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Abstract 

A reliable condition monitoring is needed to be able to predict faults. Pattern recognition 

technologies are often used for finding patterns in complex systems. Condition monitoring can also 

benefit from pattern recognition. Many pattern recognition technologies however only output the 

classification of the data sample but do not output any information about classes that are also very 

similar to the input vector. This paper presents a concept for pattern recognition that outputs 

similarity values for decision trees. Experiments confirmed that the method works and showed good 

classification results. Different fuzzy functions were evaluated to show how the method can be 

adapted to different problems. The concept can be used on top of any normal decision tree 

algorithms and is independent of the learning algorithm. The goal is to have the probabilities of a 

sample belonging to each class. Performed experiments showed that the concept is reliable and it 

also works with decision tree forests (which is shown during this paper) to increase the classification 

accuracy. Overall the presented concept has the same classification accuracy than a normal decision 

tree but it offers the user more information about how certain the classification is. 
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2. Introduction 
Systems can be complex and difficult to monitor. A good condition monitoring does not only depend 

on good sensors and a good model but also interpreting of the data. Interpreting sensor data 

however is not a trivial task. Classification and condition monitoring as shown in this paper also 

reduces the amount of information that needs to be monitored. Often an expert is needed to 

interpret the data and make a meaningful "classification". Another problem with a “crisp” 

classification is that the user gets no knowledge about the “stability” of the classification. Stability in 

this case mean how fast the classification can change when the input data changes. This however is 

important information when working with sensors, because it might be possible that small sensor 

errors can cause a misclassification. 

Another problem that motivated the research in this paper is from failure diagnosis. If the classes 

represent a failure then it is useful for failure diagnosis to know which classes are similar to the 

current class, because it might be that these failure classes are also responsible for the current visible 

failure effects. 

 

Basically classification maps an input vector to a class based on a learned or given pattern. In case of 

system monitoring the class can be a failure or condition of a system. 

 

 

Figure 1: Common classification mapping of one input vector to one class 

Most classifiers map an input vector to one output class (Figure 1; the input vector is mapped to 

"class 1"). However, for monitoring systems and reducing NFF (No Failure Found) failures knowing 

the probability of an input vector belonging to all possible classes, instead of only the most likely 

class (Figure 2) is useful. The input vector is still mapped to "class 1", but the input vector also 

matches the pattern of "class 4" in 89% of the criteria for "class 4". Artificial Neural Networks (ANN) 

can output the similarity of an input vector to other classes, if one output node is available for every 

class. But ANNs have their own disadvantages compared to other methods. There are several 

different methods for calculating the similarity of signals. Many of these methods are used in speech 

recognition [1]. 

 



 

Figure 2: Classification mapping of one input vector to one class and output of similarity 

Decision trees are simple and fast classifiers with feature extraction, learning and a high robustness. 

Decision trees are a method from the area of artificial intelligence and are used for decision making 

and classification. They are often binary trees, where each node has an if-then-else function on an 

attribute of the sample data. Advantage of decision trees is the simple structure, the fast calculation 

and the inherent feature extraction. The ID3 algorithm (Iterative Dichotomiser 3, published by J. Ross 

Quinlan in 1986, used to generate decision trees [2]) was the first algorithm to construct decision 

trees. ID3 had some problems and was improved. The improved version of ID3 is C4.5 [3]. It enhances 

the ID3 algorithm with the ability to handle both discrete and continues attributes, it can handle 

samples with missing attributes and supports pruning of the tree at the end of the algorithm 

(removing branches from the tree). The algorithm to build a decision tree uses the concept of 

information gain to choose attributes from the data and build the tree. Output of a decision tree is 

only the most likely class for one data sample. 

 

To get more information out of the classification the decision tree inference algorithm was modified 

to output the probabilities of all trained classes. This modification was done without changing the 

learning algorithm for decision trees and can be used with any binary decision tree.  

 

Carrying these ideas further, this paper shows how a fuzzy inference of decision trees using 

numerical attributes can be used to gain more information about a system than just the current 

condition.  

3. Decision Trees 
Decision trees are a method from the area of artificial intelligence and are used for machine learning. 

