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Abstract 
Unscheduled maintenance is a large cost driver for airlines, but condition monitoring and prognosis 
can reduce the number of unscheduled maintenance actions. The paper shows condition monitoring 
can be introduced into most system by adopting a data-driven approach and using existing data 
sources. The goal is to forecast the remaining useful life (RUL) of a system based on various sensor 
inputs. We use decision trees to learn the characteristics of a system. The data for the decision tree 
training and classification are processed by a generic parametric signal analysis. To obtain the best 
classification results for the decision tree, the parameters are optimized by a genetic algorithm. A 
forest of three different decision trees with different signal analysis parameters is used as classifier. 
The proposed method is validated with data from an A320 aircraft from ETIHAD Airways.  Validation 
shows condition monitoring can classify the sample data into ten predetermined categories, 
representing the total useful life (TUL) in 10 percent steps. This is used to predict the RUL. There are 
350 false classifications out of 850 samples. Noise reduction reduces the outliers to nearly zero, 
making it possible to correctly predict condition. It is also possible to use the classification output to 
detect a maintenance action in the validation data. 

https://doi.org/10.1784/insi.2017.59.8.424
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1 Introduction 
Unscheduled maintenance can be very expensive for airlines [1] [2] [3] and should be avoided. One 
way to prevent unscheduled maintenance is to predict a future failure and perform maintenance 
actions during line maintenance before the failure occurs. Condition Monitoring can be used to 
detect the current system health status and to predict the future health status. Condition Monitoring 
is widely used for, among others, rotary machines (gear boxes, gas and wind turbines, bearings), 
plants, and structures (bridges, pipelines).  
 
Vibration data are frequently used as the basis for condition monitoring. Goode, Moore and Roylance 

[4] show how a basic life prediction method works using a simple system with alarm settings. An 
alarm is triggered if a vibration signal exceeds the alarm limit. Mahamad, Saon and Hiyama [5] 
present a method to predict the remaining useful life of rotary machines using artificial neural 
networks. Using the vibration signal as input data, they show how RUL is important for Condition 
Based Maintenance. Saravanan and Ramachandran [6] use wavelet features and decision trees for 
fault diagnosis. They use the same decision tree algorithm as we do in this paper but a different set 
of features. Sugumaran and Ramachandran [7] use also the same decision tree algorithm, as well as 
the decision tree for feature selection, but they convert the resulting decision tree into a set of fuzzy 
rules to use for classification. 
 
Condition monitoring is difficult to use in aircraft maintenance because certification issues create 
certain restrictions. Aircraft maintenance is based on Reliability Centred Maintenance (RCM). The 
goal is to have maximum safety and reliability with minimized costs. To meet this goal, the 
Maintenance Steering Group (MSG) has developed maintenance concepts specifically for aircraft. 
The most recent is MSG-3 [8]. Its focus is the effect of a failure on the aircraft operation [9] [10]. For 
each item that affects airworthiness, it describes a specific maintenance task (task oriented 
maintenance). MSG-3 can use Condition Based Maintenance (CBM, “preventive maintenance which 
includes a combination of condition monitoring and/or inspection and/or testing, analysis and the 
ensuing maintenance actions” [11]) or predetermined maintenance (PM, “preventive maintenance 
carried out in accordance with established intervals of time or number of units of use but without 
previous condition investigation” [11]) to achieve its goals. Predetermined maintenance is used by 
most airlines and manufacturers. Preventive maintenance with scheduled maintenance provides 
benefits not only for cost control but also for reliability [12]. Condition-based maintenance (CBM) is 
based on condition monitoring and aims at performing maintenance based on the inspected system’s 
condition and the trend of its condition. CBM can be used to realize RCM [13] using condition 
monitoring. 
 
Condition Monitoring was introduced to EN 13306 in 2010 [14]. Before 2010, only CBM and 
monitoring were included in EN 13306 [15]. In other words, condition monitoring is a recent 
development; as it matures, however, it is slowly taking hold in a number of industries.  
 
Aircraft maintenance procedures need to reflect the times and draw on current technologies. This 
paper suggests an approach to include modern technologies in aircraft maintenance. It uses a 
mixture of continuous and discrete input signals to predict the condition of an aircraft system. It uses 
decision trees [16] [17] to approximate a system model based on recorded aircraft data. The goal is 
to predict the remaining useful life (RUL) of the system by forecasting the system health condition. It 
uses a data driven black box model (only the input of the system is known) based on sensor data over 
an extended period of time to create a system model represented by a decision tree forest. The 
novelty of the methodology is the usage of an artificial intelligence method and a simple noise 
resistant prediction method in a restricted commercial aircraft area. The data used for the validation 
consist of recorded aircraft data available in most aircraft and contain a great deal of noise. The 
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methods and operations were selected with certification and on-line monitoring in mind. The 
advantages of this approach are that it can be used on-ground or on-aircraft, and real-time 
monitoring of a single aircraft or a fleet is possible without the installation of additional hardware. 
 
