per block 

Maximum Frequency Power False Classified 

Yes 26.6% 

No 26.6% 

Table 25: Results for global maximum frequency 

Table 26 and Table 27 show the results of the parameter variations for the frequency with the 

maximum power. The Hertz of the frequency with the highest power (local for each block or for 

the complete signal) does not influence the result in a significant way. This is to be expected 

because the maximum power also has little influence. 
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Frequency with Highest Power False Classified 

Yes 26.6% 

No 26.3% 

Table 26: Results for frequency with highest power per block 

Frequency with Highest Power False Classified 

Yes 26.6% 

No 26.6% 

Table 27: Results for global frequency with highest power 

Table 28 and Table 29 show the influence of the parameter variations for the mean frequency 

power. Mean frequency power is a big factor and can improve the classification by nearly 4 %. The 

global mean values give no information about the condition of the fan. This result is especially 

interesting, because the other frequency based features have little influence on the classification 

error. However, as in the maximum frequency power feature, the error rate decreases if this 

feature is not used. 

Mean Frequency Power False Classified 

Yes 26.6% 

No 22.8% 

Table 28: Results for mean frequency power per block 

Mean Frequency Power False Classified 

Yes 26.6% 

No 26.6% 

Table 29: Results for global mean frequency power 

Table 30 and Table 31 show the number of peaks has an even bigger influence on the classification 

than the mean frequency power, and the false classification rate can be improved by nearly 5 %. 

To this point, this is the largest performance increase. 

Number of Peaks False Classified 

Yes 26.6% 

No 21.8% 

Table 30: Results for number of peaks per block 

Number of Peaks False Classified 

Yes 26.6% 

No 26.6% 

Table 31: Results for global number of peaks 
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The peak border (the value defining what a peak is) also influences the calculation, as shown in 

Table 32. Results for the peak border show no clear trend, but the numbers suggest an optimum 

exists. These results are interesting if we take into account how much the error rate improves 

when peaks per block are not calculated. Very few peaks are generated if the peak border is set to 

5. This is quite similar to having no peaks at all. 

Peak Border False Classified 

1 24.3% 

2 26.6% 

5 22.3% 

Table 32: Results for peak border 

The confidence factor determines how much the decision tree is pruned and has an influence on 

the classification accuracy. With less pruning, more samples are wrongly classified. Over-fitting is 

reduced when pruning is used. More pruning increases the generalisation ability of the decision 

tree, generally a good feature, but a tree that is too small is not good. As in all other features, it is 

important to find the best value for the given classification problem.  

Confidence Factor False Classified Tree Size 

1 (no pruning) 27.4% 275 Nodes 

0.1 26.7% 225 Nodes 

0.01 26.2% 185 Nodes 

0.001 26.0% 163 Nodes 

0.0001 26.6% 109 Nodes 

Table 33: Results for confidence factor 

It is interesting to note that the most significant feature seems to be the block-based mean 

amplitude feature. The error rate increases for all other features if it is used. More experiments 

with different settings could ascertain how the different parameters are correlated, but finding 

the optimal parameter set can be really difficult. The best result (for the default parameter set and 

if only one parameter is modified) can be reached if the peak number is turned off. These results 

emphasize the importance of good feature selection and remind us of the difficulty of performing 

feature selection by hand. An automated feature selection is needed to find an optimal parameter 

set which improves the classification accuracy. 

7.4.2 Sensor Optimization 

This section shows the sensor optimization using the aircraft data with 80 sensors. Figure 733 

contains a sample decision tree. The most important feature is the overall (global) number of 
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peaks for sensor 31, followed by the overall (global) mean amplitude for sensor 45. Based on the 

decision tree, the sensors can be ranked as: 

1. Sensor 31 

2. Sensor 48/Sensor 45 

3. Sensor 47/Sensor 5/Sensor 28/Sensor 1 

Sensor 31 is the most relevant sensor for the classification; sensors 48 and 45 are the second most 

significant ones. Redundancy, thus, applies to sensors 31, 48 and 45.  

The decision tree also shows that the overall peak number and mean amplitude are the most 

relevant features. The significance of the amplitude is easily explained because the data contain 

switch and valve values which change slowly. The mean amplitude gives the classifier an 

indication of how often the switch is true and how often false. It is interesting to see that the peak 

number has more influence here than in the previous experiment.  

 

Figure 73: Example of a decision tree 

 Conclusions and Discussion 

The method discussed here was developed to handle a specific problem (classification of a small 

number of classes with simple features) in a specific domain (civil aircraft operation with online 

monitoring). Decision trees are a good solution, given these constraints. However, decision trees 
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have limitations, and more powerful algorithms are available, if a similar problem needs to be 

solved outside the given constraints. More complex problems may need a different tool set. The 

methods used here are already well known and well researched, but their usage in this particular 

environment is novel. A previous paper (Gerdes & Scholz, 2009) addressed the topic but only 

evaluated the classification; it did not address sensor optimization, and it used an artificial 

experiment setup. This paper shows the result of sensor optimization using real-world data; it 

also explains the results and classification process in more detail than the earlier paper. 

The architecture shown in Figure 67 is a good way to rank sensors by their significance for 

condition monitoring. The basic idea is to use a decision tree for feature ranking and feature 

fusion. Not all available features are used in the final decision tree thanks to tree pruning. As a 

result, fewer data are needed, and some sensors may not be used for the condition monitoring at 

all. It also improves the classification error rate and generalisation ability.  

The validation experiment shows good failure classification can be performed with the proposed 

algorithms and methods. The feature extraction offers a modular system of elementary operations 

that can be used to extract features for a given problem. 

The sensor optimization is best used for existing systems where reliability can be improved by 

additional hardware. The design is suitable when no online computation is available or data are 

logged but not evaluated but must be available in case of a failure for offline fault identification. 

The method can also be used for all systems with multiple sensors. 

While the features improve the accuracy of the decision tree, it would be even better if more 

advanced feature extraction methods were used. Wavelet package transformation and KPAC are 

two suggestions. The method in this paper does not address how the best feature extraction 

parameter set is generated, but as the paper shows, this task is extremely important. Optimization 

algorithms are required. Future work could include using a genetic algorithm to search for the 

best parameter combination to classify a given data set. The condition monitoring results can be 

used for trending and remaining useful life prediction. 



 167 

 

 PAPER 3: AUTOMATED PARAMETER OPTIMIZATION FOR FEATURE 

EXTRACTION FOR CONDITION MONITORING 

 Introduction 

An aircraft consists of many complex systems, which together define the state of the aircraft. Many 

systems are difficult to monitor, or they provide little information to the aircraft maintenance 

systems, but Gerdes et al. (2009) point to the potential savings if a faulty system can be found and 

replaced before it fails. Faults leading to a delay can be often prevented (in 20% of the cases 

without additional sensors and about 80% with additional sensors). For the air conditioning 

system of an aircraft, these faults include material weaknesses or broken valves. To prevent these 

faults, a new maintenance and monitoring strategy is needed. With condition based maintenance 

(CBM), it is possible to replace the system/component/part on a fixed interval. It is also possible 

to monitor the condition of the system and predict when the system will fail. The condition 

monitoring approach needs a deep understanding of the system and its behaviour. Ideally, a 

computer should be able to compute the condition of a system to reduce the human input 

required.  

CBM is based on condition monitoring and aims at preforming maintenance based on the system 

condition and trend of the system condition. The focus of CBM was traditionally on diagnosis, but 

with recent developments in condition monitoring, fault prognosis has become more important 

(Jardine, et al., 2006). Introducing new maintenance concepts, such as CBM, into the civil aircraft 

environment is difficult because of the focus on safety. A hybrid approach that uses the established 

maintenance plans as the first priority and condition based maintenance as the second priority 

might be a way to introduce condition monitoring (Phillips & Diston, 2011). Aerospace regulations 

also require that any decisions on maintenance, safety and flightworthiness must be auditable, 

and data patterns must relate to known information (Phillips & Diston, 2011). The military aircraft 

industry is less concerned with safety; thus, it has been traditionally easier to introduce new 

methods in military aircraft. 

Condition monitoring relies on available sensor data and a system model of the system to be 

monitored. A model can be created based on physical properties (physical model), experience 

(knowledge-based model) or measured data (data-driven model) (Sikorska, et al., 2011). A model 

based on experience is defined by limits for certain sensor data; if the sensor data reach the limit, 

an action is triggered. The physical model compares the output of the model with the sensor data 

of the system; if there is a difference, an action is triggered. The data-driven model is generated 



168 

 

by analysing sensor data and generating rules for actions based on these rules. Artificial 

intelligence or statistics can be used to create a data-driven model (Si, et al., 2011). Data-driven 

models can be much simpler and smaller for complex systems than a physical model, because the 

system model is reduced to a few abstract rules instead of complex mathematical equations 

(Mosallam, 2014). However, they require a lot of historical data (Mosallam, 2014). Physical 

models are well suited for finding the root cause of an error because they constitute a “white box” 

approach instead of a data-driven “black box” approach.  

Future faults can be extrapolated based on the condition of a system in the present and the past 

(Montgomery, et al., 1990) (Bowerman & O'Connell, 1993). Nui and Yang (2010) show a data-

driven approach can be used for prognostics. 

In Gerdes (2009), signal analysis and machine learning are used to detect the health condition of 

an experimental setup. The concept is half automated and needs fine tuning because the process 

depends on several different parameters. Each parameter needs to be adapted to the data.  

The goal of this paper is to automate the selection of a good parameter set for the feature 

extraction to generate features which yield the best results when analysed by the pattern 

recognition algorithm, leading to better classification and facilitating condition monitoring. 

Another goal is to use automation to reduce the need for human configuration of the system; the 

data collected are so huge that the role of humans in data cleaning and preprocessing consumes 

too many resources (Jagadish, et al., 2014). 

 Background 

8.2.1 Condition Monitoring 

Condition monitoring is defined as (European Committee for Standardization, 2015): 

“Activity, performed either manually or automatically, intended to measure at predetermined 

intervals the characteristics and parameters of the actual state of an item” 

It is based on three steps (Jardine, et al., 2006): 

1. Data acquisition: Collecting and storing data from physical assets. This includes event 

data and condition data. Event data are what happened and what the condition data 

represent. 

2. Data processing: The first step of data processing is data cleaning followed by data 
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analysis. Data analysis includes transformation of data from the time domain into the 

frequency domain and feature extraction. 

3. Maintenance decision making 

 

Condition monitoring can either be continuous or periodic (Jardine, et al., 2006). Continuous 

monitoring is often done by installed sensors and automatically by machines. Periodic monitoring 

can be done by humans and can include checks at regular maintenance intervals.  

Implementing condition monitoring is difficult and costly. Many barriers prevent the use of 

condition monitoring for a large number of systems. These barriers include (among others) 

(Stecki, et al., 2014): 

• The inability to accurately and reliably predict the remaining useful life of a machine 

(prognostics); 

• The inability to continually monitor a machine (sensing); 

• The inability of maintenance systems to learn and identify impending failures and 

recommend what action should be taken (reasoning); 

• The initiation of CBM programs without full knowledge of how the system can fail; 

• The focus of research in CBM on specific techniques (better mousetrap symptom).  

Diagnosis and prediction are two goals of condition monitoring (Jardine, et al., 2006). Diagnosis 

(posterior event) deals with the detection (Did something fail?), isolation (What failed?) and 

identification (Why did it fail?) of faults when they occur. It is defined as (European Committee 

for Standardization, 2001):  

“Actions taken for fault recognition, fault localization and cause identification”. 

 Prognostics predict future faults and determine how soon they will occur (Jardine, et al., 2006). 

There are two types of prediction: prediction of remaining time until a failure occurs and 

predicting the chance that a machine operates without a fault until the next scheduled 

maintenance (Jardine, et al., 2006). 

Figure 74 shows the basic condition monitoring process with the manual feature selection used 

by Gerdes and Scholz (Gerdes & Scholz, 2009). It is the base process for the optimization proposed 

in this paper. Training input data are recorded and sent to a feature extraction step, where noise 

is removed and features are extracted from the data samples. The data are sent to a pattern 
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recognition algorithm that tries to categorize the data based on the extracted features. The 

performance of the pattern recognition algorithm is influenced by the number of available 

samples to learn from, the data features and the algorithm itself. 

 

 
Figure 74: Condition monitoring process without optimization 

8.2.2 Feature Extraction 

Feature extraction is the process of reducing the dimension of the initial input data to a lower 

dimension while keeping most of the significant information of the original data (Fonollosa, et al., 

2013), extracting features from noisy sensor data (Lin & Qu, 2000); (Fu, 2011) and avoiding 

problems with too many input features (especially for vibration data) for the classifier learning 

phase (Yen & Lin, 2000). For these reasons, feature extraction is often a first and essential step for 

any classification (Yen & Lin, 2000).  

Methods include extracting features from the time domain and the frequency domain (Fourier 

transformation, wavelet transformation (Fu, 2011)) and clustering if necessary. Basic features can 

be maximum, mean, minimum, peak, peak-to-peak interval etc. (Jardine, et al., 2006). Complex 

feature extraction methods include principal component analysis (PCA), independent component 

analysis (ICA) and kernel principal component analysis (KPCA) (Widodo & Yang, 2007). Other 

feature extraction methods are: t-test, correlation matrix, stepwise regression and factor analysis 

(FA) (Tsai, 2009). A comparison of the different feature extraction methods is found in Arauzo-

Azofra et al. (Arauzo-Azofra, et al., 2011). 

Clustering is needed if the data samples from which the features are extracted have no information 

about what the data represent (Li & Elbestawi, 1996). Clustering methods can be applied to group 

the data into different classes. 

Selecting relevant features for classifiers is important for a variety of reasons, including 

generalization of performance, computational efficiency and feature interpretability (Nguyen & 
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De la Torre, 2010). Using all available features can result in over fitting and bad predictions, but it 

is not possible to look at each feature alone because many features are inter-correlated (Meiri & 

Zahavi, 2006). Noise, irrelevant features or redundant features complicate the selection of 

features even more. Thus, features are often selected using methods of pattern recognition or 

heuristic optimization or a combination of the two.  

Sugumaran et al. (2007) show how different technologies can be combined for a single goal. A 

decision tree is used for feature selection and a proximal support vector machine (PSVM) for 

classification. Widodo and Yang (2007) combine ICA/PCA and SVM for feature extraction and 

classification. A combination of particle swarm optimization (PSO) and SVM is used for feature 

extraction and process parameter optimization by Huang and Dun (2008). Many algorithms 

combine genetic algorithms (GAs) with a pattern recognition method like decision trees (DTs), 

SVM or artificial neural networks (ANNs). In these combinations, the GA is used to optimize the 

process parameter (Samanta, et al., 2003) (Huang & Wang, 2006) or the GA is used for feature 

extraction and pattern recognition for classification (Samanta, 2004) (Saxena & Saad, 2007) (Jack 

& Nandi, 2002) (Samanta, 2004). Another popular approach is simulated annealing (SA) plus 

pattern recognition (Lin, et al., 2008)  

Time domain features can be direct features like the number of peaks, zero-crossings, mean 

amplitude, maximum amplitude, minimum amplitude or peak-to-peak interval (Jardine, et al., 

2006) (Pascual, 2015). In addition, it is possible to analyse a signal using probabilistic moments 

like root mean square, variance, skewness or kurtosis to get features that represent the signal 

(Lambrou, et al., 1998). Other methods include correlation, autocorrelation, entropy, PCA, ICA or 

KPCA (Widodo & Yang, 2007). 