They are often binary trees, where each node has an if-then-else function on an attribute of the 

sample data. The ID3 algorithm (Iterative Dichotomiser 3, published by J. Ross Quinlan in 1986, used 



to generate decision trees [2]) was the first algorithm to construct decision trees. ID3 had some 

problems and was improved. The improved version of ID3 is C4.5 [3]. It enhances the ID3 algorithm 

with the ability to handle both discrete and continues attributes, it can handle samples with missing 

attributes and supports pruning of the tree at the end of the algorithm (removing branches from the 

tree).  

Decision trees are in the proposed method used to calculate and order the features based on the 

information gain of each feature. During the method validation they are used for failure classification 

to show the influence of different features on the classification performance. 

 



Figure 3: Decision Tree Algorithm Flow Chart

 

Flow Chart 

 



The result of the algorithm is a binary decision tree, where the root of the tree is the attribute with 

the highest normalized information gain. Nodes in the following levels of the tree represent 

attributes with lower normalized information gain. If pure information gain is used for splitting, then 

classes with the most cases are favoured [3]. 

 

Information entropy is the knowledge that is contained in an answer depending on one’s prior 

knowledge. The less is known, the more information is provided. In information theory information 

entropy is measured in bits. One bit of information entropy is enough to answer a yes/no question 

about which one has no data [4]. The information entropy is also called information and is calculated 

as shown below. P(vi) is the probability of the answer vi. 

 

 � ������, … , ������ =  � − ���������������
���  (1) 

 

The information gain from an attribute test is the difference between the total information entropy 

requirement (the amount of information entropy that was needed before the test) and the new 

information entropy requirement. p is the number of positive answers and n is the number of 

negative answers [4]. 

 

 ���� ��� = � � �� + � , �� + �� −  � �� +  ��� + �
�
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C4.5 uses the normalized information gain or the gain ratio. Split info is the information that is gained 

from choosing the attribute to split the samples. 

 

  ���! ��"� ��� =  − � �� + ��� + �
�

� � �  ����  ��� +  ��� + � �     (3) 

 

Gain ratio is the normalized information gain and is defined as shown in equation         (4 [3]. 

 

 ���� #�!�� ��� =  ���� ��� ���! ��"� ���         (4) 

 

Pruning is the reduction of the depth of a decision tree. The tree gets better at classifying unknown 

samples, but might get worse at classifying the test samples. Normally pruning increases the overall 

classification accuracy, but too much pruning can increase the number of false classifications.  

 

Decision trees are good for diagnostics in the context of condition monitoring. They classify data with 

low computation needs and the generated decision trees are highly comprehensible by humans. 

Another advantage of decision trees for condition monitoring is that they can be transformed into 

simple logical equations for each class that can be checked and modified by a human expert. 

 



Decision trees are used to solve a large variety of problem e.g. tag speech parts [5], land cover 

mapping [6], text mining [7] or condition monitoring [8] [9] [10].  

3.1. Fuzzy Decision Trees 

Decision trees can also be evaluated and created using fuzzy rules and concepts. Most often fuzzy 

attributes and values are used to create a fuzzy decision tree that operates on fuzzy sets. Fuzzy 

decision trees can be used to overcome some limitations of decision trees (where some of the 

available features are real- or multivalued, or a numerical decision is needed [11] and that small 

value changes can change the classification result [12]. Wang, Zhai and Lu [13] use fuzzy decision 

trees for database classification using rough sets. Yuan and Shaw suggest the following fuzzy 

decision tree induction [14]: 

1. Fuzzifying the training data. The data in the data set is converted into a fuzzy set using a 

member ship function. Salary data, for example, can be converted into three groups, low, 

average high. Each salary would have a value between 0 and 1 that defines how good a class 

represents this data. Membership functions can come from mathematical, expert or 

statistical sources. [14] 

 

Figure 4: Sample Fuzzy Member Functions for Speed 

2. Inducing a fuzzy decision tree.  

„Step 1: Measure the classification ambiguity associated with each attribute and select the 

attribute with the smallest classification ambiguity as the root decision node. 

Step 2:  Delete all empty branches of the decision node. For each nonempty branch of the 

decision node, calculate the truth level of classifying all objects within the branch into each 

class. If the truth level of classifying into one class is above a given threshold/~, terminate the 

branch as a leaf. Otherwise, investigate if an additional attribute will further partition the 

branch (i.e. generate more than one nonempty branch) and further reduce the classification 

ambiguity. If yes, select the attribute with smallest classification ambiguity as a new decision 

node from the branch. If not, terminate this branch as a leaf. At the leaf, all objects will be 

labelled to one class with the highest truth level. 