The structure of the paper is as follows. This section gives background information on the methods 
and technologies used to develop the proposed method. The next section explains the method in 
detail, and the following one validates the method with real world data from an in-service aircraft. 
The paper ends with a conclusion and offers some final comments. 

2 Condition Monitoring 
Condition Monitoring is defined as [11]: 
 
“Activity, performed either manually or automatically, intended to measure at predetermined 
intervals the characteristics and parameters of the actual state of an item” 
 
It is based on three steps [18]: 
 

1. Data Acquisition: Collecting and storing data from physical assets. This includes event data 
and condition data. Event data are what happened and what the condition data represent. 

2. Data Processing: The first step of data processing is data cleaning followed by data analysis. 
Data analysis includes transformation of data from the time domain into the frequency 
domain and feature extraction. 

3. Maintenance-Decision-Making 
 
Condition monitoring can either be continuous or periodic [18]. Continuous monitoring (automatic) is 
often performed by installed sensors and automatically by machines. Periodic monitoring (manual or 
automatic) can be done by humans and can include checks at regular maintenance intervals.  

 
Implementing condition monitoring is a difficult and costly task.  
 
Diagnosis and prediction are two goals of condition monitoring [18]. Diagnosis (posterior event) deals 
with detection (Did something fail?), isolation (What failed?) and identification (Why did it fail?) of 
faults when they occur and is defined as [15]:  
 
“Actions taken for fault recognition, fault localization and cause identification”. 
 
Prognostic (prior event) deals with predicting future faults and how soon they will occur [18]. There 
are two types of prediction: prediction of remaining time until a failure occurs and prediction of the 
chance a machine will operate without a fault until the next scheduled maintenance [18]. 
 
Condition prediction can be done based on sensor data or based on system condition [19]. The 
analysis algorithm looks not just at recorded parameters at a single moment in time; it also takes the 
full parameter history into account. The need for maintenance of the component is indicated if the 
data trend of parameters points to a degradation of the component. Based on the parameter time 
history, the analysis algorithm allows a forecast of the remaining lifetime of the component [20]. 
Analysis and prediction use a variety of methods to predict future values. Physics-based approaches 
for prediction include Kalman filter, sequential Monte Carlo, Markov models, and others. Data-driven 
approaches include artificial ARMA (Autoregressive-Moving Average), ARIMA (Autoregressive 
Integrated Moving Average), neural-networks, Bayesian Networks, and others. All these methods can 
be used to predict values for a complex time series [21] [22] [23] [24]. Output of the prediction is 
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normally an estimated time to failure (ETTF) and a confidence interval [25]. The confidence interval 
defines how reliable a prediction is [26] [25] and can be calculated using standard time series. 
 
The condition of the system is often defined by setting limits on certain values based on experience 
(knowledge based) [19] or by creating a mathematical representation of the physical system model 
or a data driven model [20] [27] [28]. Other methods include machine learning techniques (decision 
trees [29] [30] [31], vector support machines [32] [29] [33], and neural networks [34] [5] [35]…) used 
to map the features of the input signal to a condition. 
  
Another option is to use a physics-based model (representing the system’s physical features, 
components and interactions), feeding the sensor input into the model, calculating the output and 
checking how the output of the theoretical model deviates from the real system. This approach can 
also be used for fault isolation and fault identification of failures in addition to prognosis [36] [27] 
[20] [18]. 
 
Data-driven models use past data to create models with stochastically or machine learning 
algorithms [37] [38] [18]. These models require many data samples representing different conditions 
of the system. Data-driven models require less “manpower” than a mathematical model; model 
validation and testing can be performed almost automatically. 
 
All three techniques are widely used and often are combined to perform more accurate diagnosis 
and prognosis. 

3 Feature Extraction 
Feature extraction is the process of reducing the dimension of the initial input data to a feature set of 
a lower dimension that contains most of the significant information of the original data [39]. This is 
done to extract features from noisy sensor data [40]; [41] and to avoid problems caused by having 
too many input features (especially for vibration data) for the classifier learning phase [42]. Feature 
extraction is often a first and essential step for any classification [42].  
 
Methods of feature extraction include extracting features from the time domain and the frequency 
domain (Fourier Transformation, Wavelet Transformation [41]) and clustering, if necessary. Basic 
features include maximum, mean, minimum, peak, peak-to-peak interval etc. [18]. Complex feature 
extraction methods include principal component analysis (PCA), independent component analysis 
(ICA) and kernel principal component analysis (KPCA) [43]. Other feature extraction methods are: t-
test, correlation matrix, stepwise regression and factor analysis (FA) [44]. A comparison of the 
various feature extraction methods appears in [45]. 
 