A few time domain features are listed in Table 34. Among these, kurtosis is an important and 

popular feature used in rolling element machines. Kurtosis defines the peakedness of the 

amplitude in the signal. When the amplitude follows a normal distribution, the kurtosis value is a 

fixed value 3. Beta parameters are the shape and scale parameters in the Beta distribution when 

assuming the amplitude of the signal follows a Beta distribution. The Beta distribution is a flexible 

distribution, and most signals can fit it. Since the parameters in the Beta distribution differ for 

normal and defect signals, these parameters have been used to diagnose failure (Heng & Nor, 

1998). However, Heng et al. (1998) argue that the Beta method does not show significant 

advantages over kurtosis and the crest factor for rolling element bearings.  
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 Feature Definition  Feature Definition 

1 Peak value Pv=(1/2)[max(xi)- 

min(xi)] 

6 Clearance factor 
Clf =  

2 Root mean 

square  
RMS =  

7 Impulse factor 
Imf =  

3 Standard 

deviation 
Std=  

8 Shape factor 
Shf =  

4 Kurtosis 

value 
Kv=  

9 Normal negative 

likelihood value 

NNLV= ; 

 

5 Crest factor Crf = Pv/ RMS 10 Beta parameter Parameters in beta 

function 

Kurtosis, crest factor and impulse factor are non-dimensional magnitudes. Such features are 

independent of the magnitude of the signal power. Root mean square (RMS), peak value, standard 

deviation, and normal negative likelihood (NNL) value are fully dependant on the power of the 

signal. Some negative factors, such as the poor quality of the sensors or the location where they 

are mounted, influence the power and quality of the acquired signal. The main advantage of non-

dimensional features is that they are immune from these nuisance factors. Nevertheless, RMS is 

an important feature in signal processing. It measures the power of the signal and can be used to 

normalize the signal; that is why some features are derived from RMS. Many other features have 

been used in the past, for example, Beta-kurtosis (Wang, et al., 2001), Weibull negative likelihood 

value (Abbasion, et al., 2007) (Sreejith, et al., 2008), kurtosis ratio (Vass, et al., 2008) etc. All have 

been discarded because they are useless, too complex for calculation or do not make contributions 

to existing features. 
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Table 34: State of the art time domain features (Pascual, 2015) 
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8.2.2.1 Frequency and Time-Frequency domain 

The Fast Fourier Transformation (FFT) transforms a signal from the time domain into the 

frequency domain. FFT takes a time series and transforms it into a complex vector that represents 

the frequency power in the frequency domain. The basis of the FFT algorithm is the discrete 

Fourier transformation (DFT), defined in Equation 40, with xn… xn-1 as complex numbers. 

 

 

 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘

𝑛

𝑁  𝑘 = 0, … 

𝑁−1

𝑛=0

, 𝑁 − 1 (45) 

An FFT is performed in O(N log N) operations (Ohm & Lüke, 2010). It can be calculated in real time 

because it can be executed in parallel with other operations. It is a widely used and well 

established method (Peng, et al., 2002); (Fu, 2011). Recent research uses the discrete wavelet 

transformation (DWT) to represent time series in the frequency domain. The DWT represents the 

time series in a time-scale form (Jardine, et al., 2006) and is especially suited to represent non-

stationary signals (Lin & Qu, 2000). 

Existing failure diagnosis is mostly focused on the frequency domain, e.g. using Fourier transform 

or wavelet transform. In the early stage of failure development, damage is not significant, and the 

defect signal is masked by the noise in the acquired signal. The periodicity of the signal is not 

significant. Therefore, spectral analysis may not be effective. But the periodicity is significant, so 

using the time domain feature is recommended. Because normal and defect signals differ in their 

statistical characteristics in the time domain, the combined usage of time domain features with 

other domains can improve diagnosis accuracy 

8.2.3 Pattern Recognition 

The three pattern recognition methods used in this study, decision trees, Bayesian networks and 

support vector machines, are explained in this subsection. The study examined condition 

monitoring in the aircraft environment, a strict and static environment. Thus, only deterministic 

algorithms were evaluated; ANNs are not included in this section, even if they are widely used. 

8.2.3.1 Decision Trees 

Decision trees are very easy to understand. They are unidirectional trees. The leaves of the tree 

are the categories of the data, and the nodes/branches are if-then decisions. Decision trees use the 

concept of information gain for learning in order to find the attribute in the data that divides the 
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data so that the most information is gained. Russell and Norvig (2003) explain decision trees in 

further detail. Wang and Huang (Wang & Huang, 2009) compare decision trees with other 

methods. 

8.2.3.2 Bayesian Networks 

Bayesian networks are also trees, but instead of using information gain to construct the tree, they 

use conditional probability. Conditional probability means the probability that an attribute has a 

certain value, if the value of another related attribute is known. Nodes of the network contain the 

probabilities of choosing the next node based on knowledge of the state of some other nodes. 

Bayesian networks are explained in further detail in Russell and Norvig (2003). 

8.2.3.3 Multi-Class Support Vector Machine (SVM) 

SVM was initially developed to classify two classes of objects. One decision function must be found 

for such binary classifications, but there are many applications with more than two classes; see 

Figure 75. To accommodate the multi-class problem, one solution is to merge several SVMs. One-

against-all multi-class SVM is the most common multi-class.  

I II

III

 
Figure 75: One-against-all SVM (Pascual, 2015) 

Suppose there are  classes of patterns. Given  training data, represents the 

input of SVM, a feature vector in this paper, and  is the indicator of classes. The 

one-against-all method transforms the multi-class problem into n sub binary classification 

problems. The sub binary classification problem labels the indicator of data sets 1 and labels 

all the remaining data sets -1, or vice versa. The mathematical formula for this  classification is 

(Hsu & Lin, 2002): 
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After solving the above problem, we can obtain  decision functions:  

 

 

 

… 

 

(47) 

                      

Given an unknown input , the predicted class of  is the class with largest decision function value, 

illustrated in Figure 76 and expressed as:  

 

 

 
(48) 
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Figure 76: Multi-class SVM 
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SVM is a flexible classifier. When the kernel function is nonlinear, the decision function for failure 

detection is also nonlinear. The selection of the kernel function and the parameter in the kernel 

function influences the performance of failure diagnosis (Vapnik, 1998)  

8.2.4 Optimization 

The study used three different methods for the optimization concept: greedy search, simulated 

annealing and genetic algorithms. 

8.2.4.1 Greedy Search 

Greedy search is the simplest optimization algorithm of the three. It starts at a random point in 

the parameter space and compares the value of that point with the value of a random neighbour. 

If the neighbour performs better, the neighbour is chosen; otherwise, the current parameter set 

stays at the starting point. Russell and Norvig (2003) give a more detailed explanation of the 

greedy search algorithm. 

8.2.4.2 Simulated Annealing 

Simulated annealing is a more complex variant of greedy search. In simulated annealing, the 

algorithm may choose a worse neighbour depending on a probability, which decreases with the 

difference between the performance of the neighbour and the number of performed steps. With 

simulated annealing, it is possible to move away from a local maximum and avoid getting stuck. 

There is a more detailed explanation of the simulated annealing algorithm in Russell and Norvig 

(2003). 

8.2.4.3 Genetic Algorithm 

The genetic algorithm is a more complex simulated annealing. It evaluates different points in 

parallel, chooses the best and creates new variations by combining and changing the parameter 

sets. With the genetic algorithm, it is possible to search a wider area in the problem space and a 

higher likelihood of finding the global maximum. The algorithm performs multiple evaluations in 

parallel; thus, it is slower than the other two algorithms. The algorithm has three steps (Russell & 

Norvig, 2003): 

1. Crossover: The parameters of two random parents are combined to form a new 

individual. 

2. Mutation: Each individual of a population can mutate with a certain probability. 

3. Fitness: The fitness of each population member is calculated, and the algorithm is aborted 

if a certain fitness is reached; otherwise the steps are repeated. 
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Figure 77: Genetic algorithm example 

Figure 77 shows an example of a genetic algorithm. Genetic algorithms have been used for many 

different optimization problems  (Golub & Posavec, 1997) (Jack & Nandi, 2000) (Stein, et al., 2005) 

and can be executed in parallel. Sörensens and Janssens (2003) and Carvalho and Freitas (2002) 

use GA to optimize the structure of a DT. Russell and Norvig (2003) give a more detailed 

explanation of the genetic algorithm. 

 Proposed Method 

The proposed method is based on the basic optimization process as shown in Figure 74. An 

optimization loop for the pattern recognition training is added to enhance the performance. The 

goal of the optimization is to improve the feature extraction to improve the performance of the 

pattern recognition. Approaches traditionally extract features and then use these features for 

pattern recognition (Nguyen & De la Torre, 2010), but here, the feature extraction depends on the 

results of the pattern recognition and is not independent. 

The feature extraction and the corresponding parameters strongly influence the accuracy of the 

pattern recognition. Previous experiments (Gerdes & Scholz, 2009) show that the solution space 

for an optimal parameter set is not linear and has many local minima. Such a problem is difficult 

to optimize with traditional methods, because the solution space is very large. An automated 

parameter configuration is needed to find an optimal parameter set that will improve the 

performance of the pattern recognition. Heuristic search methods which search for a minimum or 

maximum can help find a good solution to the optimization problem. The goal of the optimization 

is to maximize the percentage of the correctly classified data samples.  
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Figure 78: Condition monitoring process with parameter optimization 
 

An optimization step is included in the process shown in Figure 78. The optimization takes place 

during the learning step and is needed before any data can be evaluated. The figure shows the 

modified condition monitoring process. First, a sample data set is processed with a random 

parameter set. Next, the features are fed into a pattern recognition algorithm that searches for 

patterns.  

The resulting algorithm is tested and yields an accuracy percentage. At this point, the optimization 

loop is entered and a new parameter set is chosen, based on an optimization algorithm (greedy 

search, simulated annealing or genetic algorithm). After the new parameter set is chosen, the loop 

starts again. The output is a parameter set used for feature extraction in the condition monitoring 

process (Figure 78). All three algorithms are adapted to the problem and start from a given 

database of parameter sets. The parameter range of the mutations (for simulated annealing and 

the genetic algorithm) is also adapted, and all algorithms work with the same in and output so 

they can be chained. 

Traditionally, the pattern recognition algorithms are optimized by modifying the underlying 

algorithm. This optimization concept doesn't touch the optimization algorithm. It optimizes the 

input data so that a high accuracy is gained. As a side effect, the chosen parameters show which 

signal processing steps are important and which are not needed for a successful classification. 
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8.3.1 Training Process 

The basic training process consists of sample generation by data sampling and the extraction of 

features based on multiple process parameters. The final step is applying a pattern learning 

algorithm to classify the samples into classes. The details of each step are described below. 

8.3.1.1 Data Sampling 

The proposed concept can work with any kind of input data; however, it is assumed the data are 

discrete signal/time series with more than one data point. A sampling frequency of higher than 1 

kHz is required. If a lower frequency is used, the feature extraction process (parameter, operators) 

needs to be adapted to that frequency. The signal source does not matter; it can be sound, 

vibration, temperature power consumption, weight or magnetic flow data, as long as it is a one-

dimensional time series source. If more than one data source is used or a data sample has more 

than one dimension, the feature extraction algorithm must be executed for each data source 

separately; features must be concatenated into one feature vector before being given to pattern 

recognition. 

8.3.1.2 Feature Extraction 

Noise is reduced, and a feature vector is created during the feature extraction step. First, the data 

are transformed into the frequency domain, where the noise is reduced. Then, frequencies are 

grouped. Mean and maximum power and the number of peaks are calculated for every frequency 

group. Each group is transformed back into the time domain, where the mean and maximum 

amplitudes are calculated. The mean and maximum frequency power and mean and maximum 

amplitude of the complete signal are calculated as a last step. Table 35 shows the parameters of 

the feature extraction and the possible values. 
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Parameter Possible Values Default Value 
Block Width 5/50/100/200 100 
Noise Reduction Factor 0/1/2/5 1 
Maximum Amplitude Yes/No Yes 
Mean Amplitude Yes/No Yes 
Maximum Power Yes/No Yes 
Maximum Frequency Yes/No Yes 
Mean Power Yes/No Yes 
Number of Peaks Yes/No Yes 
Peak Border 1/2/5 2 
Global Maximum Amplitude Yes/No Yes 
Global Mean Amplitude Yes/No Yes 
Global Maximum Power Yes/No Yes 
Global Mean Power Yes/No Yes 
Global Number of Peaks Yes/No Yes 
Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001 

Table 35: Feature extraction parameters 

Block width defines how many frequencies are grouped in the frequency domain to form a block 

for detailed feature extraction. The noise reduction factor defines how much noise will be 

reduced. The noise reduction in this concept removes all frequencies wherein the power is below 

the noise reduction factor times mean power. Equation 49 shows how noise is defined for this 

method: 

 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃𝑜𝑤𝑒𝑟 < 𝑁𝑜𝑖𝑠𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 

(49) 

Peak border controls what frequencies are defined as peaks. It is the opposite of the noise 

definition. Any frequency where power is greater than or equal to the peak border times the mean 

power is defined as a peak. Frequency power is defined as the following: 

 

 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃𝑜𝑤𝑒𝑟 ≥ 𝑃𝑒𝑎𝑘 𝐵𝑜𝑟𝑑𝑒𝑟 ∙ 𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 

(50) 

The confidence factor controls how much tree pruning is done and is a parameter of the J48 

algorithm of the WEKA software (Waikato, 2009). A confidence factor greater than 0.5 means no 

pruning is done. The lower the confidence factor, the more pruning is done. 
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All other parameters are Boolean parameters; control is a given feature and may or may not be 

calculated. Elementary feature extraction operations can be executed in any order and allow the 

creation of a set of feature extraction operations that can be different for each problem (Mierswa 

& Morik, 2005). This makes elementary extraction operations applicable to machine learning. The 

operations are fast to compute and can be used for online monitoring. 

The data from the different sensors are not merged at the sensor level but at the feature extraction 

level. A feature set is calculated for each input from each sensor. These features are then merged 

into one feature input vector for the decision tree learning phase. No frequency features are 

calculated for signals that are nearly constant (Boolean switches, discrete system settings and 

certain process parameters).  

The features are determined by the parameters in Table 35. The values for the parameters are 

randomly generated or generated during the optimization using a search algorithm, as explained 

in the next section (see Figure 78). 

8.3.1.3 Pattern Recognition Training 

Pattern recognition belongs to the area of artificial intelligence. It is used to find patterns in data 

that allow the algorithm to categorize those data. First, the algorithm has to "learn" or find the 

patterns in the data and construct a function or algorithm that represents those data. New data 

samples can use the function or algorithm to categorize the new data based on the experience of 

the old data. This method uses supervised learning, where each data sample belongs to a known 

predefined class. Possible algorithms are decision trees, support vector machines or Bayesian 

networks. Artificial neural networks (ANNs) were not included in our experiments (described in 

the next section), because they are not deterministic pattern recognition algorithms. 

Deterministic learning is an important factor when the aircraft environment is considered. 

8.3.2 Optimization Loop 

The basic pattern learning process, as explained above, is improved with an optimization loop. It 

improves the classification accuracy by selecting an optimal process parameter set for the feature 

extraction step. The optimization can use several different algorithms to find the optimum. Local 

search methods are recommended because of the large size of the solution space. 

8.3.2.1 Greedy Search 

The greedy search algorithm can be implemented without any modifications. A neighbour is 

defined by a block size of 1 Hz to 50 Hz and a block overlay that varies by up to 10 % of the starting 
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point. All other values can vary by one point and have a 50 % probability of changing. Greedy 

search stops if the best value does not change for 30 steps. 

8.3.2.2 Simulated Annealing 

A new neighbour is found by varying the block size up to 500 Hz and the block overlay up to 20 

%. The range of both values decreases with the number of performed function evaluations. All 

other values vary by one point and have a probability of doing so of 50 %. A linear function 

controls when a worse neighbour is selected. A neighbour performance value may be up to 20 % 

worse than the current point. This value decreases linearly over time until it reaches 0. Simulated 

annealing stops if 480 optimization steps are executed. The best value is returned, not the current 

value. 

8.3.2.3 Genetic Algorithm 

The genetic algorithm uses the same mutations as the simulated annealing algorithm. Reduction 

of the mutation variance over time forces a better convergence. New children are created by 

taking the block width of one member, the block overlay of another, one part of the other 

remaining parameters from a third parent and the rest from a fourth parent. The first third of the 

population is left unchanged, but the rest of the population can mutate. Genetic evolution is 

stopped if 20 generations with 24 members have been evaluated. 

 Validation 

The data used for the experiments were generated in a test rig (see Figure 81) by Airbus in 

Hamburg. The test rig simulated a part of the air recirculation system of an A340-600 aircraft. 