Step 3:  Repeat step 2 for all newly generated decision nodes until no further growth is 

possible, the decision tree then is complete.“ [14] 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 100 150 200 250 300 350 400

Slow Medium Fast



3. Converting the decision tree into a set of rules. Fuzzy decision trees can be converted into 

logical rules like crisp decision trees. Each path of the tree is converted into a single rule that 

represents the attribute decisions at each passed node until a leaf is reached. 

4. Applying fuzzy rules for classification. Only one path/rule is evaluated if a crisp decision tree 

is evaluated. For a fuzzy decision tree evaluation each path is evaluated and for each path is a 

fuzzy result calculated using the rules and fuzzy rules. 

Janikow [11] shows a slightly different method for fuzzy decision tree induction and explains how a 

fuzzy decision tree can be optimized so that the classification accuracy is improved. 

 

The previously presented method falls into the category of pre-fuzzyfication, where the data is 

fuzzyfied before the decision tree induction [15]. Post-fuzzyfication is the fuzzyfication of the 

generated decision tree rules. 

3.2. Concept 

The presented concept uses post-fuzzyfication to change the sample classification of and existing 

decision tree. One result per possible class is returned instead of one single classification result. The 

multiple results represent the similarity of the sample to each class. A decision tree is generated 

traditionally, but uses a fuzzy inference for the inference of an input vector:  

1. Generation of feature vectors 

2. A decision tree is generated with C4.5 based on labelled data samples. 

3. The decision tree is evaluated using the fuzzy inference concept. 

The fuzzy inference calculates an output for every leaf of the tree. Every output value of a leaf is a 

value between 0 and 1 and represents the similarity of a sample to the class that is associated with 

the leaf (see Error! Reference source not found. for an example). If multiple leafs are associated with 

the same class, then the leaf with the higher value is taken. The value that is return is the similarity of 

the sample to the class. Similarity is a function of the distance of an input vector to a class. The 

similarity is calculated based on a weighting function of the decisions taken (node inferences) to 

classify the sample. For condition monitoring and maintenance the similarity can indicate possible 

other faults and conditions of a system. The class with the maximum similarity of 1 is still the same 

class that the C4.5 algorithm would generate. The proposed fuzzy inference works as follows: 

1. Every path between two nodes or a node and a leaf has two labels: PathDepth and PathWeight. 

2. Start at the root node 

3. PathDepth and PathWeight are 0 for the root node  

4. Evaluate the node condition 

5. Calculate path labels: 

a) If the test of the condition is true then label the True path with PathDepth +1 and 

PathWeight + 1. 

b) If the test of the condition is false then label the False path with PathDepth +1 and 

PathWeight + 1. 

c) Label the other path to child-nodes with PathDepth +1 and PathWeight + 

n�$%&%��ℎ!�(),  )�. See Equation Error! Reference source not found. and ( 

6. Choose a new node, with a labelled path to its parent. 

7. Use the path labels for PathDepth and PathWeight. 

8. If the node is no leaf then continue at step 4. 



9. If the node is a leaf then return 
*+,-./�0,-*+,-1/2,-  and the leaf label and continue with another node. 

10. If multiple leafs return values for a class then take the higher value. 

The path from one node to another is labelled with the taken decisions. Weights are based on the 

distance of the attribute value from the sample value in the observation. The highest calculated 

value (between 0 and 1) for every possible decision is returned at the end of the inference. Thus all 

possible paths are evaluated and we gain a measure of similarity of an input vector to all classes.  

Advantage of this approach is that the similarity of a data sample to different conditions can be 

calculated and that the decision tree generation algorithm does not need to be changed. It should be 

noted that the concept is designed in such a way that the characteristics of one attribute (mean, 

minimum, maximum …) does not need to be known. In addition, the input vector for training and 

classification does not have to be modified in any way to fit the new algorithm. 

 

It is assumed that the tree is a binary tree with numerical attribute values. Returned values of leafs 

are between 0 and 1. The weight for each node (nodeweight) is calculated as shown in Equation 5. 

Equation ( limits the function values. nodeweight can be between 0 and 1. AV (attribute value) is the 

value of the sample for the condition of the current node.  SV (split value) is the value of the node, 

which marks the border of the condition e.g. the split value of “3 ≤ 17” is 17. Figure 5 shows the 

nodeweight, if the decision is “false” otherwise the nodeweight is 1. 