Selecting relevant features for classifiers is important for a variety of reasons, such as generalization 
performance, computational efficiency, and feature interpretability [46]. Using all available features 
can result in over-fitting and bad predictions, but i is not possible to look at each feature alone 
because many features are inter-correlated [47]. Noise, irrelevant features or redundant features 
complicate the selection of features even more. Thus, features are often selected using methods 
from pattern recognition or heuristic optimization, or a combination. Sugumaran et al. [29] show 
how different technologies can be combined for a single goal; they use a decision tree for feature 
selection and a Proximal Support Vector Machine for classification. Widodo and Yang [43] combine 
ICA/PCA with SVM for feature extraction and classification. Many algorithms combine Genetic 
Algorithms (GA) with a pattern recognition method, like decision trees (DT), SVM or Artificial Neural 
Networks (ANN). In these combinations, GA used to optimize the process parameter [48] [49] or for 
feature extraction and the pattern recognition required for classification. [50] [51]  [52] [53]  
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3.1 Time Domain Features 
Time domain features can be direct features, such as the number of peaks, zero-crossings, mean 
amplitude, maximum amplitude, minimum amplitude or peak-to-peak intervals [18] [54]. In addition, 
it is possible to analyse a signal using probabilistic moments like root mean square, variance, 
skewness or kurtosis to get features that represent the signal [55]. Other methods include using  
correlation, autocorrelation, Entropy, PCA, ICA and (KPCA [43]. 

3.2 Frequency and Time-Frequency Domain 
Fast Fourier Transformation (FFT) transforms a signal from the time domain into the frequency 
domain. Specifically, FFT takes a time series and transforms it into a complex vector that represents 
the frequency power in frequency domain. The basis of the FFT algorithm is the discrete Fourier 
transformation (DFT), defined in Equation (2) with xn… xn-1 as complex numbers. 
 
 
 

        
     

 

           

   

   

     (1) 

 
FFT is performed in O(N log N) time [56] and can be calculated in real time because it can be 
executed in parallel. It is a widely used and well-established method [57]; [41]. Recent research uses 
the discrete wavelet transformation (DWT) to represent time series in the frequency domain. The 
DWT represents the time series in a time-scale form [18] and is especially suited to represent non-
stationary signals [40]. 
 
Failure diagnosis mostly focuses on the frequency domain, e.g. using Fourier transform or Wavelet 
transform, but in the early stage of failure development, the damage is not significant and the defect 
signal is masked by the noise in the acquired signal. The periodicity of the signal is not significant. 
Although spectral analysis may not be effective, using the time domain feature is recommended. 
Normal and defect signals differ in their statistical characteristics in the time domain, so the 
combined use of time domain features and features of other domains can improve diagnosis 
accuracy. 

4 Method 
The method proposed in this paper for condition monitoring (CM) is based on decision trees (DTs). 
The inputs for the DTs are features (e.g. maximum value, mean values, frequency domain data; see 
Table 1) extracted from processed sensor data; the output is the current health condition in ten 
percent steps of the total useful life (TUL) (see Figure 4 and Figure 5). The health condition is used to 
forecast the remaining useful life (RUL). The quality of the monitoring is increased by using a genetic 
algorithm [58] to optimize the process parameters. 
 
The method is divided into a training process and a classification process. The goal of the former is to 
create a set of optimal decision trees to classify the system condition. The goal of the latter is to 
classify a new sensor data sample in the current system condition and use the system condition 
history to make a prediction about the remaining RUL. 
 
The novelty of the approach is the discretisation of the system’s condition into ten categories and 
using the condition changes to create a time series that can be used for condition prediction (see 
Galar, Kumar et al. [59] for a similar approach using Support Vector Machines).  
 
The method adds the input from multiple mixed sensors (Boolean and continuous) to detect the 
system’s health condition. The goal is to prevent unscheduled maintenance operations by estimating 



6 
 

the RUL of the monitored system. The goal is not to predict the future time series of a sensor as well 
as possible. Nor will the method output what failures will happen; it will only show that a failure will 
happen at a certain point in time. Ideally, the generic approach of this method will avoid the “better 
mousetrap symptom” (reinvent a common product with some improvements and higher costs) and 
will be applicable to more than one specific system. Jack and Nandi [60] show that using a genetic 
algorithm to select features from a given set can significantly improve the accuracy of a classifier. 
 