Valves controlled the airflow of the two inlets and the outlet on the bottom. Several different valve 

positions were chosen for the experiment (0° is fully open, and 90° is fully closed), and the 

vibration of the recirculation fan was recorded. One sample was recorded every ten seconds. The 

outlet valve was never fully closed to prevent permanent damage of the equipment. A total of 25 

conditions were recorded (see Table 36). 
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Inlet Valve 1 
Position 

Inlet Valve 2 
Position 

Outlet Valve Position 

0° 0° 0° 
0° 0° 45° 
0° 30° 0° 
0° 45° 0° 
0° 45° 45° 
0° 60° 0° 
0° 90° 0° 
0° 90° 45° 
45° 0° 0° 
45° 0° 45° 
45° 30° 0° 
45° 45° 0° 
45° 45° 45° 
45° 60° 0° 
45° 90° 0° 
45° 90° 45° 
60° 60° 0° 
90° 0° 0° 
90° 0° 45° 
90° 30° 0° 
90° 45° 0° 
90° 45° 45° 
90° 60° 0° 
90° 90° 0° 
90° 90° 45° 

Table 36: Valve positions for the experiment 

Every condition was monitored for four minutes, resulting in 24 samples per condition. A total of 

600 data samples were recorded. The data were recorded using an autonomous recording box by 

Airbus (see Figure 79, Figure 80 and Figure 81). Two vibration sensors were attached to the test 

rig (see Figure 81). Vibration and sound data were sampled with a rate of 44 kHz. Data were saved 

in a raw wave format with two channels onto a SD card and then transferred onto a PC. 
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Figure 79: Data recording box 

 

Figure 80: Data recording box architecture 

All experiments used a 10-fold cross-validation to check the performance of the calculated pattern 
recognition. The software WEKA (Waikato, 2009) was used for the experiments. 
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Figure 81: Airbus test rig for data recording 

 
Four different experimental setups were used to evaluate the concept with the data from the test 

rig, optimization algorithms and pattern recognition algorithms. The same data set was used for 

all four experiments. Each experiment modified the optimization algorithm, the learning 

algorithm or the number of data sets for training.  

Criteria for the earning algorithms: 

• Greedy search stops if the best value does not change for 30 steps. 

• Annealing stops if 480 optimization steps are executed. 

• Genetic evolution stops if 20 generations with 24 individuals have been evaluated (for a 

total of 480 evaluated individuals). 

8.4.1 Experiment 1: Sample Data 

The first experiment evaluated the influence of the number of samples on the calculation time and 

the pattern recognition accuracy. The optimization and learning process were tested five times 

with an increasing number of samples (5, 10, 15, 20 and 24) per class. Twenty-four samples were 

the maximum possible number of samples per class (all recorded samples). The best solution 
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Vibration 
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found with the reduced sample set was used to classify the full sample set to show if it was possible 

to train the algorithm with a reduced data set and still gain the full classification accuracy. The 

genetic algorithm and SVM were used. 

8.4.2 Experiment 2: Random Seeds 

The second experiment examined the effect of starting at different points. It used the genetic 

algorithm with 20 samples per class. The algorithm was evaluated ten times with different 

randomly selected starting populations. 

8.4.3 Experiment 3: Optimization Algorithm 

In the third experiment, the three optimization algorithms (greedy search, simulated annealing 

and genetic algorithm) were tested alone with different parameter sets. Then the simulated 

annealing and genetic algorithms were chained so that one produced starting points for the other. 

The idea was to use one algorithm to find a good starting point; the following algorithm could use 

that point to perform better than it normally would alone. The single algorithm experiments and 

the chained experiments used the same number of function evaluations to be comparable. All 

algorithms started at the same starting point. The genetic algorithm generated additional random 

starting points up to the required population size. To reiterate, the experiment used the following: 

• Greedy search 

• Simulated annealing 

• Genetic algorithm 

• Simulated annealing and genetic algorithm 

• Genetic algorithm and simulated annealing 

8.4.4 Experiment 4: Pattern Recognition 

Experiment four compared the performance of the three algorithms for pattern recognition 

(decision tree, Bayesian network and support vector machine) when they used a genetic 

algorithm. The run time of the algorithms was measured against the percentage of correctly 

classified samples. 

 Results and Discussion 

The results of the experiments are shown below. The calculations were done using an older Intel 

dual core processor. Note that they should not be viewed as absolute times; calculation time is just 

to compare the relative speed of the algorithms. 
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8.5.1 Experiment 1: Number of Samples 

The pattern recognition accuracy of two sample databases with a different number of samples 

varied significantly (Table 37). As the table shows, the classification accuracy of the method with 

the smaller sample base and the full sample base was very similar. There was only a significant 

difference for the five sample databases. This means the data samples contain enough significant 

data so that only 10 samples are needed for training to get a good classification result. The training 

time can be reduced if only half the available data samples are taken. The other half can be used 

to verify the classification results as a testing data set. It is worth noting that this indicates a high 

resilience of the input data to noise and a few data samples are enough to ensure a good 

classification of the new data samples. The results also show that the algorithms are good at 

generalizing. 

Data Samples per 
Class 

Correctly 
Classified 

With 24 Samples for 
Testing 

Calculation Time 

5 90 % 96 % 1166 seconds 
10 96 % 97 % 2767 seconds 
15 97 % 96 % 3572 seconds 
20 98 % 96 % 6182 seconds 
24 98 % 98 % 6700 seconds 

Table 37: Evaluation of different data sample sizes 

8.5.2 Experiment 2: Different Seeds 

The pattern recognition accuracy depended on the selected starting points (Table 38). Calculation 

times depended on the selected parameters, and they varied. The experiment reached a maximum 

accuracy of 99.4 %. This is higher than the value in Table 37 where the best value is 98 %. The 

random selected starting points and the randomness of the optimization algorithm caused this 

effect. With a larger population and more generations, it would be possible to reduce that effect 

and get a better convergence. Still, all starting points reached a very good accuracy. 

 
Experiment Number Correctly Classified 

Samples 
Calculation Time 

1 98.6 % 3967 seconds 
2 98.1 % 5596 seconds 

3 98.3 % 5653 seconds 
4 98.6 % 4643 seconds 

5 99.4 % 4492 seconds 
6 98.9 % 4352 seconds 
7 98.6 % 4403 seconds 
8 98.6 % 4638 seconds 
9 98.9 % 4850 seconds 
10 98.9 % 4568 seconds 

Table 38: Evaluation of the influence of different starting points 
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8.5.3 Experiment 3: Optimization Algorithm 

The selection of the algorithm greatly influenced the performance of the optimization. 

8.5.3.1 No Optimization 

The experiment performed a calculation without an optimization step to evaluate the results of 

the various optimization algorithms. Twenty-four random parameter sets were generated and 

evaluated, and the best parameter set was selected. This resulted in an accuracy of 97.5 % and 

took 517 seconds. 

8.5.3.2 Greedy Search 

The best result of the greedy search algorithm was 97.7 %, and the calculation time was only 1250 

seconds. This was expected. Greedy search is a fast algorithm but it can easily get stuck in a local 

maximum. For better results, the algorithm needs to be executed more than once, but this negates 

the speed advantage. 

8.5.3.3 Simulated Annealing 

Simulated annealing had about the same speed as the genetic algorithm, i.e., about 5605 seconds. 

This is unsurprising, as both algorithms evaluated the function 480 times (the same number of 

iterations as for the genetic algorithm). Simulated annealing achieved an accuracy of 97.7 %, 

similar to the greedy search algorithm and a bit worse than the genetic algorithm. The problem 

space contained many local maxima and was huge. Simulated annealing did not get trapped in a 

local maximum as quickly as greedy search, but it could fall into that trap if the problem space has 

very many local maxima. 

8.5.3.4 Genetic Algorithm 

The genetic algorithm had the highest accuracy at 98 %. It needed 5418 seconds to finish. The 

genetic algorithm delivered results similar to those of simulated annealing. It searched at multiple 

places at once and chose the best ones to continue. 

8.5.3.5 Simulated Annealing and Genetic Algorithm 

Using simulated annealing to create a base population worked quite well, but the results were not 

better than using the genetic algorithm alone (98.6 %), and the calculation time was twice as long. 

8.5.3.6 Genetic Algorithm and Simulated Annealing 

The idea of using the best parameter set of the genetic algorithm as a starting point for simulated 

annealing also worked well and resulted in an accuracy of 98.3 %. The calculation time again was 

twice as long as for a single algorithm.  
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8.5.4 Experiment 4: Pattern Recognition 

Table 39 shows the accuracy of the different pattern recognition algorithms with genetic 

algorithm optimization. To use the Bayesian network algorithm, all values need to be discretized 

(a feature can only have a pre-defined value). If numerical values are used, WEKA (Waikato, 2009) 

needs to discretize the feature values automatically, resulting in a “No memory left” error. To limit 

the amount of needed memory and make the calculation feasible, we limited the maximum 

number of blocks to 15; there were 10 data samples per class, and the bandwidth of the input data 

was only 7.5 kHz (half the bandwidth of the original data samples). 

 
Pattern Recognition 
Algorithm 

Correctly Classified 
Samples 

Calculation Time 

Decision Trees 94.4 % 1381 seconds 
SVM 99.4 % 12312 seconds 
Bayesian Network 99.4 % 2791 seconds 

Table 39: Evaluation of different pattern recognition algorithms with optimization 

Table 39 shows the SVM performed the best and decision trees performed the worst. The Bayesian 

network algorithm worked well because of the reduced number of features, but the decision tree 

algorithm seemed to suffer from the reduced number of features and performed weakly. 

Table 40 shows the three algorithms tested with the same parameter set and without 

optimization. It is clear that SVM once again delivered the best results. There was a minimal 

optimization included in the calculation. Twenty-four random parameter sets were generated 

(the same as the starting parameter set for Table 39), and the parameter set with the best 

performance was used. 

 
Pattern Recognition 
Algorithm 

Correctly Classified 
Samples 

Calculation Time 

Decision Trees 91.7 % 71 seconds 
SVM 98.9 % 1860 seconds 
Bayesian Network 98.9 % 193 seconds 

Table 40: Evaluation of different pattern recognition algorithms without optimization 

While Bayesian networks delivered good results, they were not the best option. Table 40 also 

shows that the calculation time depended on the number of the blocks and, thus, the total number 

of features for the training. If that number was restricted, all algorithms performed significantly 

faster. The optimization process did not give a significant improvement in this setup; the solution 

space was much smaller, and the random starting points were good. 
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 Conclusions 

Adding an optimization loop to improve the feature extraction parameters and the classification 

accuracy showed good results. The classification accuracy of all tested learning algorithms 

improved simply by having a better feature set, with no changes required in the learning 

algorithms. The results show that an optimization can increase the performance of the signal 

analysis and pattern recognition. However, the increase is less than 5 %, largely because of the 

noise resilient input data. Still, it is possible to push the accuracy up to 99.4 %. Genetic algorithms 

performed well, even in the short searches with a small population. All algorithms showed good 

performance compared to choosing parameters by hand, which is nearly equal to choosing a 

random parameter set.  

One goal of the research was to reduce the amount of expert knowledge required to use the 

system, and this goal was achieved. With automatic parameter optimization, no expert is needed 

to adept the feature extraction parameters for the problem. Instead, the algorithm adapts itself to 

the given data. The concept works well if a significant number of data samples are available. 

Another advantage of the concept is that it can be parallelized without much work if a genetic 

algorithm is used. The members of the population can be spread over the available processor. 

With parallelization, it is possible to considerably reduce the computation time, and a much larger 

space can be searched in the same time. 

There were a few limitations in the research. The results were based on the data from the Airbus 

test rig, and these do not represent real-world data. It is difficult to get real-world data for aircraft 

components because of safety restrictions, and it is really difficult to install measuring equipment 

in a non-test flight airplane. In addition, the number of tested algorithms was restricted because 

only deterministic pattern recognition methods were considered. However, it is possible to use 

different algorithms and methods for pattern recognition and optimization. 

Future work will include testing the concepts on real-world data and using the method for 

condition monitoring and trending. 
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 PAPER 4: FUZZY CONDITION MONITORING OF RECIRCULATION FANS 

AND FILTERS 

 Introduction 

Complex systems can be difficult to monitor. Good condition monitoring depends on good sensors 

and a good model and on good interpretations of the data. However, interpreting sensor data is 

not a trivial task, and classification and condition monitoring can reduce the amount of 

information to be monitored. Often an expert is needed to interpret the data and make a 

meaningful "classification". Another problem with a “crisp” classification is that the user has no 

knowledge of the “stability” of the classification. Stability in this case means how fast the 

classification can change when the input data change. This is important information when 

working with sensors, because small sensor errors could cause a misclassification. 

Classification is also essential to failure diagnosis. If a class represents a failure, it is useful for 

failure diagnosis to know which classes are similar to the current class, because these failure 

classes may also be responsible for the current visible failure effects. This 

Basically, classification maps an input vector onto a class based on a learned or given pattern. For 

system monitoring, the class can be a failure or condition of a system. 

Input
Class 

1

 

Figure 82: Common classification mapping of one input vector to one class 

Most classifiers map an input vector to one output class (in Figure 8282, the input vector is 

mapped to "class 1"). However, to monitor systems and reduce NFF (no failure found) failures, 

knowing the probability of an input vector belonging to all possible classes, instead of only the 

most likely class (Figure 8383) is useful. The input vector is still mapped onto "class 1", but the 

input vector also matches the pattern of "class 4" in 89 % of the criteria for "class 4". Artificial 

neural networks (ANNs) can output the similarity of an input vector to other classes, if one output 

node is available for every class, but ANNs also have disadvantages.  

There are several different methods for calculating the similarity of signals. Many are used in 

speech recognition (Rabiner & Juang, 1993). 
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Figure 83: Classification mapping of one input vector to one class and output of similarity 

Decision trees are simple and fast classifiers with feature extraction, learning and a high 

robustness. Decision trees are a method from the area of artificial intelligence and are used for 

decision making and classification. They are often binary trees, where each node has an if-then-

else function on an attribute of the sample data. They have a simple structure, fast calculation and 

inherent feature extraction. The ID3 algorithm (Iterative Dichotomiser 3) (Quinlan, 1986) was the 

first example of a decision tree, but it had some problems and was later improved. The improved 

version, C4.5 (Quinlan, 1993), enhances the ID3 algorithm with the ability to handle both discrete 

and continuous attributes. It can also handle samples with missing attributes and supports 

pruning of the tree at the end of the algorithm. The algorithm to build a decision tree uses the 

concept of information gain to choose attributes from the data and build the tree. The output of a 

decision tree is the most likely class for one data sample. 

To get more information from classification, the decision tree inference algorithm has been 

modified to output the probabilities of all trained classes. This modification does not change the 

learning algorithm for decision trees, and it can be used with any binary decision tree.  

In what follows, we show how a fuzzy inference of decision trees using numerical attributes can 

be used to gain more information about a system than just the current condition.  
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 Decision Trees 

As mentioned in the previous section, decision trees are a method from the area of artificial 

intelligence and are used for machine learning. They are often binary and each node has an if-

then-else function on an attribute of the sample data. The ID3 algorithm (Quinlan, 1986), the first 

algorithm to construct decision trees, was improved in C4.5 (Quinlan, 1993). It has the ability to 

handle both discrete and continuous attributes; it can handle samples with missing attributes and 

supports pruning of the tree at the end of the algorithm.  

In the proposed method, decision trees are used to calculate and order the features based on the 

information gain of each feature. During the method validation, they are used for failure 

classification to show the influence of different features on the classification performance. 
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Figure 84: Decision tree algorithm flow chart 
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The result of the algorithm is a binary decision tree, where the root of the tree is the attribute with 

the highest normalized information gain. Nodes in the following levels of the tree represent 

attributes with lower normalized information gain. If pure information gain is used for splitting, 

the classes with the most cases are favoured (Quinlan, 1993). 

Information entropy is the knowledge contained in an answer depending on prior knowledge. The 

less is known, the more information is provided. In information theory, information entropy is 

measured in bits. One bit of information entropy is enough to answer a yes/no question for which 

one has no data (Russell & Norvig, 2003). Information entropy is also called information and is 

calculated as shown below, where P(vi) is the probability of the answer vi. 

 
𝐼 (𝑃(𝑣𝑖), … , 𝑃(𝑣𝑛)) =  ∑ − 𝑃(𝑣𝑖)𝑙𝑜𝑔2𝑃(𝑣𝑖)

𝑛

𝑖=1

 (51) 

 

The information gain from an attribute test is the difference between the total information 

entropy requirement (the amount of information entropy needed before the test) and the new 

information entropy requirement, where p is the number of positive answers and n is the number 

of negative answers (Russell & Norvig, 2003). 

 
𝐺𝑎𝑖𝑛 (𝑋) = 𝐼 (

𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) −  ∑

𝑝𝑖 +  𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖=1

× 𝐼 (
𝑝𝑖

𝑝𝑖 + 𝑛𝑖
,

𝑛𝑖

𝑝𝑖 +  𝑛𝑖
) (52) 

 

Algorithm C4.5 uses the normalized information gain or the gain ratio. Split information (Split 

info) is the information gained from choosing the attribute to split the samples. 

 
𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋) =  − ∑

𝑝𝑖 + 𝑛𝑖

𝑝 + 𝑛

𝑛

𝑖 = 1

 𝑙𝑜𝑔2  (
𝑝𝑖 + 𝑛𝑖

𝑝 + 𝑛
) (53) 

 

Gain ratio is the normalized information gain and is defined as shown in Equation (54 (Quinlan, 

1993). 