 

 ��$%&%��!ℎ�(),  )� = 7 01 − |:;<=;|�=;1 > �" ��$%&%��!ℎ�(),  )� < 0�" 0 ≤  ��$%&%��!ℎ�(),  )� ≤ 1�" ��$%&%��!ℎ�(),  )� > 1   (5) 

 

 

Figure 5: nodeweight for "false" decision 

It is possible to use a different weighting function. The requirement is that the weight for each node 

needs to be between 0 and 1 for the algorithm. If the weight is higher than 1 the result at a leaf can 

be higher than 1. The given weighting function was chosen for different reasons. One reason was 

that a black box approach for used for the monitored system and it is unknown what input values of 

vectors mean. It cannot be assumed that the training vectors for the algorithm contain the max or 

min values or even represent an average. These circumstances make it difficult to use absolute 
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values. The only values that are available without adding additional information or calculation to the 

algorithm is the split value of a node. Also the correct classified class needs to have a value of "1" at 

the corresponding leaf. Choosing 2 ) as the limit where the weight will be 0 was an arbitrary choice 

which is based on some tests with input vectors. It is possible to use a higher or lower value. If the 

maximum and minimum values for features are available, then it is possible to use those as limits and 

use Equation 2.  

 

 ��$%&%��!ℎ�(),  )� = B1 −  ) − () ) − C��1 − () −  )C�3 −  )
> �" () ≤  )
�" () >  )  (6) 

 

A disadvantage Equation 6 is that every decision returns a PathWeight of more than 0, which can 

result in quite high similarity values. The concept was designed with only numeric values in mind. 

However, it is possible to use Boolean and discrete values as well with a small modification of the 

process. 

Nodes with Boolean attributes: If Boolean attributes are used instead of numerical values 

then the weight is assumed to be 0. 

Nodes with discrete values: If a node does have more than two children (one for every 

possible value of the attribute) then only the path linked to the test of the node condition is 

weighted with 1. For every other unlabelled path to a child the weight needs to be calculated 

separately. 

3.3. Fuzzy Decision Tree Inference Example 

An example of the process is shown in Figure 6.  Each path from one node to another is labelled with 

PathWeight and PathDepth in the form of 
*+,-./�0,-*+,-1/2,-   e.g. 

�D.  

 



 
          (a)      (b) 

 
          (c)       (d) 

Figure 6: Fuzzy decision tree Inference example 

The input vector (values of the power spectrum of the transformed input signal) contains the power 

(energy per unit time) of the frequencies at 100Hz, 233Hz and 1023Hz. At the first node the 100Hz 

value is checked if it is larger or equal than 10. The power is not larger than 10 (it is 7) so right path 

which is the False path get +1/+1. For the other path a 1 is added to the PathDepth and a 0.85 (the 

similarity) to the PathWeight (Figure 6 (a)). In the next step the 1023Hz node is evaluated. The input 

vector does have a power at 1023Hz which is higher than 23, so the True path gets +1/+1 for a total 

of 2/2 (+1/+1 to the 1/1 from the parent path). The other path gets a +0.41/+1 for a total of 1.41/2  

(Figure 6 (b)). The same process is done for the right hand node (233Hz). Evaluating the node gives a 

+1/+1 to the False path and a +0.95/+1 to the other path (Figure 6 (c)). In the last step the weight of 

the leafs and the classes are calculated. The input vector is classified as class 2. The similarity to class 

1 is 0.71, 0.93 to class 3 and 0.9 to class 4 (Figure 6 (d)). A similarity of 0.93 means that the values do 

not have to move much to switch the classification result to class 3. 

 

Only the attributes, which define a certain class, are evaluated during the inference. Attributes, 

which the algorithm did not include in a decision path, are not checked. E.g. after the root node 

either 1023Hz or 233Hz is checked for classification of a class. So a class is either defined by 100Hz 

and 1023Hz or by 100Hz and 233Hz, but not by all three attributes. Which attributes are in a decision 

path and are checked is decided by the decision tree generation algorithm (in this case C4.5). For 

more complex examples an attribute can be checked multiple times (with different decision values) 

in a decision path and attributes, which were neglected earlier, are checked again. However even in 



the simple example all attributes are at least evaluated once, because the algorithm checks all paths. 

And the inference results are used to calculate the similarity values. 