4.1 Training Process  
The training process consists of three steps: system data, setup and optimization loop (see Figure 1). 
The first step is to record sensor data for the training process. The recorded data should contain all 
system conditions (from newly installed to broken) under different conditions (different 
environments, different aircraft). Any performed maintenance actions need to be recorded as well. 
Input data can be Boolean data (switches, valves etc.) or continuous data, like temperature and 
pressure data. Discrete input data are mapped to continuous data with the same frequency. All input 
data sources must have the same sampling frequency, but the source does not matter; data can be 
sound, vibration, temperature power consumption, weight or magnetic flow. 
 

 
Figure 1: Classification Training Process 

The second step is to prepare the data for the actual training process. First, the recorded data 
samples need to be correctly labelled and classified because the decision tree training is a supervised 
learning process. The data samples are labelled with the system condition, represented by the data 
in ten percent groups (x < 10% TUL; 10% ≤ x < 20% TUL …). We predefined ten categories to give a 
good estimation of the remaining useful life and to ensure a wide range of samples per category. 
Fewer classes will reduce the usefulness of the method for the operator, while more classes mean 
more misclassifications because more samples are likely be close to two classes. 
 
Meta data, like maintenance actions, aircraft altitude and flight phase, need to be considered when 
labelling the data samples. The samples should present a stable system state, similar across different 
aircraft. In this case, we use the cruise flight phase; the aircraft is in a stable system condition with 
little stress and a condition that will not be changed for some time.  
This step also includes the generation of a random parameter set for the feature extraction as a 
starting point for the optimization loop. 
 
The main work happens in the third step when multiple feature extraction steps are executed and 
multiple decision trees are built. The task of the optimization loop is to modify the parameters for 
the feature extraction to improve the accuracy of the classification with a decision tree. A genetic 
algorithm with the basic operations (crossover, mutation [58]) is used to vary the parameters. The 
“fitness” of a parameter set is measured using the classification accuracy of the decision tree built 
using this parameter set. Genetic algorithms have been used for many optimization problems ( [61] 
[60] [62]) and can be executed in parallel.  
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The first step is to create many different sets of training input vectors by applying feature extraction 
operations to the labelled data samples. These feature extraction operations are controlled by the 
previously created parameter sets. The second step of the optimization loop is to create a decision 
tree with the input vector representing the current feature set. 
 

4.2 Feature Extraction 
Having a set of elemental feature extraction operations controlled by a parameter means the 
operations can be executed in any order, and the feature extraction algorithm can be adapted for 
multiple problems [63] by using a genetic algorithm for optimization without human interaction. In 
[64], signal analysis and machine learning are used to detect the condition of an experimental setup. 
The concept is almost automated and bur requires minimal fine-tuning by hand because the process 
depends on several different parameters, each of which must be adapted to the data for optimal 
classification. These parameters include the following: 
 
Table 1: Data Processing Parameters 

Parameter Name Possible Values 

Block width 0 – 1000 (Hz) 

Use Blocks Boolean 

Calculate the mean amplitude for each block Boolean 

Calculate the maximum amplitude for each block Boolean 

Calculate the mean frequency power for each block Boolean 

Calculate the maximum frequency power for each block Boolean 

Calculation the number of peaks for each block Boolean 

Minimum value of a peak 0 – 5 

Calculate the overall mean and maximum values Boolean 

Confidence factor 0.00001 - 0.5 

 
Block Width defines how many frequencies are grouped in the frequency domain to form a block for 
detailed feature extraction. Noise Reduction Factor defines how much noise will be reduced. The 
noise reduction in this concept removes all frequencies in the frequency wherein power is below 
noise reduction factor times mean power. (2 shows how noise is defined for this method. 
 
 
 

                                                   
(2) 

 
Minimum Value of a peak controls what frequencies are defined as peaks. It is the opposite of noise 
(Eq. (3). Any frequency where power is greater than or equal to the peak border times the mean 
power is defined as a peak, as shown in Equation 3. 
 
 
 
 

                                        
(3) 

 
Confidence Factor controls the extent of tree pruning and is a parameter of the J48 algorithm of the 
WEKA software [65]. A confidence factor greater than 0.5 means no pruning is done. The lower the 
confidence factor, the more pruning. 
 
All other parameters are Boolean; they control whether a given feature is calculated or not. 
Elementary feature extraction operations can be executed in any order and allow the creation of a 
set of feature extraction operations that can be different for each problem [63]. This makes 
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elementary extraction operations good for machine learning. The operations are also fast to 
compute and can be used for online monitoring. 
 
The data from the various sensors are not merged at the sensor level but at the feature extraction 
level. A feature set is calculated for each input from each sensor. These features are merged into one 
feature input vector for the decision tree learning phase. No frequency features are calculated for 
signals that are nearly constant (Boolean switches, discrete system settings, certain process 
parameters).  
 
The selection of features is determined by the parameters in Table 1. The values for the parameters 
are randomly generated or generated during optimization using a search algorithm. We use these 
quite basic feature extraction operations to ensure that, even with simple hardware, a near real time 
monitoring is possible. 
 