 
𝐺𝑎𝑖𝑛 𝑅𝑎𝑡𝑖𝑜 (𝑋) =  

𝐺𝑎𝑖𝑛 (𝑋)

𝑆𝑝𝑙𝑖𝑡 𝐼𝑛𝑓𝑜 (𝑋)
 (54) 
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Pruning is the reduction of the depth of a decision tree. The tree gets better at classifying unknown 

samples, but might get worse at classifying the test samples. Pruning normally increases the 

overall classification accuracy, but too much pruning can increase the number of false 

classifications.  

Decision trees are good for diagnostics in the context of condition monitoring. They classify data 

with low computation needs, and the generated decision trees are highly comprehensible by 

humans. Another advantage of decision trees for condition monitoring is that they can be 

transformed into simple logical equations for each class that can be checked and modified by a 

human expert. 

Decision trees are used to solve a large variety of problem, e.g., tag speech parts (Schmid, 1994), 

land cover mapping (Friedl & Brodley, 1997), text mining (Apte, et al., 1998) and condition 

monitoring (Sugumaran & Ramachandran, 2011) (Saimurugan, et al., 2011) (Sakthivel, et al., 

2010).  

9.2.1 Fuzzy Decision Trees 

Decision trees can be evaluated and created using fuzzy rules and concepts. Most often, fuzzy 

attributes and values are used to create a fuzzy decision tree that operates on fuzzy sets. Fuzzy 

decision trees can be used to overcome some limitations of decision trees, e.g., where some of the 

available features are real- or multivalued, or a numerical decision is needed (Janikow, 1995). 

Small value changes can change the classification result (Quinlan, 1987). Wang, Zhai and Lu (Wang, 

et al., 2008) use fuzzy decision trees for database classification using rough sets. Yuan and Shaw suggest 

the following fuzzy decision tree induction (Yuan & Shaw, 1995): 

1. Fuzzifying the training data. The data in the data set are converted into a fuzzy set using 

a membership function. Salary data, for example, can be converted into three groups, low, 

average and high. Each salary will have a value between 0 and 1, defining how well a class 

represents these data. Membership functions can come from mathematical, expert or 

statistical sources (Yuan & Shaw, 1995). 
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Figure 85: Sample fuzzy member functions for speed 

2. Inducing a fuzzy decision tree.  

Step 1: Measure the classification ambiguity associated with each attribute and select the 

attribute with the smallest classification ambiguity as the root decision node. 

Step 2:  Delete all empty branches of the decision node. For each nonempty branch of the 

decision node, calculate the truth level of classifying all objects within the branch into each 

class. If the truth level of classifying into one class is above a given threshold, terminate 

the branch as a leaf. Otherwise, investigate if an additional attribute will further partition 

the branch (i.e. generate more than one nonempty branch) and further reduce the 

classification ambiguity. If yes, select the attribute with smallest classification ambiguity 

as a new decision node from the branch. If not, terminate this branch as a leaf. At the leaf, 

all objects will be labelled to one class with the highest truth level. 

Step 3:  Repeat step 2 for all newly generated decision nodes until no further growth is 

possible; the decision tree is then complete (Yuan & Shaw, 1995). 

3. Converting the decision tree into a set of rules. Fuzzy decision trees can be converted 

into logical rules like crisp decision trees. Each path of the tree is converted into a single 

rule that represents the attribute decisions at each passed node until a leaf is reached. 

4. Applying fuzzy rules for classification. Only one path/rule is evaluated if a crisp 

decision tree is evaluated. For a fuzzy decision tree evaluation, each path is evaluated, and 

for each path, a fuzzy result is calculated using the rules and fuzzy rules. 

Janikow (1995) shows a slightly different method for fuzzy decision tree induction and explains 

how a fuzzy decision tree can be optimized to improve the classification accuracy. 
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The proposed method falls into the category of pre-fuzzification, where the data are fuzzified 

before the decision tree induction (Chiang & Hsu, 2002). Post-fuzzification is the fuzzification of 

the generated decision tree rules. 

9.2.2 Concept 

The proposed concept uses post-fuzzification to change the sample classification of an existing 

decision tree. One result per possible class is returned instead of one single classification result. 

The multiple results represent the similarity of the sample to each class. A decision tree is 

generated traditionally, but the process uses a fuzzy inference for the inference of an input vector:  

1. Generation of feature vectors. 

2. Decision tree generated with C4.5 based on labelled data samples. 

3. Decision tree evaluated using the fuzzy inference concept. 

The fuzzy inference calculates an output for every leaf of the tree. Every output value of a leaf is a 

value between 0 and 1 and represents the similarity of a sample to the class associated with the 

leaf. If multiple leaves are associated with the same class, then the leaf with the higher value is 

taken. The value is the similarity of the sample to the class. Similarity is a function of the distance 

of an input vector to a class. The similarity is calculated based on a weighting function of the 

decisions made (node inferences) to classify the sample. For condition monitoring and 

maintenance, the similarity can indicate possible other faults and conditions of a system. The class 

with the maximum similarity of 1 is still the same class that the C4.5 algorithm would generate. 

The proposed fuzzy inference works as follows: 

1. Every path between two nodes or a node and a leaf has two labels: PathDepth and 

PathWeight. 

2. Start at the root node. 

3. PathDepth and PathWeight are 0 for the root node.  

4. Evaluate the node condition. 

5. Calculate path labels: 

a) If the test of the condition is true, label the True path as PathDepth +1 and PathWeight + 

1. 

b) If the test of the condition is false, label the False path as PathDepth +1 and PathWeight + 

1. 

c) Label the other path to child-nodes as PathDepth +1 and PathWeight + 

n𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉). See Equations (55 and (56. 

6. Choose a new node, with a labelled path to its parent. 
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7. Use the path labels for PathDepth and PathWeight. 

8. If the node is not a leaf, continue from step 4. 

9. If the node is a leaf, then return 
𝑃𝑎𝑡ℎ𝑊𝑒𝑖𝑔𝑡ℎ

𝑃𝑎𝑡ℎ𝐷𝑒𝑝𝑡ℎ
 and the leaf label and continue with another node. 

10. If multiple leaves return values for a class, take the higher value. 

The path from one node to another is labelled with the taken decisions. Weights are based on the 

distance of the attribute value from the sample value in the observation. The highest calculated 

value (between 0 and 1) for every possible decision is returned at the end of the inference. Thus, 

all possible paths are evaluated, and we gain a measure of similarity of an input vector to all 

classes.  

The advantages of this approach are that the similarity of a data sample to different conditions 

can be calculated and the decision tree generation algorithm does not need to be changed. It 

should be noted that the concept is designed so that the characteristics of one attribute (mean, 

minimum, maximum etc.) does not need to be known. In addition, the input vector for training 

and classification does not have to be modified in any way to fit the new algorithm. 

It is assumed that the tree is a binary tree with numerical attribute values. Returned values of 

leaves are between 0 and 1. The weight for each node (nodeweight) is calculated as shown in 

Equation (55. Equation (55 limits the function values. In the equation, nodeweight can be between 

0 and 1; AV (attribute value) is the value of the sample for the condition of the current node; and 

SV (split value) is the value of the node, which marks the border of the condition; e.g., the split 

value of “𝑥 ≤ 17” is 17. Figure 866 shows the nodeweight if the decision is “false”; otherwise, the 

nodeweight is 1. 

 

𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = {

0

1 −
|𝐴𝑉−𝑆𝑉|

2𝑆𝑉

1

𝑖𝑓 𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) < 0

𝑖𝑓 0 ≤  𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) ≤ 1

𝑖𝑓 𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) > 1

  (55)  
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Figure 86: Nodeweight for "false" decision 

It is possible to use a different weighting function. The requirement is that the weight for each 

node needs to be between 0 and 1 for the algorithm. If the weight is higher than 1, the result at a 

leaf can be higher than 1.  

This particular weighting function was chosen for several reasons. One is that a black box 

approach was used for the monitored system, so the meaning of the input values of vectors is 

unknown. It cannot be assumed that the training vectors for the algorithm contain the max or min 

values or even represent an average. These circumstances make it difficult to use absolute values. 

The only value that is available without adding additional information or calculations to the 

algorithm is the split value of a node. In addition, the correct classified class needs to have a value 

of "1" at the corresponding leaf. Choosing 2𝑆𝑉 as the limit when the weight is 0 was an arbitrary 

choice based on tests with input vectors. It is possible to use a higher or lower value. If the 

maximum and minimum values for features are available, it is possible to use those as limits and 

use Equation (55. Otherwise, Equation 56 can be stated as:  

 

𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = {
1 −

𝑆𝑉 − 𝐴𝑉

𝑆𝑉 − 𝑚𝑖𝑛

1 −
𝐴𝑉 − 𝑆𝑉

𝑚𝑎𝑥 − 𝑆𝑉

𝑖𝑓 𝐴𝑉 ≤ 𝑆𝑉

𝑖𝑓 𝐴𝑉 > 𝑆𝑉
 (56)  

 

A disadvantage of Equation (56 is that every decision returns a PathWeight of more than 0, and 

this can result in high similarity values. The concept was designed with only numeric values in 

mind, but it is possible to use Boolean or discrete values with a small modification of the process. 
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Nodes with Boolean attributes: If Boolean attributes are used instead of numerical 

values, the weight is assumed to be 0. 

Nodes with discrete values: If a node has more than two children (one for every possible 

value of the attribute), only the path linked to the test of the node condition is weighted with 1. 

For every other unlabelled path to a child, the weight needs to be calculated separately. 

9.2.3 Fuzzy Decision Tree Inference Example 

An example of the process is shown in Figure 87. Each path from one node to another is labelled 

with PathWeight and PathDepth in the form of 
𝑃𝑎𝑡ℎ𝑊𝑒𝑖𝑔𝑡ℎ

𝑃𝑎𝑡ℎ𝐷𝑒𝑝𝑡ℎ
 e.g. 

2

5
.  
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      (a)      (b) 

100 Hz >= 10

1023 Hz >= 23 233 Hz >= 45

100 Hz = 7; 233 Hz = 40; 1023 Hz = 50

Class 2 Class 4Class 1 Class 3

Input

0/0

1.80/2

0.85/11/1

1.41/2 2/2 1.85/2

100 Hz >= 10

1023 Hz >= 23 233 Hz >= 45

100 Hz = 7; 233 Hz = 40; 1023 Hz = 50

Class 2 Class 4Class 1 Class 3

Input

0/0

1.80/2

0.85/11/1

1.41/2 2/2 1.85/2

0.71 1 0.900.93  

      (c)       (d) 

Figure 87: Fuzzy decision tree inference example 

The input vector (values of the power spectrum of the transformed input signal) contains the 

power (energy per unit time) of the frequencies at 100Hz, 233Hz and 1023Hz. At the first node, 

the 100Hz value is checked to see if it is larger or equal than 10. The power is not larger than 10 

(it is 7) so the right path, the False path, is assigned +1/+1. For the other path, a 1 is added to the 

PathDepth and 0.85 (the similarity) to the PathWeight (Figure 877 (a)). The 1023Hz node is 

evaluated in the next step. The input vector has a power at 1023Hz which is higher than 23, so the 

True path gets +1/+1 for a total of 2/2 (+1/+1 to the 1/1 from the parent path). The other path 

receives a +0.41/+1 for a total of 1.41/2 (Figure 877 (b)). The process is repeated for the right-

hand node (233Hz). Evaluating the node gives +1/+1 to the False path and +0.95/+1 to the other 

path (Figure 877 (c)). In the last step, the weight of the leaves and the classes are calculated. The 

input vector is classified as class 2. The similarity to class 1 is 0.71; to class it is 3 0.93 and to class 
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4 it is 0.9 (Figure 877 (d)). A similarity of 0.93 means the values do not have to move much to 

switch the classification result to class 3. 

Only the attributes defining a certain class are evaluated during the inference. Attributes which 

the algorithm did not include in a decision path are not checked; e.g., after the root node, either 

1023Hz or 233Hz is checked for classification of a class. So a class is either defined by 100Hz and 

1023Hz or by 100Hz and 233Hz, but not by all three attributes. Which attributes are in a decision 

path and are checked is decided by the decision tree generation algorithm (in this case, C4.5). For 

more complex examples, an attribute can be checked multiple times (with different decision 

values) in a decision path; attributes which were neglected earlier are checked again. However, 

even in the simple example, all attributes are at least evaluated once, because the algorithm checks 

all paths. And the inference results are used to calculate the similarity values. 

9.2.4 Fuzzy Decision Tree Forest Inference 

A decision tree forest can also be evaluated using the proposed concept. Each decision tree in the 

forest is evaluated separately using fuzzy decision tree inference. If all trees are evaluated, the 

results (similarities) for a class from all trees are added together and divided by the number of 

trees (taking the average of a class over all trees in the forest). This is done for all available classes.  

 Validation 

Experiments were performed to test the performance of the concept. The goal of the experiments 

was to evaluate the fuzzy decision tree inference for a single decision tree and also for a decision 

tree forest. 

9.3.1 Setup 

This section details the setup of the validation. The validation was split into two parts. A single 

decision tree with fuzzy inference was analysed first, followed by a decision tree forest. Both used 

the data generated on a test rig at Airbus. 

1.1.1. Data 

Data for the experiments were recorded on a test rig. The test rig resembled a part of the air 

conditioning system of the A340-600. The focus of the test rig was the high pressure (HP) 

recirculation fan and filter. The test rig was equipped with two valves, one valve at the end of each 

of two open tubes. Table 41 shows the possible settings for both valves; 20 samples of one second 

duration were recorded for every condition of the test setup.  
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Figure 88: Test 4ig at Airbus 0perations GmbH 

Valve 1 0 15 30 45 60 75 90 
Valve 2 0 15 30 45 - - - 

Table 41: Experiment conditions 

Valve1 is the inlet valve, and valve2 is the outlet valve. Twenty-eight conditions were recorded 

(Table 41). In addition, a not running condition was recorded. A total of 580 samples were 

recorded and labelled valve1/valve2; e.g. 15/0 means the test case valve 1 was closed by 15 

degrees and valve 2 was fully open. Valve 2 was only closed up to 45° to prevent damage to the 

fan and tubes from overheating or overpressure. 

The test rig also had a filter mounted connected to the fan inlet; there was always air flowing to 

the fan inlet even if valve 2 was completely closed. The fan, filter and the orange tube shown in 

Figure 88 are original aircraft parts. The positions in the rig were the same as in a real aircraft. 

1.1.2. Feature Extraction 

The Java software WEKA was used to perform the experiments. The decision tree was generated 

using the C4.5 algorithm; it is more advanced than the basic ID3 algorithm (accepts both 

continuous and discrete features, solves over-fitting problem by pruning handles, incomplete data 

points) and is available as an open source implementation J48. Input for the decision tree 

generation was a set of features extracted from sensor data. The parameters controlling the 

feature extraction are shown in Table 42. 

 

Valve 

1 

Valve 

2 

Recirculatio

n 

Fan 
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Parameter Possible Values Default Value 
Block Width 5/50/100/200 100 
Noise Reduction Factor 0/1/2/5 1 
Maximum Amplitude Yes/No Yes 
Mean Amplitude Yes/No Yes 
Maximum Power Yes/No Yes 
Maximum Frequency Yes/No Yes 
Mean Power Yes/No Yes 
Number of Peaks Yes/No Yes 
Peak Border 1/2/5 2 
Global Maximum Amplitude Yes/No Yes 
Global Mean Amplitude Yes/No Yes 
Global Maximum Power Yes/No Yes 
Global Mean Power Yes/No Yes 
Global Number of Peaks Yes/No Yes 
Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001 

Table 42: Feature extraction parameters 

Block width defines how many frequencies are grouped in the frequency domain to form a block 

for detailed feature extraction.  

The noise reduction factor defines how much noise will be reduced. The noise reduction in this 

concept removes all frequencies wherein the power is below the noise reduction factor times mean 

power. 

Peak border controls what frequencies are defined as peaks. Any frequency whose power is 

greater than or equal to the peak border times the mean power is defined as a peak. 

The confidence factor controls how much tree pruning is done and is a parameter of the J48 

algorithm of the WEKA software (University of Waikato, 2009). A confidence factor of greater than 

0.5 means no tree pruning is done. The lower the confidence factor, the more pruning is done. 

All other parameters are Boolean parameters which control if a given feature is calculated or not. 