4.3 Building a Decision Tree  
Decision trees are used in the area of artificial intelligence for decision making and machine learning. 
Decision trees are often binary; each node has an if-then-else function on an attribute of the sample 
data. The ID3 algorithm (Iterative Dichotomiser 3, J. Ross Quinlan, 1986 [17]) was the first algorithm 
to construct decision trees. ID3 had some problems and was improved in C4.5 [66]. The latter 
algorithm has the ability to handle both discrete and continuous attributes, to handle samples with 
missing attributes and to support pruning of the tree (removing branches from the tree). It uses the 
concept of information gain and information entropy to choose attributes from the data and build a 
decision tree. The result is a binary decision tree, whose root  is the attribute with the highest 
normalized information gain. Nodes in subsequent levels of the tree represent attributes with lower 
normalized information gain. Decision trees are used to solve a large variety of problems, e.g. tag 
speech parts [67], land cover mapping [68], text mining [69]. 
We use the C4.5 algorithm, specifically the open source implantation J48 from the WEKA [65] 
software. We selected it because it supports continuous values and pruning and is very well 
understood. 
 
The next step is to evaluate the fitness of the decision tree by checking how many samples are 
correctly classified. This checking is done by classifying a test data set. The test data set can contain 
data samples used to build the decision tree, but preferably, the test set should be disjunctive from 
the training set. 
 
A new parameter set for the feature extraction is created using the genetic algorithm, and a new 
input vector for the next iteration is created. The optimization loop is executed until a given accuracy 
is achieved or a set number of iterations is performed. 
 

4.4 Classification and Prediction 
The process for predicting condition (Figure 2) is based on the results of continuous condition 
monitoring and classification. Each classification adds a new data sample to the class time series. The 
process has three steps: the first recording new sensor data; the second is classifying the sensor data 
and adding the classification result to a time series; the third is marking when the system condition 
switches from one state to another and using these data points to extrapolate the data into the 
future. 
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Figure 2: Classification and Prediction Process 

Having a network of different sensors to monitor a system can cause sensor data fusion. Multi-sensor 
data fusion prevents the problem of combining sensor data from different sources into one 
consistent model, but the main questions of sensor fusion are [70]: 
 

 How to get accurate and reliable information from multiple and possibly redundant sensors; 

 How to fuse multi-sensor data with imprecise and conflicting data. 
 
Techniques for sensor fusion can be grouped into the following levels [18]; [71]; [72]:  
 

 Data-level fusion (e.g. combining sensor data from same sensors directly [73]); 

 Feature-level fusion (e.g. combining vectors and feature reduction techniques [71]); 

 Decision-level fusion (e.g. vote schemes [71]). 
 
The use of multiple decision trees has been shown to improve the overall accuracy and robustness of 
predictions [28]. The data of the decision trees are fused onto the decision level using a voting 
method [71]. If the majority of the trees classifies a data sample as being in a certain class, this class 
is selected. If all trees get a different result, the result of the tree with the highest classification 
accuracy for the training data is used. 
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Figure 3: Condition Monitoring with Multiple Trees [74]  

The proposed method uses the three best performing decision trees. Only three are selected to allow 
real time condition monitoring while increasing the accuracy in a noticeable way [64]. A new data 
sample is taken and processed according to the feature extraction parameter set of each tree. The 
sample is classified using a voting process among the three decision trees (Figure 3). If two or more 
trees classify a data sample as the same class, this class is selected. If all three trees get a different 
result, the result of the first tree is taken.  
 
The resulting time series is subject to noise in form of erroneous classifications (Figure 4). If there are 
no errors, the curve should look like a set of stairs. To reduce the wrong classifications, each data 
point is set to the class of 20 of its neighbours (this value may change depending on the noise in the 
time series) (Figure 5). This means that for each data point in Figure 4, 20 neighbouring data points 
are taken; the current data point takes the value of the class with the most members. Each noise 
reduced data point is now added to a new vector. The new classification vector is shown in Figure 5. 
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Figure 4: Classification Time Series with Noise/Wrong Classifications 

 
Figure 5: Classification Time Series with Applied Noise Reduction 

Condition prediction uses past condition monitoring data to predict the RUL of the monitored system 
by taking the first dot after each “health condition class jump” (jumps in Figure 5). Ideally, this plot 
should be a linear function, with the health condition changes equally spaced (see Figure 6). 
Maintenance action can alter the gradient of the function and/or introduce a discontinuity. In such 
cases, the prediction needs to be restarted from maintenance action data point. 
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Depending on the usage of the system and the operation environment, the health condition changes 
may not be equally spaced. Such spacing indicates a change in the degradation and, thus, in the RUL. 
Prediction is possible when two or more state changes have been detected, however. Because the 
plot does not have more than 11 data points, it is possible to use a simple approximation method. 
The classification rules (the rules determining in which TUL class a sample belongs) are automatically 
generated by the samples used to train the decision tree. The threshold for an RUL of zero (or a TUL 
of 100%) is gained by extrapolating the already classified samples (see Figure 6). This means the RUL 
is based on experience, not on physical models or aircraft regulations (maximum number of flight 
hours). 
  