Elementary feature extraction operations can be executed in any order and allow the creation of 

a set of feature extraction operations that can be different for each problem (Mierswa & Morik, 

2005). This makes elementary extraction operations applicable to machine learning. The 

operations are fast to compute and can be used for online monitoring. 

These parameters were used to generate a feature vector for each data sample. A genetic evolution 

algorithm was used to optimize the parameters to generate a decision tree with high classification 

accuracy. The three best decision trees were used to form a decision tree forest (Gerdes & Scholz, 

2011). Twenty randomly ordered samples of every class were selected for the decision tree 

generation. 
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1.1.3. Single Fuzzy Decision Tree Inference 

The experiments themselves were simple. A decision tree was calculated using the data samples 

and the signal analysis parameters. The decision tree was then evaluated with fuzzy decision tree 

inference. A test case "15/0" (explained previously) was used to compare the results; it was the 

correct class for all data samples. Five different node weighting functions were tested to evaluate 

the influence of the node weighting function. The average of all 20 fuzzy inferences of test case 

"15/0" was taken to reduce the influence of noise. The following equations were used in the 

inference: 

• Equation (55 is the default node weighting function. 

• Equation (57 is an example of a function where the weights are always close to 1 and 0. 

• Equation (58 is a "flat" function with many values close to 1. 

• Equation (56 is a function that always has a value 0 < 𝑥 ≤ 1. 

• Equation (59 is a function with more values that are 0; it scales with the value range. 

 
𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = 1 −

|𝐴𝑉 − 𝑆𝑉|

0.01𝑆𝑉
 (57)  

 

 
𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = 1 −

|𝐴𝑉 − 𝑆𝑉|

10𝑆𝑉
   (58)  

 
𝑖𝑓 (𝐴𝑉 ≤ 𝑆𝑉) ⇒  𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = 1 − 5

𝑆𝑉 − 𝐴𝑉

𝑆𝑉 − 𝑚𝑖𝑛
 

𝑖𝑓 (𝐴𝑉 > 𝑆𝑉) ⇒  𝑛𝑜𝑑𝑒𝑤𝑒𝑖𝑔ℎ𝑡(𝐴𝑉, 𝑆𝑉) = 1 − 5
𝐴𝑉 − 𝑆𝑉

𝑚𝑎𝑥 − 𝑆𝑉
 

(59)  

 

Each equation (set) replaced Equation (55. For each equation, the same parameter set and 

decision tree was used. 

1.1.4. Decision Tree Forest 

A decision tree forest with three trees was created for the experiments. Each tree had a 

classification accuracy of at least 90%. Each one used a different signal processing parameter set, 

generating different training vectors and test vectors for the inference. During the experiments, 

we evaluated the classification accuracy compared to a single decision tree with a classification 

accuracy of 95%. We also evaluated the fuzzy results for the same 20 data samples and 

neighbouring classes as in the experiments for the single decision tree. 
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9.3.2 Results 

This section gives the results of the experiments, starting with the results for a single fuzzy 

decision tree inference and then moving to the results for a fuzzy decision tree forest inference. 

1.1.5. Single Fuzzy Decision Tree Inference 

Table 43 shows the averaged results for five fuzzy decision tree inferences with data samples of 

class "15/0". The numbers show that the correct class is classified. For comparison, three 

neighbouring classes (0/0, 15/15 and 30/0) are shown. They are very like class "15/0", but the 

variance in the results depends on the node weighting function. If a node weighting function is 

"flat" (i.e., the results are often higher than zero), the similarities are all close to 1 and have little 

variance (often between 0.9 and 1). If the function is "narrow" (i.e., zero results are produced), the 

variance is higher, and similarities can range from 0 to 1. 

Class Eq. (55 Eq. (57 Eq. (58 Eq. (56 Eq. (59 
0/0 0.9585 0.5714 0.9917 0.8294 0.6462 
15/0 1 1 1 1 1 
15/15 0.9872 0.8357 0.9974 0.9209 0.8505 
30/0 0.9996 0.9213 0.9999 0.8 0.8 

Table 43: Averaged inference results 

This effect occurs because PathWeight is often much higher than zero for "flat" functions. For the 

maximum "narrow" function, the similarity is based on the number of "true" decisions. This may 

be desirable for some applications, but it hides information that might be useful for condition 

monitoring. Small variations of an attribute are not represented in a very "narrow" function; they 

are filtered out. But the goal of condition monitoring is not only the similarity but also the ability 

to detect slight movements in the similarity to predict which "direction" a similarity is moving if 

one or more values is modified. Finding a fitting node weighting function depends on the problem 

and the goals of the application. 

Table 44 shows a complete similarity matrix. The matrix contains the results of all leaves of the 

decision tree for Equation (57. The full similarity variance of the results is visible in the matrix. 

The table shows that the most similar classes do not always have to be neighbours; they can be 

farther away. Two of the neighbours are very similar, which is the desired result. The similarity of 

the other classes is mixed. The tendency is that the similarity is less if a class has a greater distance 

from "15/0". 

Valve2/Valve1 0 15 30 45 60 75 90 
0 0.5714 1 0.9213 0.5 0.65 0.7583 0.655 
15 0.672 0.8357 0.6929 0.6667 0.6512 0.7278 0.4944 
30 0.75 0.5 0.5 0.6 0.4444 0.5714 0.4286 
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45 0.65 0.75 0.5712 0.5667 0.25 0.5 0.25 
Table 44: Similarity matrix 

1.1.6. Fuzzy Decision Tree Forest Inference 

This section shows how the results improved when a decision tree forest was used. The similarity 

values of the decision tree forest were calculated by taking the average similarity values of the 

single decision trees. 

1.1.7. Classification Accuracy 

The accuracy of a classification is defined as the number of correct classifications (CC) in relation 

to the total number of all classifications (TS), where TS is the number of correct classifications 

plus the number of wrong classifications (see Equation (60).  

 
𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =

𝐶𝐶

𝑇𝑆
 (60)  

 

Classification accuracy is a number between 0 and 1, which can be transformed into a percentage. 

The fuzzy decision tree inference does not influence the accuracy of the decision tree inferences 

because the True paths are weighted with "1" while all other paths are weighted with a positive 

number lower than 1 (0 < 𝑥 ≤ 1). The True path will always have the highest weight. However, 

the classification accuracy of fuzzy decision tree inference may be slightly lower than for standard 

decision tree inference because of the limits of numerical computations. If the weight of a node is 

very close to 1, it is possible that due to rounding errors, it may counted as a 1 instead of a value 

lower than 1. This happened in some of our experiments; it was more frequent if a 32-bit Java 

floating point data type was used instead of 64-bit Java floating point data type. Using a forest with 

three decision trees increased the classification accuracy from 95% per single tree to 99% for the 

complete forest. This is a significant classification accuracy improvement, but it comes at the cost 

of three times the calculation time. However, in the sample application of air filter monitoring, the 

time is not a critical factor. 

1.1.8. Fuzzy Decision Tree Inference 

By comparing the results of the four classes evaluated for a single decision tree, we get Table 45. 

The results are like a single decision tree with fuzzy inference, but the average similarity and the 

overall classification accuracy are higher. These results show that the fuzzy inference also works 

with a decision tree forest. But if one value changes in the input, the influence on the similarity is 

less. Decision tree forests with fuzzy inference are better at calculating the overall similarity of an 

input because different signal analysis steps are used, and different trees are evaluated. Thus, 

different features are checked and used to calculate the similarity result of a single decision tree. 



 209 

 

Class Eq. 5 Eq. 8 Eq. 9 Eq. 7 Eq. 10 
0/0 0.9654 0.6905 0.9931 0.8725 0.7206 
15/0 1 1 1 1 1 
15/15 0.9815 0.8665 0.9963 0.9370 0.8736 
30/0 0.9976 0.8528 0.9995 0.9286 0.9095 

Table 45: Averaged fuzzy decision tree forest inference 

Valve2/Valve1 0 15 30 45 60 75 90 
0 0.6905 1 0.8528 0.5972 0.4833 0.5950 0.04718 
15 0.6843 0.8665 0.7403 0.5637 0.4929 0.5537 0.4127 
30 0.6630 0.5650 0.4061 0.6071 0.4648 0.6071 0.6111 
45 0.6667 0.6533 0.4904 0.6389 0.4087 0.4401 0.4556 

Table 46: Similarity matrix for the decision tree forest 

 Conclusion and Discussion 

The proposed concept for fuzzy inference of decision trees can achieve the desired performance 

and deliver good results. It is possible to calculate a similarity measurement for classes in a 

decision tree without changing the algorithm used to create the tree. However, the design of the 

node weighting function is important. Paths should have a low PathWeight to get a meaningful 

similarity measurement. A "flat" node weight function is more sensitive to changes in the input 

values. On the downside, a "flat" function has a lower variance in the similarity values. "Narrow" 

node weighting functions have the opposite effect. Fuzzy classification plus decision trees creates 

a powerful tool for condition monitoring. The fuzzy decision tree inference is easily understood, 

fast and small, making it appropriate for use in environments characterized by high safety 

requirements. With additional optimization of the weighting equation, it is possible to increase 

the variance of the fuzzification. 

Another possible variation is to not limit the fuzzification to the split value and the “false” path, 

but to weight a part of the “true” path, creating a fuzzy border between the paths. The “true” path 

will always have a higher value than the “false” path, but it will only have the value 1 if the attribute 

value is far enough away from the split value (Chiang & Hsu, 2002). 
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 PAPER 5: DECISION TREES AND GENETIC ALGORITHMS FOR 

CONDITION MONITORING FORECASTING OF AIRCRAFT AIR 

CONDITIONING 

 Introduction 

Unscheduled maintenance costs are a significant factor in aircraft operation (Gerdes, et al., 2009). 

Aircraft operators have significant increased costs if an aircraft departure is delayed or cancelled 

because of unscheduled maintenance. Unscheduled maintenance occurs when a part of an aircraft 

needs to be replaced or repaired before the scheduled replacement time. The aircraft air 

conditioning and filtering system is such a system. The air filters clog faster or slower depending 

on the environment conditions where the aircraft is operating. Filters clog faster in a moist 

environment and slower in a dry environment. A clogged filter system may not only cause a delay 

but also cause passenger discomfort. An aircraft air conditioning system is monitored by pressure 

sensors that detect changes in the air pressure. Forecasts are done by relating the pressure 

difference to the probability of clogging and forecasting the mean time to clogging (Weber, 2008). 

This paper describes a method to use machine learning to forecast the condition of a system. The 

method uses a decision tree to decide the best method to forecast a future data point and a genetic 

algorithm to adapt the decision tree to the current problem to improve performance. The decision 

about the best forecasting method is based on learned patterns from past data. The motivation for 

the approach was to create a simple method to forecast the condition of the air conditioning 

system, one able to adapt itself to different time series based on the operation of the aircraft and 

to handle the influence of events on time series data. The method should be easy to understand 

by an operator and should be able to adapt itself to different problems without much need for 

human interaction/experts. Time series data of the system condition may be constant or linear 

for a long time, but suddenly an event happens, and the time series changes significantly. 

Forecasting such a time series is difficult. The use of a decision tree enables the proposed method 

to use the best available forecasting method based on learned experience to adapt to the new 

condition. The method can use existing sensors and forecasting concepts for the forecast. It uses 

a genetic algorithm to improve the performance of the forecasting by searching for the optimal 

features set which, in turn, generates the best decision tree for the problem. 

10.1.1 Time Series 

A time series is a chronological sequence of observations on a particular variable (Bowerman & 

O'Connell, 1993). This can be the production of a company, a temperature, a pressure difference 
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or a system condition. The history of a system condition can be seen as a single or 

multidimensional time series. If the condition of a system is represented by a single variable, the 

resulting time series is one-dimensional. If the condition is represented by two or more variables, 

the resulting time series is multidimensional. A prediction of future events and conditions is called 

a forecast; the act of making such a prediction is called forecasting (Bowerman & O'Connell, 1993). 

Common methods for time series forecasting are: 

• Simple linear regression (Montgomery, et al., 1990) 

• Polynomial regression (Bowerman & O'Connell, 1993) 

• Multi regression (Montgomery, et al., 1990) 

• Moving average (Montgomery, et al., 1990) 

• Exponential smoothing (Montgomery, et al., 1990) 

• Autoregressive integrated moving average (ARIMA) (Montgomery, et al., 1990) 

In addition, Golub and Posavec propose the use of genetic algorithms to adapt the approximation 

functions for forecasting (Golub & Posavec, 1997). Chaturvedi and Chandra use quantitative data 

and a neural network to forecast financial time series data (Chaturvedi & Chandra, 2004).  

10.1.2 Decision Trees 

Decision trees are a method from the area of artificial intelligence and are used for machine 

learning (Russell & Norvig, 2003). They are often binary trees, where each node has an if-then-

else function on an attribute of the sample data. More complex versions with more than two 

branches use a switch function. The tree can be trained with the ID3 algorithm (Iterative 

Dichotomiser 3)  (Quinlan, 1986). ID3 was the first algorithm to construct decision trees; the 

improved version of ID3 is C4.5 (Quinlan, 1993). There are other algorithms to construct a 

decision trees, including random trees. Decision trees are easy to understand, and a 

decision/classification can be calculated quickly. A sample decision tree is shown in Figure 899. 
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Figure 89: Simple decision tree 

10.1.3 Genetic Algorithms 

Genetic algorithms belong to the class of heuristic local search algorithms. They evaluate multiple 

valid solutions, choose the best ones and create new variations by combining and changing them. 

The new set of solutions is now evaluated; the best ones are selected, combined and changed. Each 

iteration of these steps is called a generation. The search is finished when the algorithm has 

calculated a certain number of generations or when an abort criterion is reached (Russell & 

Norvig, 2003). 

 Method 

The method proposed in this paper for time series forecasting is based on decision trees. The 

inputs to a decision tree are time series characteristics (e.g. maximum value, gradient), and the 

output is an approximation function/method for forecasting based on training data. The quality 

of forecasting is increased by using a genetic algorithm (Russell & Norvig, 2003) to optimize the 

process parameters. This allows the process to adapt itself to different problems without human 

interaction. Training enables the forecasting process to use past data to predict the future data 

points in a much more reliable way than without training. The process can learn to use a different 

forecasting function when irregularities appear in the time series. These irregularities can be 

triggered by the occurrence of certain events that change the future data points of the time series 

significantly, e.g., switching from a simple linear behaviour to an exponential behaviour. 

The process is divided into two parts, one for training the algorithm and optimizing the decision 

tree and the other for forecasting the time series. In former part, training samples are created, 

time series features are calculated, a forecasting method is selected and the decision tree is 

generated. 
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Data points are forecasted after the decision tree is generated and the process parameters are 

optimized. Each iteration of the forecasting process calculates a single future data point. With 

multiple iterations, it is possible to calculate more data points. Variations of the default process 

can calculate multiple data points and are shown later in this section. 

10.2.1 Training Process 

The learning process takes much more time than the forecasting process and is only executed 

when new training samples are available and during the initial training. The goal of the training 

process is to find an ideal set of features of the times series that give the most information to find 

the optimal extrapolation algorithm. Input to the training process is a data set with different 

features and the best extrapolation algorithm for the time series that the features represent. The 

learning process has seven steps. The first four steps are executed only once to generate the input 

for the last three steps. All other steps except the last one (process parameter optimization) are 

iterated multiple times to generate a random base population of decision trees for the parameter 

optimization with a genetic algorithm (last step). 

Samples 

Decision trees and most other concepts from artificial intelligence need many data samples for 

learning and finding patterns. This means that a time series should not be too short and/or 

multiple time series are available. Sample time series data should include all relevant conditions 

and events. The algorithm can only learn from past data; it cannot predict events that were not in 

the sample data. 

Process Parameters 

The training process is controlled by multiple parameters. These parameters control how samples 

and time series characteristics are calculated. Process parameters are: 

• Window size [numeric]. This parameter defines how many data points each data sample 

contains. These data points include past data and the data points to forecast. This can be a 

fixed or a varying number and is different for each data sample. 

• Window shift [numeric]. This parameter defines by how many data points the sampling 

window should be shifted to generate a new data sample from the time series. Window 

shift and window size define how many training samples are generated. 

• Forecast horizon [numeric]. The parameter controls how large the forecasting horizon is, 

i.e., for how many future data points the forecasting method should be calculated. The 

forecasting horizon can be from one data point up to all remaining data points in the time 
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series. In what follows, we use a forecasting horizon of one data point. The forecasting 

horizon cannot be larger than the window size. 

• Short term gradient calculation [Boolean]. This parameter determines whether the 

gradient for the data points in the current window should be calculated. 