 
Figure 6: Remaining Useful Life Prediction 

5 Validation 
We now evaluate the proposed method using sensor data from the air conditioning system of an 
A320 aircraft operated by ETIHAD Airways in the Middle East. The sensor data are from 589 flights 
over two years. Each sensor reading includes over 80 values, consisting of continuous and Boolean 
data. The data are sampled with a frequency of 1 Hz. Table 2 lists the sensor data. 
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Table 2: A320 Sensor Data Description 

Description Bus Type 

Cabin Compartment Temperature Group 1  Zone Control Numerical 

Cabin Compartment Temperature Group 2  Zone Control Numerical 

Cabin Compartment Temperature Group 3  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 1  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 2  Zone Control Numerical 

Cabin Temperature Regulation Valve Position Group 3  Zone Control Numerical 

Duct Overheat Warning Group 1   Zone Control Boolean  

Duct Overheat Warning Group 2   Zone Control Boolean  

Duct Overheat Warning Group 3   Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 1   Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 2   Zone Control Boolean  

Duct Temperature 4 Times Limit Exceedance Group 3   Zone Control Boolean  

Duct Temperature Group 1  Zone Control Numerical 

Duct Temperature Group 2  Zone Control Numerical 

Duct Temperature Group 3  Zone Control Numerical 

G + T Fan OFF   Zone Control Boolean  

Hot Air Switch Position ON   Zone Control Boolean  

Minimum Bleed Air Pressure Demand  Zone Control Numerical 

Nacell Anti Ice  -  Engine 1   Zone Control Boolean  

Nacell Anti Ice  -  Engine 2   Zone Control Boolean  

Recirculation Fan Left Hand Fault   Zone Control Boolean  

Recirculation Fan Right Hand Fault   Zone Control Boolean  

Trim Air Pressure Regulation Valve Disagree   Zone Control Boolean  

Trim Air Pressure High   Zone Control Boolean  

Trim Air Pressure Regulation Valve Close   Zone Control Boolean  

Trim Air System Inoperational  Zone Control Boolean  

Zone Main Control Inoperational Zone Control Boolean  

Zone Secondary Control Inoperational Zone Control Boolean  

 
Description refers to the name of the sensor, bus indicates from which system data are taken (Air 
Data Computer, Flight Data Interface Unit, Inertial Reference System, Zone Control, Bleed Monitoring 
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Computer, Pack Control) and type indicates if data are Boolean or continuous. Zone Control, Bleed 
Monitoring Computer and Pack Control buses are directly related to the air conditioning system. The 
Bleed Monitoring Computer bus monitors the input to the system (56 sensor values), the Pack 
Control bus has data directly related to the monitored system (8 sensor values) and the Zone Control 
bus contains sensor data that monitor the output of the system (28 sensor values). Data from the Air 
Data Computer, Flight Data Interface Unit and Inertial Reference System bus concern the position 
and environment of the aircraft (air temperature, time). As the table shows, the data contain failure 
states (e.g. Trim Air System Inoperational, Boolean value), switches (e.g. Hot Air Switch Position ON, 
Boolean value) and direct output data (e.g. Cabin Compartment Temperature Group 1, numerical 
value). 
 
We generate samples for the decision tree by taking 1024 samples of sensor data after the aircraft 
has reached a height of 30,000 ft. Such a sample equals 17 minutes of data in cruise flight and yields 
about 3400 data samples. 
 
Samples for the training and test set are randomly taken from the flight data with a chance of 25% to 
prevent the training data from overlapping with the test data and to ensure the number of samples 
per class is not equally distributed. We divide the data samples into ten categories. The first category 
includes all data samples with a time stamp lower than 10% of the TUL of the system, and the last 
category contains samples with a timestamp between 90% and 100% of the TUL. All categories in 
between are split equally, each covering a 10% range of TUL.  
  
We feed data samples into the condition monitoring process and classify them, generating a time 
series with the classifications and a list with the sample numbers where the system’s condition has 
changed (see Figure 8). We use a DT forest of three trees to classify the samples. 
 