• Long gradient calculation [Boolean]. This parameter determines whether the gradient for 

the complete time series until the last data points should be calculated. 

• Mean value calculation [Boolean]. This parameter defines if the mean of the sample data 

points should be calculated. 

• Maximum value calculation [Boolean]. This parameter defines if the maximum of the 

sample data points should be calculated. 

• Minimum value calculation [Boolean]. This parameter defines if the minimum of the 

sample data points should be calculated. 

• Dimensions for classification [Boolean list]. This parameter defines which dimensions 

should be used for the calculation of characteristics. 

• Zero crossing [Boolean]. This parameter decides if the number of zero crossings in the 

current window should be calculated. 

Other parameters may be used. It is also possible to include long- and short-term trends by 

calculating the parameters for the current window and for the complete time series. The 

optimization algorithm then decides what long-term and what short-term parameters deliver the 

best results. 

Time Series Features 

In this step, the training samples are generated, and time series features are calculated, based on 

the process parameters. The time series data are split into multiple smaller time series. The length 

of these smaller time series is defined by the window size. Data sample generation is done by 

shifting an n-data point window over the sample time series. See Figure 9090 for an example of a 

one-point window shift and a window size of three. Other features may be used, depending on the 

problem and the need. 
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Figure 90: Generation of trend learning samples with a sliding window 

Training Samples 

The decision tree output for the training time series now needs to be calculated. For each possible 

approximation function/method from a given list, the forecasting for the forecasting horizon is 

calculated. Next, the squared forecasting error is calculated. The best fitting approximation 

function/method (with the least forecasting error) defines the "class" of the data sample. The 

following is a list of possible simple approximation functions (simple linear regression, 

polynomial regression and multi regression); each approximation function can contain up to three 

parameters (a, b, c and d): 

𝑓(𝑥) = 𝑎𝑥 + 𝑏 
𝑓(𝑥) = 𝑎𝑥2 + 𝑏𝑥 + 𝑐 
𝑓(𝑥) = 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 

𝑓(𝑥) = 𝑎𝑒𝑏(𝑥+𝑐) + 𝑑 
𝑓(𝑥) = 𝑎 𝑙𝑜𝑔(𝑏(𝑥 + 𝑐)) + 𝑑 

     𝑓(𝑥) = 𝑎 sin(𝑏(𝑥 + 𝑐)) + 𝑑 

𝑓(𝑥) = 𝑎 cos(𝑏(𝑥 + 𝑐)) + 𝑑 

𝑓(𝑥) = 1 − 𝑎𝑒𝑏(𝑥+𝑐) 
𝑓(𝑥) = 𝑎𝑏𝑥+𝑐 
𝑓(𝑥) = 𝑎(𝑏(𝑥 + 𝑐))2 + 𝑑 
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Note: this list was used in the experiments. In addition to the previous list of simple functions it is 

possible to use other forecasting methods. Moving average, auto regressive process, moving 

average process, ARMA, ARIMA, exponential smoothing, etc. can be used as functions. Kret (Kret, 

2011) performed experiments using complex functions to forecast the complete future time series 

instead of only one future data point. 

Decision Tree Training 

The decision tree is trained after all samples have been created using any decision tree learning 

algorithm, like ID3, C4.5, random trees etc. 

Performance 

After the decision tree has been calculated, it can be evaluated and tested on the sample time 

series. The training data samples are applied to the forecasting process to calculate the rest of the 

sample time series from each training sample. The performance is calculated by calculating the 

maximum squared error of the forecasting and using this value as the fitness of the decision tree. 

A number of different approaches can be used to calculate the fitness of the decision tree, such as 

the maximum confidence range. The confidence range describes how many data points in a row 

can be forecasted until the error (either relative or absolute) is greater than a given limit. 

Process Parameter Optimization 

If the best performance of the generated decision trees is below a given limit, a genetic algorithm 

is used to generate new valid solutions. New decision trees are generated until one of the decision 

trees performs above the given limit or until a certain number of generations has been calculated. 

Inputs to the genetic algorithm are the process parameters; the fitness is measured based on the 

performance of the decision tree. The genetic algorithm adapts the process parameters for the 

decision tree to the current problem by selecting the time series features which give the best 

performance. This also reduces the need for a human expert to set the process parameters.  

10.2.2 Forecasting Process 

The forecasting process is an iterative process. During each interaction, a new data point is 

forecasted. The forecasting process is simple and consists of the following steps. 

Calculate Time Series Features 
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The first step in the forecasting process is to calculate time series features based on the optimized 

process parameters and given past data points. 

Evaluate Decision Tree  

The second step is to evaluate the time series features by using the generated decision tree. The 

result is an approximation function. 

Predict Next Data Point(s)  

The third step is to use the approximation function to extrapolate the next data point of the time 

series. 

Add Result to Time Series 

The new calculated data point is added at the end of the given time series. All such calculated data 

points are the forecasting. 

Iterate 

If more than one point is forecasted, the forecasting process is repeated with the new added data 

point as part of the past data points. Each iteration calculates a new data point. 

10.2.3 Method Summary 

The method consists of two processes: a training process and a forecasting process. Both 

processes use the same given set of methods to forecast the next data point for a given time series. 

Inputs to both processes are short (5-20 data points) time series snippets. The time series 

snippets contain one additional point for the training. In the training process, a decision tree is 

calculated and used for the forecasting. The decision tree is calculated using process parameters 

optimized by a genetic algorithm. The forecasting is done point by point. The decision tree is used 

to select the best forecasting method for the current given time series snippet. 

10.2.4 Process Modifications 

The method can be modified depending on the problem at hand. One modification is to not only 

use the past data points plus one future point to calculate the approximation function, but also to 

use more than one future data point to account for a long term trend, i.e., a greater forecast horizon 

(Montgomery, et al., 1990). The forecasting will still calculate only one future data point, but the 

long-term trend is considered in the generation of the decision tree. 
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Another modification is to iterate the training process only once and then use the calculated 

forecasting method to forecast all remaining future data points of the time series. This 

modification works well when the training data include multiple future data points up to all 

remaining data points of the sample time series (Kret, 2011). 

A regression tree (Breiman, et al., 1984) can be used, if a future data point is directly forecasted 

without an approximation function. This reduces the required processing power, but the process 

needs to be iterated to forecast multiple data points. 

 Experiments 

Three experiments were performed to validate the process. All experiments used a time series 

typical of the change of a system condition over time (Kolerus & Wassermann, 2011). The first 

experiment considered forecasting the time series without any noise. The second experiment 

added noise to the test samples, but the training samples were without noise. In the third 

experiment, noise was added to training and testing samples to get a more realistic use case. The 

forecasting of future data points was started at three different points in the time series: 1/4, 2/4 

and 3/4 of the function. The time series was forecasted until the end of the sample time series; 

there were ten past data points with a forecasting horizon of one. 

The time series for the experiment was a one-dimensional time series containing 120 data points. 

The first 80 data points were calculated via 𝑓(𝑥) =
0.1

80
𝑥; the data points between 81 and 120 were 

calculated via 𝑓(𝑥) =
𝑥−81

120−81

2
+ 0.1. Figure 9191 shows the time series. 

 
Figure 91: Plot of the experiment function 

The quality of the forecasting was measured by six values. For every forecasting, the maximum, 

mean and minimum forecasting error were calculated; the confidence range for an absolute error 
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of 0.01, 0.05 and 0.1 was also calculated. The genetic algorithm for the experiments had a 

population of 50 members and 20 generations. New members were generated by dividing the 

process parameters into three parts and generating a child from three different parents. The 

mutation rate for each process parameter was 10 %.  

10.3.1 Forecasting Without Noise 

The first experiment was about forecasting the time series by using the method as it was 

presented. There was no noise in either training or forecasting data. Figure 9292 plots the results 

of the forecasting. The black line is the input points, the red line is the sample time series to 

predict, and the green line is the calculated forecasting, starting at data point 30, 60 or 90. The 

image suggests the advantage of using a decision tree. The right side shows the forecasting using 

the best prediction method without using a decision tree to select the method. This method was 

also used to generate training samples in the training process. The left side has the same input, 

but the proposed process is used to forecast the next data point. The advantage of the decision 

tree becomes clear when the function suddenly changes (data point 80) from a 0-degree 

polynomial to a second-degree polynomial function. Here, using the decision tree forecasting 

method is much more accurate than using only the best fitting method. 

 
Figure 92: Plot with different starting points and forecast 

Figure 9292 shows that the algorithm was quite good at following the time series. The maximum 

error was low, and the algorithm was able to predict the time series nearly perfectly. The 

preconditions for this forecasting were ideal (no noise), and the time series was fairly simple. The 

advantage of using a decision tree is obvious. 
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10.3.2 Forecasting with Noisy Test Samples 

In the second experiment, the training samples were not changed, but the testing samples were 

modified by noise. In the first test, a random number between -0.02 and 0.02 (2% noise) was 

added, and for the second test, -0.05 to 0.05 (5% noise) was added to each data point. The goal of 

the experiment was to see how well the method works with input noisy data. Results are shown 

in Figure 9393. The test was repeated 20 times to show the forecasting results for different noisy 

input data. 

  

Figure 93: Plot with different starting points, noisy training data and noise 

 Oscillations were caused by functions used for the predictions like sin and polynomial functions. 

The forecasting accuracy was lower than without noise. If the starting point of the forecasting was 

at data point 60, the results were especially bad. The algorithm was unsure where it was in the 

time series. The high impact of the noise on the time series features because of the relatively small 

number of past data points (i.e., 10) caused the decision tree to make the wrong decision. 

10.3.3 Forecasting Noisy Training and Test Samples 

In this experiment, the training data and testing data were noisy. Two tests with different noise 

levels were calculated. For each test, three noisy training time series were used to generate 
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training samples for the decision tree calculation. Each data point in the time series was modified 

by a random number. This number was white noise between -0.02 and 0.02 (2% noise) for the 

first test and 0.05 to 0.05 (5% noise) in the second test. The results are shown in Figure 9494. The 

test was repeated 20 times to show the forecasting results for different noisy input data. 

  
Figure 94: Plot with different starting points, noisy training and testing data and noise 

In the figure, it is obvious that the accuracy of the forecasting is not as good, but this was to be 

expected. It is worth noting that only three noisy training time series were used. The predicted 

time series was similar to the original curve. The inaccuracy occurred because the algorithm was 

not sure of its position, and the approximation only had ten noise points to calculate the next data 

point. With more training data and more past data points, the algorithm would perform better. 

With noisy training and testing data, the algorithm used different functions for the approximation 

and thus created no oscillations. 

 Conclusion 

The experiments showed that the method is well suited for time series forecasting tasks. The 

advantage of using a decision tree is clear, and the performance of the forecasting is significantly 

improved. With more advanced forecasting methods, it will be possible to improve the 

performance even further. The method is able to adapt to different problems, and the performance 

can be enhanced by using problem-specific approximation functions/methods and process 
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parameter optimization. A single future data point is forecasted (by offering a good approximation 

function), and the process is iterated until a desired number of data points are forecasted. It is 

easy to train the algorithm to use an approximation function to forecast more than one data point 

if the problem desires this (long-term forecasting). The forecasting quality of the method 

increases with more available past data points, more available features and more test and training 

samples, especially when the training data are very noisy. In other words, the method can be 

enhanced for better forecasting. 
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 PAPER 6: GENETIC ALGORITHMS AND DECISION TREES FOR 

CONDITION MONITORING AND PROGNOSIS OF A320 AIRCRAFT AIR 

CONDITIONING 

 Introduction 

Unscheduled maintenance can be very expensive for airlines (Institut du Transport Aerien, 2000) 

(Eurocontrol, 2006) (Cook, et al., 2004) and should be avoided. One way to prevent unscheduled 

maintenance is to predict a future failure and perform maintenance actions during line 

maintenance before the failure occurs. Condition monitoring can be used to detect the current 

system health status and to predict the future health status. Condition monitoring is widely used 

for, among others, rotary machines (gear boxes, gas and wind turbines, bearings), plants and 

structures (bridges, pipelines).  

Vibration data are frequently used as the basis for condition monitoring. Goode, Moore and 

Roylance (2000) show how a basic life prediction method works using a simple system with alarm 

settings. An alarm is triggered if a vibration signal exceeds the alarm limit. Mahamad, Saon and 

Hiyama (2010) present a method to predict the remaining useful life of rotary machines using 

artificial neural networks. Using the vibration signal as input data, they show how RUL is 

important for condition based maintenance. Saravanan and Ramachandran [6] use wavelet 

features and decision trees for fault diagnosis. They use the same decision tree algorithm as we 

do in this paper but a different set of features. Sugumaran and Ramachandran (2011) use also the 

same decision tree algorithm, as well as the decision tree for feature selection, but they convert 

the resulting decision tree into a set of fuzzy rules to use for classification. 

Condition monitoring is difficult to use in aircraft maintenance because certification issues create 

certain restrictions. Aircraft maintenance is based on Reliability Centred Maintenance (RCM). The 

goal is to have maximum safety and reliability with minimized costs. To meet this goal, the 

Maintenance Steering Group (MSG) has developed maintenance concepts specifically for aircraft. 

The most recent is MSG-3 (Federal Aviation Administration, 2012). Its focus is the effect of a 

failure on the aircraft operation (Nowlan & Heap, 1978) (Air Transport Association of America, 

2007). For each item that effects airworthiness, it describes a specific maintenance task (task-

oriented maintenance). MSG-3 can use condition based maintenance (CBM), defined as 

“preventive maintenance which includes a combination of condition monitoring and/or inspection 

and/or testing, analysis and the ensuing maintenance actions” (European Committee for 

Standardization, 2015) or predetermined maintenance (PM), defined as “preventive maintenance 
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carried out in accordance with established intervals of time or number of units of use but without 

previous condition investigation” (European Committee for Standardization, 2015) to achieve its 

goals. Predetermined maintenance is used by most airlines and manufacturers. Preventive 

maintenance with scheduled maintenance provides benefits not only for cost control but also for 

reliability (Kiyak, 2012). Condition based maintenance (CBM) is based on condition monitoring 

and aims at preforming maintenance based on the inspected system’s condition and the trend of 

its condition. CBM can be used to realize RCM (Niu & Pecht, 2009) using condition monitoring. 

Condition monitoring was introduced to EN 13306 in 2010 (European Committee for 

Standardization, 2010). Before 2010, only CBM and monitoring were included in EN 13306 

(European Committee for Standardization, 2001). In other words, condition monitoring is a recent 

development; as it matures, however, it is slowly taking hold in a number of industries.  

Aircraft maintenance procedures need to reflect the times and draw on current technologies. This 

paper suggests an approach to include modern technologies in aircraft maintenance by using a 

mixture of continuous and discrete input signals to predict the condition of an aircraft system. 

More specifically, it uses decision trees (Cernak, 2010) (Quinlan, 1986) to approximate a system 

model based on recorded aircraft data. The goal is to predict the remaining useful life (RUL) of the 

system by forecasting the system health condition. It uses a data-driven black box model (only the 

input of the system is known) based on sensor data over an extended period of time to create a 

system model represented by a decision tree forest. The novelty of the methodology is the use of 

an artificial intelligence method and a simple noise resistant prediction method in a restricted 

commercial aircraft area. The data used for the validation consist of recorded aircraft data 

available in most aircraft and contain a great deal of noise. The methods and operations were 

selected with certification and on-line monitoring in mind. The advantages of this approach are 

that it can be used on-ground or on-aircraft, and real-time monitoring of a single aircraft or a fleet 

is possible without the installation of additional hardware. 

The structure of the paper is as follows. This section gives background information on the 

methods and technologies used to develop the proposed method. The next section explains the 

method in detail, and the following one validates the method with real world data from an in-

service aircraft. The paper ends with a conclusion and offers some final comments. 

11.1.1 Condition Monitoring 

Condition monitoring is defined as (European Committee for Standardization, 2015): 
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“Activity, performed either manually or automatically, intended to measure at predetermined 

intervals the characteristics and parameters of the actual state of an item” 

It is based on three steps (Jardine, et al., 2006): 

1. Data acquisition: Collecting and storing data from physical assets. This includes event 

data and condition data. Event data are what happened and what the condition data 

represent. 

2. Data processing: The first step of data processing is data cleaning followed by data 

analysis. Data analysis includes transformation of data from the time domain into the 

frequency domain and feature extraction. 

3. Maintenance decision-making 

 

Condition monitoring can either be continuous or periodic (Jardine, et al., 2006). Continuous 

monitoring (automatic) is often performed by installed sensors and automatically by machines. 