Data analysis shows a maintenance action after approximately 840 flight hours (FH). The nature of 
the maintenance action is unknown, but the sample classifications show the data samples after 840 
FH are similar to the ones at the beginning of the data recording. This indicates the maintenance 
action reset the system condition and hints at a major maintenance action.  
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Table 3 shows the misclassification of samples if it is assumed there was no maintenance action. The 
green marked entries are the correct classifications. On the left and right are misclassifications that 
are very similar to the correct ones. Each entry in the table is a set of “X sample of class Y classified as 
class Z”.  Class Y is the left-most column and class Z is the top row of the table. X is the number where 
Y and Z intersect. For example, “19 samples of class 10 are classified as class 0”, or “49 samples of 
class 50 are classified as class 10”.  
 
Many misclassifications are clustered. This is visible in Figure 4 and Figure 5, where the classified 
class is often the real class +/- “50” (TUL, class label). It is also apparent that parallel to the correct 
classifications are two groups of misclassifications. The misclassifications in these groups indicate 
class "50" is similar to class "10", class "60" is similar to class "20", class "70" is similar to class "30" 
etc. That means after class "40" the health condition is very similar to the beginning of the time 
series, suggesting something reset the system health condition.  
 
Table 4 shows the misclassifications after it is assumed that at flight hour 840, the system health 
condition was reset. Now the misclassifications are neighbours of the correct classification; this is a 
good sign, because neighbouring classes should have similar features. It also shows that the 
assumption of the maintenance action at 840FH is correct. 
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Table 3: Misclassification Matrix without Maintenance Action 

 Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 36 24 23 10 24 29 16 28 6 

10 19 0 40 3 4 45 21 12 1 17 

20 16 38 0 4 0 29 68 9 0 0 

30 28 0 3 0 37 8 6 12 72 4 

40 16 6 0 45 0 9 0 20 38 29 

50 21 49 28 0 4 0 36 9 0 32 

60 30 48 35 1 0 42 0 7 0 0 

70 31 30 11 38 20 21 32 0 29 6 

80 29 0 0 67 55 0 0 25 0 13 

90 23 20 0 10 46 23 0 6 17 0 

 
Table 4: Misclassification Matrix with Maintenance Action 

 Classification/ 
Class 

0 10 20 30 40 50 60 70 80 90 

0 0 21 32 21 7 8 9 6 7 47 

10 22 0 32 25 9 23 18 21 10 24 

20 23 19 0 36 36 8 17 6 2 25 

30 26 49 35 0 54 15 16 0 0 0 

40 31 4 29 32 0 36 8 0 0 0 

50 16 15 28 41 34 0 20 0 0 0 

60 19 22 15 16 5 10 0 10 27 23 

70 14 21 15 0 0 0 51 0 25 54 

80 2 5 6 0 0 0 68 43 0 73 

90 30 28 29 0 0 0 33 48 46 0 

 
This example suggests the condition monitoring process needs to be implemented into Computer 
Maintenance Management Systems (CMMS), preventive maintenance (PM) scheduling, automatic 
work order generation, maintenance inventory control, and data integrity [75]) to get all needed 
information to make correct decisions. If the condition monitoring system gets no feedback about 
performed maintenance actions, it may learn wrong classification rules or make incorrect 
classifications [76]. 
 
With Fuzzy Decision Tree Evaluation [77], it is also possible to see the second most likely classification 
of a data sample. Figure 7 shows the results if no maintenance action is considered. Together with 
Figure 4, this validates the results shown in   
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Table 3 and the assumption of the occurrence of a maintenance action.  
 

 
Figure 7: Second Most Likely Class 

The maintenance action during the duration of the recorded data is assumed to be the end of the 
lifetime and the first data point is the beginning, because no data above the whole life of the system 
are available. However, this should be sufficient to validate the concept. Recall that the TUL of the 
system was set to 840 FH, because of the maintenance action around FH 840. All samples between 0 
FH and 840 FH are slotted into the 10 classes; the same is done for the samples between 840 FH and 
1700 FH. This simulates two total lifetimes of the system.  
 
The process is able to classify the randomly taken data sample correctly, with an error rate of 346 
wrong samples from a total of 835 samples, or 41%. This large error rate is due to the high noise in 
the data and the lack of perfect division of the data into two time series (two total life times). It is 
difficult to reduce the noise at the source level, because we are using direct data from the aircraft, 
but it is possible to reduce the noise before the feature extraction step by applying noise reduction. 
Noise reduction needs to be applied carefully so that no significant features (especially for the 
Boolean data sources) are removed. For this reason, we do not perform noise reduction for each 
channel; instead, we perform noise reduction on the results, because without maintenance, the TUL 
can only increase. The wrong classifications are spread over nine classes; this allows correct 
classification because it indicates the most common class over a range of 20 classifications (three 
flights or 10 FH) in the time series. Note that the misclassifications are mostly caused by samples that 
are close to the border of a class and wrongly classified as the neighbouring class (see Table 4). 
  