Periodic monitoring (manual or automatic) can be done by humans and can include checks at 

regular maintenance intervals. Implementing condition monitoring is a difficult and costly task.  

Diagnosis and prediction are two goals of condition monitoring (Jardine, et al., 2006). Diagnosis 

(posterior event) deals with detection (Did something fail?), isolation (What failed?) and 

identification (Why did it fail?) of faults when they occur and is defined as (European Committee 

for Standardization, 2001):  

“Actions taken for fault recognition, fault localization and cause identification”. 

Prognostic (prior event) deals with predicting future faults and how soon they will occur (Jardine, 

et al., 2006). There are two types of prediction: prediction of remaining time until a failure occurs 

and prediction of the chance a machine will operate without a fault until the next scheduled 

maintenance (Jardine, et al., 2006). 

Condition prediction can be done based on sensor data or on system condition (Mobley, 2002). 

The analysis algorithm looks not just at recorded parameters at a single moment in time; it also 

takes the full parameter history into account. The need for maintenance of the component is 

indicated if the data trend of parameters points to a degradation of the component. Based on the 

parameter time history, the analysis algorithm allows a forecast of the remaining lifetime of the 

component (Kolerus & Wassermann, 2011). Analysis and prediction use a variety of methods to 

predict future values. Physics-based approaches for prediction include Kalman filter, sequential 



226 

 

Monte Carlo, Markov models and others. Data-driven approaches include artificial ARMA 

(autoregressive-moving average), ARIMA (autoregressive integrated moving average), neural-

networks, Bayesian networks and others. All these methods can be used to predict values for a 

complex time series (Chen, et al., 2011) (Caesarendra, et al., 2010) (Pham & Yang, 2010) (Tian, et 

al., 2010). Output of the prediction is normally an estimated time to failure (ETTF) and a 

confidence interval (Sikorska, et al., 2011). The confidence interval defines how reliable a 

prediction is (Schruben, 1983) (Sikorska, et al., 2011) and can be calculated using standard time 

series. 

The condition of the system is often defined by setting limits on certain values based on experience 

(knowledge based) (Mobley, 2002) or by creating a mathematical representation of the physical 

system model or a data-driven model (Kolerus & Wassermann, 2011) (Williams, et al., 1994) (Zhang, 

2006). Other methods include machine learning techniques, such as decision trees (Sugumaran, et 

al., 2007) (Sugumaran & Ramachandran, 2007) (Tran, et al., 2009), vector support machines 

(Pham, et al., 2012) (Sugumaran, et al., 2007) (Widodo & Yang, 2007) and neural networks (Chen, 

et al., 2012) (Mahamad, et al., 2010) (Tian, 2012), to map the features of the input signal to a 

condition. 

Another option is to use a physics-based model (representing the system’s physical features, 

components and interactions), feeding the sensor input into the model, calculating the output and 

checking how the output of the theoretical model deviates from the real system. This approach 

can be used for fault isolation and fault identification of failures in addition to prognosis (Wang, 

et al., 2008) (Williams, et al., 1994) (Kolerus & Wassermann, 2011) (Jardine, et al., 2006). 

Data-driven models use past data to create models with stochastically or machine learning 

algorithms (Pecht, 2008) (Garcia, et al., 2006) (Jardine, et al., 2006). These models require many 

data samples representing different conditions of the system. Data-driven models require less 

“manpower” than a mathematical model; model validation and testing can be performed almost 

automatically. 

All three techniques are widely used and often are combined to perform more accurate diagnosis 

and prognosis. 

11.1.2 Feature Extraction 

Feature extraction is the process of reducing the dimension of the initial input data to a feature 

set of a lower dimension that contains most of the significant information of the original data 

(Fonollosa, et al., 2013). This is done to extract features from noisy sensor data (Lin & Qu, 2000); 
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(Fu, 2011) and to avoid problems caused by having too many input features (especially for 

vibration data) for the classifier learning phase (Yen & Lin, 2000). Feature extraction is often a 

first and essential step for any classification (Yen & Lin, 2000).  

Methods of feature extraction include extracting features from the time domain and the frequency 

domain (Fourier transformation, wavelet transformation (Fu, 2011)) and clustering, if necessary. 

Basic features include maximum, mean, minimum, peak, peak-to-peak interval etc. (Jardine, et al., 

2006). Complex feature extraction methods include principal component analysis (PCA), 

independent component analysis (ICA) and kernel principal component analysis (KPCA) (Widodo 

& Yang, 2007). Other feature extraction methods are: t-test, correlation matrix, stepwise 

regression and factor analysis (FA) (Tsai, 2009). A comparison of the various feature extraction 

methods appears in Arauzo-Azofra et al. (Arauzo-Azofra, et al., 2011). 

Selecting relevant features for classifiers is important for a variety of reasons, such as 

generalization performance, computational efficiency and feature interpretability (Nguyen & De 

la Torre, 2010). Using all available features can result in over-fitting and bad predictions, but it is 

not possible to look at each feature alone because many features are inter-correlated (Meiri & 

Zahavi, 2006). Noise, irrelevant features or redundant features complicate the selection of 

features even more. Thus, features are often selected using methods from pattern recognition or 

heuristic optimization, or a combination. Sugumaran et al. (2007) show how different 

technologies can be combined for a single goal; they use a decision tree for feature selection and 

a proximal support vector machine for classification. Widodo and Yang (2007) combine ICA/PCA 

with SVM for feature extraction and classification. Many algorithms combine genetic algorithms 

(GA) with a pattern recognition method, like decision trees (DT), SVM or artificial neural networks 

(ANN). In these combinations, GA is used to optimize the process parameter (Samanta, et al., 

2003) (Huang & Wang, 2006) or for feature extraction and the pattern recognition required for 

classification (Samanta, 2004) (Saxena & Saad, 2007) (Jack & Nandi, 2002) (Samanta, 2004)  

11.1.2.1 Time Domain Features 

Time domain features can be direct features, such as the number of peaks, zero-crossings, mean 

amplitude, maximum amplitude, minimum amplitude or peak-to-peak intervals (Jardine, et al., 

2006) (Pascual, 2015). In addition, it is possible to analyse a signal using probabilistic moments 

like root mean square, variance, skewness or kurtosis to get features that represent the signal 

(Lambrou, et al., 1998). Other methods include using correlation, autocorrelation, entropy, PCA, 

ICA and KPCA (Widodo & Yang, 2007). 
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11.1.2.2 Frequency and Time-Frequency Domain 

Fast Fourier transformation (FFT) transforms a signal from the time domain into the frequency 

domain. Specifically, FFT takes a time series and transforms it into a complex vector that 

represents the frequency power in frequency domain. The basis of the FFT algorithm is the 

discrete Fourier transformation (DFT), defined in Equation (61) with xn… xn-1 as complex numbers. 

 

 

𝑋𝑘 =  ∑ 𝑥𝑛𝑒
−𝑖2𝜋𝑘

𝑛

𝑁  𝑘 = 0, … 

𝑁−1

𝑛=0

, 𝑁 − 1 (61) 

FFT is performed in O(N log N) time (Ohm & Lüke, 2010) and can be calculated in real time because 

it can be executed in parallel. It is a widely used and well-established method (Peng, et al., 2002); 

(Fu, 2011). Recent research uses the discrete wavelet transformation (DWT) to represent time 

series in the frequency domain. The DWT represents the time series in a time-scale form (Jardine, 

et al., 2006) and is especially suited to represent non-stationary signals (Lin & Qu, 2000). 

Failure diagnosis mostly focuses on the frequency domain, e.g. using Fourier transform or wavelet 

transform, but in the early stage of failure development, the damage is not significant and the 

defect signal is masked by the noise in the acquired signal. The periodicity of the signal is not 

significant. Although spectral analysis may not be effective, using the time domain feature is 

recommended. Normal and defect signals differ in their statistical characteristics in the time 

domain, so the combined use of time domain features and features of other domains can improve 

diagnosis accuracy. 

 Method 

The method proposed in this paper for condition monitoring (CM) is based on decision trees 

(DTs). The inputs for the DTs are features (e.g. maximum value, mean values, frequency domain 

data; see Table 47) extracted from processed sensor data; the output is the current health 

condition in ten percent steps of the remaining useful life (RUL) (see Figure 98 and Figure 99). 

The health condition is used to forecast the RUL. The quality of the monitoring is increased by 

using a genetic algorithm (Russell & Norvig, 2003) to optimize the process parameters. 

The method is divided into a training process and a classification process. The goal of the former 

is to create a set of optimal decision trees to classify the system condition. The goal of the latter is 

to classify a new sensor data sample in the current system condition and use the system condition 

history to make a prediction about the remaining RUL. 
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The novelty of the approach is the discretisation of the system’s condition into ten categories and 

the use of the condition changes to create a time series for condition prediction (see Galar et al., 

2012, for a similar approach using support vector machines).  

The method adds the input from multiple mixed sensors (Boolean and continuous) to detect the 

system’s health condition. The goal is to prevent unscheduled maintenance operations by 

estimating the RUL of the monitored system. The goal is not to predict the future time series of a 

sensor as well as possible. Nor will the method output what failures will happen; it will only show 

that a failure will happen at a certain point in time. Ideally, it will avoid the “better mousetrap 

symptom” (reinventing a common product with some improvements and higher costs) and will 

be applicable to more than one specific system. Jack and Nandi (2000) show that using a genetic 

algorithm to select features from a given set can significantly improve the accuracy of a classifier. 

11.2.1 Training Process  

The training process consists of three steps: system data acquisition, setup and optimization loop 

(see Figure 95). The first step is to record sensor data for the training process. The recorded data 

should contain all system conditions (from newly installed to broken) under different conditions 

(different environments, different aircraft). Any performed maintenance actions need to be 

recorded as well. Input data can be Boolean data (switches, valves etc.) or continuous data, like 

temperature and pressure data. Discrete input data are mapped to continuous data with the same 

frequency. All input data sources must have the same sampling frequency, but the source does not 

matter; data can be sound, vibration, temperature power consumption, weight or magnetic flow. 

 

Figure 95: Classification training process 

The second step is to prepare the data for the actual training process. First, the recorded data 

samples need to be correctly labelled and classified because the decision tree training is a 

supervised learning process. The data samples are labelled with the system condition, 

represented by the data in ten percent groups (x < 10% RUL; 10% ≤ x < 20% RUL etc.). We 

predefined ten categories to give a good estimation of the remaining useful life and to ensure a 
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wide range of samples per category. Fewer classes will reduce the usefulness of the method for 

the operator, while more classes mean more misclassifications because more samples are likely 

be close to two classes. 

Meta data, like maintenance actions, aircraft altitude and flight phase, need to be considered when 

labelling the data samples. The samples should present a stable system state, similar across 

different aircraft. In this case, we used the cruise flight phase; the aircraft is in a stable system 

condition with little stress and a condition that will not be changed for some time. This step also 

includes the generation of a random parameter set for the feature extraction as a starting point 

for the optimization loop. 

The main work happens in the third step when multiple feature extraction steps are executed and 

multiple decision trees are built.  

The task of the optimization loop is to modify the parameters for the feature extraction to improve 

the accuracy of the classification with a decision tree. A genetic algorithm with basic operations 

(crossover, mutation (Russell & Norvig, 2003)) is used to vary the parameters. The “fitness” of a 

parameter set is measured using the classification accuracy of the decision tree built using this 

parameter set. Genetic algorithms have been used for many optimization problems  (Golub & 

Posavec, 1997) (Jack & Nandi, 2000) (Stein, et al., 2005) and can be executed in parallel. The first 

step is to create many different sets of training input vectors by applying feature extraction 

operations to the labelled data samples. These feature extraction operations are controlled by the 

previously created parameter sets. The second step of the optimization loop is to create a decision 

tree with the input vector representing the current feature set. 

11.2.1.1 Feature Extraction 

Having a set of elemental feature extraction operations controlled by a parameter means the 

operations can be executed in any order, and the feature extraction algorithm can be adapted for 

multiple problems (Mierswa & Morik, 2005) by using a genetic algorithm for optimization without 

human interaction. In Gerdes and Scholz (Gerdes & Scholz, 2011), signal analysis and machine 

learning are used to detect the condition of an experimental setup. The concept is almost 

automated and but requires minimal fine-tuning by hand because the process depends on several 

different parameters, each of which must be adapted to the data for optimal classification. These 

parameters include the following: 
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Parameter Name Possible 

Values 

Block width 0 – 1000 (Hz) 

Use blocks Boolean 

Mean amplitude for each block Boolean 

Maximum amplitude for each block Boolean 

Mean frequency power for each block Boolean 

Maximum frequency power for each block Boolean 

Number of peaks for each block Boolean 

Minimum value of a peak 0 – 5 

Overall mean and maximum values Boolean 

Confidence factor 0.00001 - 0.5 

Table 47: Data processing parameters 

Block width defines how many frequencies are grouped in the frequency domain to form a block 

for detailed feature extraction. Noise reduction factor defines how much noise will be reduced. 

The noise reduction in this concept removes all frequencies wherein power is below noise 

reduction factor times mean power. Equation 62 shows how noise is defined for this method. 

 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 𝑃𝑜𝑤𝑒𝑟 < 𝑁𝑜𝑖𝑠𝑒 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 𝐹𝑎𝑐𝑡𝑜𝑟 ∙ 𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 

(62) 

Minimum value of a peak controls what frequencies are defined as peaks. It is the opposite of 

noise. Any frequency where power is greater than or equal to the peak border times the mean 

power is defined as a peak, as shown in Equation (63. 

 

 

𝐹𝑟𝑒𝑞𝑢𝑒𝑐𝑦 𝑃𝑜𝑤𝑒𝑟 ≥ 𝑃𝑒𝑎𝑘 𝐵𝑜𝑟𝑑𝑒𝑟 ∙ 𝑀𝑒𝑎𝑛 𝑃𝑜𝑤𝑒𝑟 

(63) 

Confidence factor controls the extent of tree pruning and is a parameter of the J48 algorithm of 

the WEKA software (Waikato, 2009). A confidence factor greater than 0.5 means no pruning is 

done. The lower the confidence factor, the more pruning.  

All other parameters are Boolean; they control whether a given feature is calculated or not. 

Elementary feature extraction operations can be executed in any order and allow the creation of 

a set of feature extraction operations that can be different for each problem (Mierswa & Morik, 
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2005). This makes elementary extraction operations good for machine learning. The operations 

are also fast to compute and can be used for online monitoring. The data from the various sensors 

are not merged at the sensor level but at the feature extraction level. A feature set is calculated for 

each input from each sensor. These features are merged into one feature input vector for the 

decision tree learning phase. No frequency features are calculated for signals that are nearly 

constant (Boolean switches, discrete system settings, certain process parameters). 

The selection of features is determined by the parameters in Table 47. The values for the 

parameters are randomly generated or generated during optimization using a search algorithm. 

We use these quite basic feature extraction operations to ensure that, even with simple hardware, 

a near real time monitoring is possible. 

11.2.1.2 Building a Decision Tree  

Decision trees are used in the area of artificial intelligence for decision making and machine 

learning. They are often binary; each node has an if-then-else function on an attribute of the 

sample data. The ID3 algorithm (Iterative Dichotomiser 3) (Quinlan, 1986) was the first algorithm 

to construct decision trees. ID3 had some problems and was improved in C4.5 (Quinlan, 1993). 

The revised algorithm has the ability to handle both discrete and continuous attributes, to handle 

samples with missing attributes and to support pruning of the tree. It uses the concept of 

information gain and information entropy to choose attributes from the data and build a decision 

tree. The result is a binary decision tree, whose root is the attribute with the highest normalized 

information gain. Nodes in subsequent levels of the tree represent attributes with lower 

normalized information gain. Decision trees are used to solve a large variety of problems, e.g. tag 

speech parts (Schmid, 1994), land cover mapping (Friedl & Brodley, 1997) and text mining (Apte, 

et al., 1998). 

In our experiments, we used the C4.5 algorithm, specifically the open source implantation J48 

from WEKA (Waikato, 2009) software. It supports continuous values and pruning and is very well 

understood. 

The next step is to evaluate the fitness of the decision tree by checking how many samples are 

correctly classified. This checking is done by classifying a test data set. The test data set can 

contain data samples used to build the decision tree, but preferably, the test set should be 

disjunctive from the training set. 
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A new parameter set for the feature extraction is created using the genetic algorithm, and a new 

input vector for the next iteration is created. The optimization loop is executed until a given 

accuracy is achieved or a set number of iterations is performed. 

11.2.2 Classification and Prediction 

The process for predicting condition (Figure 96) is based on the results of continuous condition 

monitoring and classification. Each classification adds a new data sample to the class time series. 