The resulting condition time series is shown in Figure 8. In the figure, the points at which the current 
system condition switches are nearly equally spaced, even with many misclassifications in the data 
source, and deviate very little from the correct data points. 
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Figure 8: Start of Different System Health Conditions 

Table 5 shows how the error rate improves when more training samples are used for testing. The 
table shows the number of samples selected for training or testing (out of 3400 samples), the 
method of sample selection (random is self-explanatory; separation means training samples and 
testing samples don't mix), the error rate of the classification, and a list of the detected condition 
changes. There is an overlap/intersection of training and testing data in all cases.  
 
Table 5: Different Splitting of Training and Test Data 

Number of Samples Method Error Rate TUL -> FH 

850 Training 
850 Testing 

Random 41% 72;163;264;70;434;532;620;702;808;840 

850 Training 
3400 Testing 

Random 43% 85;39;259;341;429;4;169;688;196;840 

1700 Training 
1700 Testing 

Random 23% 86;176;263;357;443;535;623;708;800;840 

1700 Training 
1700 Testing 

Separation 40% 88;172;264;282;443;528;623;711;800;840 

1700 Training 
3400 Testing 

Random 24% 72;176;266;357;441;537;623;711;802;840 

3400 Training 
3400 Testing 

- 7% 88;174;264;355;441;532;620;708;800;840 

 
Table 5 shows the classification error rate is about 40% for classifications where the training and 
testing data are separated or where is little overlap. The accuracy increases as soon as the overlap 
between training and test data increases. This behaviour is to be expected; it shows the algorithm 
and data are prone to over fitting, something common to many experiments. It also shows that 
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beside a few outliers in the time series, all cases detect nearly the same condition changes in the 
system. The error rate of 40% looks very high, even with noise in the input data. However, the high 
error rate can be explained by the nature of the air conditioning system and the input data. The air 
conditioning system is a large distributed system constructed of active and passive sub-systems. The 
subsystems are one “main” unit: the air cycle machine, multiple fans, filters, valves and tubes. The 
sensor data used for validation are the input and output data of the system; no sensor data 
representing the internal state are used. Finally, most of the sensor data are Boolean signals 
representing valves, switches or failure states.  

6 Conclusions 
Condition monitoring and prognostics are complex processes, difficult to establish in the aircraft 
environment. The method proposed in this paper can be used to classify a system’s health condition 
and forecast its remaining useful life. The novelty of this approach is that it offers a simple method 
for condition monitoring and prediction that can be used in the restricted aircraft environment.  
 
The method uses decision trees to generate simple logical clauses; these can be checked and 
certified with little difficulty. It can be used on-ground to monitor all aircraft that submit sensor data 
without the need to install additional sensors or hard- or software. This makes the method very 
interesting for fleet health monitoring applications. Finally, the relatively simple feature extraction, 
classification and prediction are handy when there is a need to monitor multiple aircraft with 
multiple systems in real time. 
 
Classification and prediction are possible with this method, even with noisy real-world data and with 
no additional information about the system being monitored. It can be used for existing systems that 
already log events, process parameters, and input/output data, but do not have a condition 
monitoring and prediction system. The method is generally applicable; it can use any available input 
data from any system because of the use of mixed data input channels (discrete and continuous 
data). One caveat is the need to combine CMMS and CM to avoid too many misclassifications caused 
by unknown maintenance actions in the training phase.  
 
The validation process shows RUL can be forecast after 400 FH. This makes it possible to plan 
maintenance actions for aircraft in advance and avoid unscheduled maintenance. In fact, forecasting 
is possible after one condition change is detected (after about 90 FH), but if several conditions 
change, the forecasting accuracy improves.  
 
Despite its efficacy, the method can be improved in future research. The accuracy of the individual 
decision trees and, thus, the overall accuracy can be improved by using advanced feature extraction 
methods, like wavelet package transformation, ICA, KPAC or PCA.  Fusion of additional sources using 
noise reduction techniques and validation of the proposed method using flight data from multiple 
aircraft to perform sensitivity analysis at a system level should be considered in future research on 
aircraft prognostics in systems and at a fleet level. It would also be possible to use a hybrid model to 
generate a decision tree and an artificial neural network or other classification method for each set 
of parameters. The best method for the given parameter set could then be used in the final 
classification forest. 
 
The method cannot be used to forecast a specific failure, nor can it be used for diagnosis, because 
the health condition of the whole system, i.e. prognosis at a system level, is detected and forecast.  
 
The method could be improved with the use of cleaner and less noisy data. Nevertheless, the process 
is robust; it can compensate by applying noise reduction to the time series because of the uniform 
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distribution of the noise. The cost of this compensation is a delay in the detection of the system’s 
health.  
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