The process has three steps: the first is recording new sensor data; the second is classifying the 

sensor data and adding the classification result to a time series; the third is marking when the 

system condition switches from one state to another and using these data points to extrapolate 

the data into the future. 

 

Figure 96: Classification and prediction process 

Having a network of different sensors to monitor a system can cause sensor data fusion. Multi-

sensor data fusion prevents the problem of combining sensor data from different sources into one 

consistent model, but the main questions of sensor fusion are (Basir & Yuan, 2007): 

• How to get accurate and reliable information from multiple and possibly redundant 

sensors; 

• How to fuse multi-sensor data with imprecise and conflicting data. 
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Techniques for sensor fusion can be grouped into the following levels (Jardine, et al., 2006) (Ross 

& Jain, 2003) (Castanedo, 2013):  

• Data-level fusion, e.g. combining sensor data from same sensors directly (Lu & Michaels, 

2009); 

• Feature-level fusion, e.g. combining vectors and feature reduction techniques (Ross & Jain, 

2003); 

• Decision-level fusion, e.g. vote schemes (Ross & Jain, 2003). 

 

The use of multiple decision trees has been shown to improve the overall accuracy and robustness 

of predictions (Zhang, 2006). The data of the decision trees are fused onto the decision level using 

a voting method (Ross & Jain, 2003). If the majority of the trees classifies a data sample as being 

in a certain class, this class is selected. If all trees get a different result, the result of the tree with 

the highest classification accuracy for the training data is used. 

  

Figure 97: Condition monitoring with multiple trees (Zaher & McArthur, 2007)  

The proposed method uses the three best performing decision trees. Only three are selected to 

allow real time condition monitoring while increasing the accuracy in a noticeable way (Gerdes & 

Scholz, 2011). A new data sample is taken and processed according to the feature extraction 

parameter set of each tree. The sample is classified using a voting process among the three 
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decision trees (Figure 97). If two or more trees classify a data sample as the same class, this class 

is selected. If all three trees get a different result, the result of the first tree is taken.  

The resulting time series is subject to noise in form of erroneous classifications (Figure 98). If 

there are no errors, the curve should look like a set of stairs. To reduce the wrong classifications, 

each data point is set to the class of 20 of its neighbours (this value may change depending on the 

noise in the time series) (Figure 99). This means that for each data point in Figure 98, 20 

neighbouring data points are taken; the current data point takes the value of the class with the 

most members. Each noise reduced data point is now added to a new vector. The new 

classification vector is shown in Figure 99. 

 
Figure 98: Classification time series with noise/wrong classifications 
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Figure 99: Classification time series with applied noise reduction 

Condition prediction uses past condition monitoring data to predict the RUL of the monitored 

system by taking the first dot after each “health condition class jump” (jumps in Figure 99). Ideally, 

this plot should be a linear function, with the health condition changes equally spaced (see Figure 

100). Maintenance action can alter the gradient of the function and/or introduce a discontinuity. 

In such cases, the prediction needs to be restarted from maintenance action data point. 

 Depending on the usage of the system and the operation environment, the health condition 

changes may not be equally spaced. Such spacing indicates a change in the degradation and, thus, 

in the RUL. Prediction is possible when two or more state changes have been detected, however. 

Because the plot does not have more than 11 data points, it is possible to use a simple 

approximation method. The classification rules (the rules determining in which RUL class a 

sample belongs) are automatically generated by the samples used to train the decision tree. The 

threshold for an RUL of zero is gained by extrapolating the already classified samples (see Figure 

100). This means the RUL is based on experience, not on physical models or aircraft regulations 

(maximum number of flight hours).  
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Figure 100: Remaining useful life prediction 

 Validation 

We validated the proposed method using sensor data from the air conditioning system of an A320 

aircraft operated by ETIHAD Airways in the Middle East. The sensor data were from 589 flights 

over two years. Each sensor reading included over 80 values, consisting of continuous and 

Boolean data. The data were sampled with a frequency of 1 Hz. Table 48 lists the sensor data. 
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Description Bus Type 

Cabin Compartment Temperature Group 1  Zone Control Numerical 

Cabin Compartment Temperature Group 2  Zone Control Numerical 

Cabin Compartment Temperature Group 3  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 1  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 2  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 3  Zone Control Numerical 

Duct Overheat Warning Group 1  Zone Control Boolean  

Duct Overheat Warning Group 2  Zone Control Boolean  

Duct Overheat Warning Group 3  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 1  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 2  Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 3  Zone Control Boolean  

Duct Temperature Group 1  Zone Control Numerical 

Duct Temperature Group 2  Zone Control Numerical 

Duct Temperature Group 3  Zone Control Numerical 

G + T Fan OFF  Zone Control Boolean  

Hot Air Switch Position ON  Zone Control Boolean  

Minimum Bleed Air Pressure Demand  Zone Control Numerical 

Nacell Anti Ice - Engine 1  Zone Control Boolean  

Nacell Anti Ice - Engine 2  Zone Control Boolean  

Recirculation Fan Left Hand Fault  Zone Control Boolean  

Recirculation Fan Right Hand Fault  Zone Control Boolean  

Trim Air Pressure Regulation Valve Disagree  Zone Control Boolean  
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Trim Air Pressure High  Zone Control Boolean  

Trim Air Pressure Regulation Valve Close  Zone Control Boolean  

Trim Air System Inoperational  Zone Control Boolean  

Zone Main Control Inoperational Zone Control Boolean  

Zone Secondary Control Inoperational Zone Control Boolean  

Table 48: A320 sensor data description 

Description refers to the name of the sensor, bus indicates from which system data are taken (Air 

Data Computer, Flight Data Interface Unit, Inertial Reference System, Zone Control, Bleed 

Monitoring Computer, Pack Control) and type indicates if data are Boolean or continuous. Zone 

Control, Bleed Monitoring Computer and Pack Control buses are directly related to the air 

conditioning system. The Bleed Monitoring Computer bus monitors the input to the system (56 

sensor values), the Pack Control bus has data directly related to the monitored system (8 sensor 

values) and the Zone Control bus contains sensor data that monitor the output of the system (28 

sensor values). Data from the Air Data Computer, Flight Data Interface Unit and Inertial Reference 

System bus concern the position and environment of the aircraft (air temperature, time). As the 

table shows, the data contain failure states (e.g. Trim Air System Inoperational, Boolean value), 

switches (e.g. Hot Air Switch Position ON, Boolean value) and direct output data (e.g. Cabin 

Compartment Temperature Group 1, numerical value). 

We generated samples for the decision tree by taking 1024 samples of sensor data after the 

aircraft has reached a height of 30,000 ft. This equals 17 minutes of data in cruise flight and yields 

about 3400 data samples. 

Samples for the training and test set were randomly taken from the flight data with a 25% chance 

of preventing the training data from overlapping with the test data and ensuring the number of 

samples per class is not equally distributed. We divided the data samples into ten categories. The 

first included all data samples with a time stamp lower than 10% of the RUL of the system, and 

the last contained samples with a timestamp between 90% and 100% of the RUL. All categories 

in between were split equally, each covering a 10% range of RUL.  

We fed data samples into the condition monitoring process and classified them, generating a time 

series with the classifications and a list with the sample numbers where the system’s condition 

has changed (see Figure 49). We used a DT forest of three trees to classify the samples. 
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Data analysis shows a maintenance action after approximately 840 flight hours (FH). The nature 

of the maintenance action is unknown, but the sample classifications show the data samples after 

840 FH are similar to those at the beginning of the data recording. This indicates the maintenance 

action reset the system condition and hints at a major maintenance action.  

Table 49 shows the misclassification of samples if it is assumed there was no maintenance action. 

The green marked entries are the correct classifications. On the left and right are 

misclassifications that are very similar to the correct ones. Each entry in the table is a set of “X 

sample of class Y classified as class Z”. Class Y is the left-most column, and class Z is the top row of 

the table. X is the number where Y and Z intersect. For example, “19 samples of class 10 are 

classified as class 0”, or “49 samples of class 50 are classified as class 10”.  

Many misclassifications are clustered. This is visible in Figure 98 and Figure 99, where the 

classified class is often the real class +/- “50” (RUL, class label). It is also apparent that two groups 

of misclassifications are parallel to the correct classifications. The misclassifications in these 

groups indicate class "50" is similar to class "10", class "60" is similar to class "20", class "70" is 

similar to class "30" etc. That means after class "40", the health condition is very similar to the 

beginning of the time series, suggesting something reset the system health condition.  

Table 50 shows the misclassifications after it is assumed that at flight hour 840, the system health 

condition was reset. Now the misclassifications are neighbours of the correct classification; this is 

a good sign, because neighbouring classes should have similar features. It also shows that the 

assumption of the maintenance action at 840FH is correct. 
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 Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 36 24 23 10 24 29 16 28 6 

10 19 0 40 3 4 45 21 12 1 17 

20 16 38 0 4 0 29 68 9 0 0 

30 28 0 3 0 37 8 6 12 72 4 

40 16 6 0 45 0 9 0 20 38 29 

50 21 49 28 0 4 0 36 9 0 32 

60 30 48 35 1 0 42 0 7 0 0 

70 31 30 11 38 20 21 32 0 29 6 

80 29 0 0 67 55 0 0 25 0 13 

90 23 20 0 10 46 23 0 6 17 0 

Table 49: Misclassification matrix without maintenance action 

  

Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 21 32 21 7 8 9 6 7 47 

10 22 0 32 25 9 23 18 21 10 24 

20 23 19 0 36 36 8 17 6 2 25 

30 26 49 35 0 54 15 16 0 0 0 

40 31 4 29 32 0 36 8 0 0 0 

50 16 15 28 41 34 0 20 0 0 0 

60 19 22 15 16 5 10 0 10 27 23 

70 14 21 15 0 0 0 51 0 25 54 

80 2 5 6 0 0 0 68 43 0 73 

90 30 28 29 0 0 0 33 48 46 0 

Table 50: Misclassification matrix with maintenance action 

This example suggests the condition monitoring process needs to be implemented into Computer 

Maintenance Management Systems (CMMSs), preventive maintenance (PM) scheduling, 

automatic work order generation, maintenance inventory control and data integrity (Van 

Horenbeek, et al., 2012) to get all needed information to make correct decisions. If the condition 
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monitoring system gets no feedback on performed maintenance actions, it may learn wrong 

classification rules or make incorrect classifications (Galar, et al., 2012). 

With fuzzy decision tree evaluation (Gerdes & Scholz, 2011), it is also possible to see the second 

most likely classification of a data sample. Figure 101 shows the results if no maintenance action 

is considered. Together with Figure 98, this validates the results shown in Table 49 and the 

assumption of the occurrence of a maintenance action.  

 

Figure 101: Second most likely class 

The maintenance action during the duration of the recorded data was assumed to be the end of 

the lifetime, and the first data point the beginning, because no data above the whole life of the 

system were available. However, this should be sufficient to validate the concept. Recall that the 

RUL of the system was set to 840 FH, because of the maintenance action around FH 840. All 

samples between 0 FH and 840 FH were slotted into the 10 classes; the same was done for the 

samples between 840 FH and 1700 FH. This simulated two total lifetimes of the system.  

The process was able to classify the randomly taken data sample correctly, with an error rate of 

346 wrong samples from a total of 835 samples, or 41%. This large error rate was due to the high 

noise in the data and the lack of perfect division of the data into two time series (two total life 

times). It was difficult to reduce the noise at the source level, because we were using direct data 
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from the aircraft, but it was possible to reduce the noise before the feature extraction step by 

applying noise reduction. Noise reduction needs to be applied carefully so that no significant 

features (especially for the Boolean data sources) are removed. For this reason, we did not 

perform noise reduction for each channel; instead, we performed noise reduction on the results, 

because without maintenance, the RUL can only increase. The wrong classifications were spread 

over nine classes; this allowed correct classification because it indicated the most common class 

over a range of 20 classifications (three flights or 10 FH) in the time series. Note that the 

misclassifications were mostly caused by samples close to the border of a class and wrongly 

classified as the neighbouring class (see Table 50). 

 The resulting condition time series is shown in Figure 102. In the figure, the points at which the 

current system condition switches are nearly equally spaced, even with many misclassifications 

in the data source, and deviate very little from the correct data points.  

 
Figure 102: Start of different system health conditions 

Table 51 shows how the error rate improved when more training samples were used for testing. 

The table shows the number of samples selected for training or testing (out of 3400 samples), the 

method of sample selection (random is self-explanatory; separation means training samples and 

testing samples don't mix), the error rate of the classification and a list of the detected condition 

changes. There is an overlap/intersection of training and testing data in all cases.  
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Number of 

Samples 

Method Error Rate RUL -> FH 

850 Training 

850 Testing 

Random 41% 72;163;264;70;434;532;620;702;808;840 

850 Training 

3400 Testing 

Random 43% 85;39;259;341;429;4;169;688;196;840 

1700 Training 

1700 Testing 

Random 23% 86;176;263;357;443;535;623;708;800;840 

1700 Training 

1700 Testing 

Separation 40% 88;172;264;282;443;528;623;711;800;840 

1700 Training 

3400 Testing 

Random 24% 72;176;266;357;441;537;623;711;802;840 

3400 Training 

3400 Testing 

- 7% 88;174;264;355;441;532;620;708;800;840 

Table 51: Different splitting of training and test data 

Table 51 shows the classification error rate is about 40% for classifications where the training 

and testing data are separated or where is little overlap. The accuracy increases as soon as the 

overlap between training and test data increases. This behaviour is to be expected; it shows the 

algorithm and data are prone to overfitting, something common to many experiments. It also 

shows that beside a few outliers in the time series, all cases detect nearly the same condition 

changes in the system. The error rate of 40% looks very high, even with noise in the input data. 

However, the high error rate can be explained by the nature of the air conditioning system and 

the input data. The air conditioning system is a large distributed system constructed of active and 

passive subsystems. The subsystems are one “main” unit: the air cycle machine, multiple fans, 

filters, valves and tubes. The sensor data used for validation are the input and output data of the 

system; no sensor data representing the internal state are used. Finally, most of the sensor data 

are Boolean signals representing valves, switches or failure states.  

 CONCLUSION 

Condition monitoring and prognostics are complex processes, difficult to establish in the aircraft 

environment. The method proposed in this paper can be used to classify a system’s health 

condition and forecast its remaining useful life. The novelty of this approach is that it offers a 
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simple method for condition monitoring and prediction that can be used in the restricted aircraft 

environment.  

 

The method uses decision trees to generate simple logical clauses; these can be checked and 

certified with little difficulty. It can be used on-ground to monitor all aircraft that submit sensor 

data without the need to install additional sensors or hard- or software. This makes the method 

very interesting for fleet health monitoring applications. Finally, the relatively simple feature 

extraction, classification and prediction are handy when there is a need to monitor multiple 

aircraft with multiple systems in real time. 

Classification and prediction are possible with this method, even with noisy real-world data and 

with no additional information about the system being monitored. It can be used for existing 

systems that already log events, process parameters and input/output data, but do not have a 

condition monitoring and prediction system. The method is generally applicable; it can use any 

available input data from any system because of the use of mixed data input channels (discrete 

and continuous data). One caveat is the need to combine CMMS and CM to avoid too many 

misclassifications caused by unknown maintenance actions in the training phase.  

The validation process shows RUL can be forecast after 400 FH. This makes it possible to plan 

maintenance actions for aircraft in advance and avoid unscheduled maintenance. In fact, 

forecasting is possible after one condition change is detected (after about 90 FH), but if several 

conditions change, the forecasting accuracy improves.  

Despite its efficacy, the method can be improved in future research. The accuracy of the individual 

decision trees and, thus, the overall accuracy can be improved by using advanced feature 

extraction methods, like wavelet package transformation, ICA, KPAC or PCA. Fusion of additional 

sources using noise reduction techniques and validation of the proposed method using flight data 

from multiple aircraft to perform sensitivity analysis at a system level should be considered in 

future research on aircraft prognostics in systems and at a fleet level. It would also be possible to 

use a hybrid model to generate a decision tree and an artificial neural network or other 

classification method for each set of parameters. The best method for the given parameter set 

could then be used in the final classification forest. 

The method cannot be used to forecast a specific failure, nor can it be used for diagnosis, because 

the health condition of the whole system, i.e. prognosis at a system level, is detected and forecast.  



246 

 

The method could be improved with the use of cleaner and less noisy data. Nevertheless, the 

process is robust; it can compensate by applying noise reduction to the time series because of the 

uniform distribution of the noise. The cost of this compensation is a delay in the detection of the 

system’s health.  
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