3.4. Fuzzy Decision Tree Forest Inference 

A decision tree forest can also be evaluated using the proposed concept. Each decision tree in the 

forest is evaluated separately using fuzzy decision tree inference. If all trees are evaluated, then the 

results (similarities) for a class from all trees are added together and are divided by the number of 

trees (taking the average of a class over all trees in the forest). This is done for all available classes.  

4. Validation 
Experiments were performed to ensure the performance of the concept. Goal of the experiments 

was to evaluate the fuzzy decision tree inference for a single decision tree and for a decision tree 

forest. 

4.1. Setup 

This section details the setup of the validation. The validation is splitted into two parts. First a single 

decision tree with fuzzy inference is analysed and then a decision tree forest is analysed. Both 

validations use the same data that was generated on a test rig at Airbus. 

4.1.1. Data 

Data for the experiments was recorded on a test rig. The test rig resembles a part of the air 

conditioning system of the A340-600. Focus of the test rig is the High Pressure (HP) recirculation fan 

and filter. 29 different conditions were recorded. The test rig is equipped with two valves, one valve 

at each end of the two open tubes. Table 1 shows the possible settings for both valves. 20 samples of 

one second duration were recorded for every condition of the test setup. 

 

 

Figure 7: Test Rig at Airbus Operations GmbH 
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Recirculation 

Fan 



Valve 1 0 15 30 45 60 75 90 

Valve 2 0 15 30 45 - - - 
Table 1: Experiment Conditions 

Valve1 is the inlet valve and Valve2 is the outlet valve. 28 conditions were recorded (Table 1). In 

addition to these 28 conditions a not running condition was recorded. In total 580 samples were 

recorded. The samples are labelled valve1/valve2 e.g. 15/0 which represents the test case valve 1 is 

closed by 15 degree and valve 2 is fully open. Valve 2 was only closed up to 45° to prevent damage to 

the fan and tubes due to overheating and overpressure. 

The test rig also had a filter mounted that was connected to the fan inlet. Thus there was always air 

flowing to the fan inlet even if valve 2 was completely closed. The fan, filter and the orange tube are 

original aircraft parts. The positions of the parts were the same as they would be in a real aircraft. 

4.1.2. Feature Extraction 

The Java software Weka was used to perform the experiments. The decision tree is generated using 

the C4.5 algorithm. The C4.5 algorithm was used, because it is more advanced than the basic ID3 

algorithm (accepts both continuous and discrete features, solves over-fitting problem by pruning 
handles, incomplete data points) and is available as an open source implementation J48. Input for 

the decision tree generation is a set of features that was extracted from sensor data. The feature 

extraction was controlled by different parameters. Table 2 shows the parameter list. 

 

Parameter Possible Values Default Value 

Block Width 5/50/100/200 100 

Noise Reduction Factor 0/1/2/5 1 

Maximum Amplitude Yes/No Yes 

Mean Amplitude Yes/No Yes 

Maximum Power Yes/No Yes 

Maximum Frequency Yes/No Yes 

Mean Power Yes/No Yes 

Number of Peaks Yes/No Yes 

Peak Border 1/2/5 2 

Global Maximum Amplitude Yes/No Yes 

Global Mean Amplitude Yes/No Yes 

Global Maximum Power Yes/No Yes 

Global Mean Power Yes/No Yes 

Global Number of Peaks Yes/No Yes 

Confidence Factor 0.0001/0.001/0.01/0.1/1 0.001 
Table 2: Feature Extraction Parameter 

Block Width defines how many frequencies are grouped in the frequency domain to form a block for 

detailed feature extraction.  

 

The Noise Reduction Factor defines how much noise will be reduced. The noise reduction in this 

concept removes all frequencies in the frequency which power is below noise reduction factor times 

mean power. 

 

Peak Border controls what frequencies are defined as peaks. Any frequency which power is greater 

or equal than the Peak Border times the Mean Power is defined as a peak. 

 



The confidence factor controls how much tree pruning is done and is a parameter of the J48 

algorithm of the WEKA software [16]. A confidence factor of greater than 0.5 means that no tree 

pruning is done. The lower the confidence factor is the more pruning is done. 

 

All other parameters are Boolean parameters which control if a given feature is calculated or not. 

Elementary feature extraction operations can be executed in any order and allow the creation of a 

set of feature extraction operations the can be different for each problem [17]. This makes 

elementary extraction operations also good for machine learning. The used operators are fast to 

compute and can be used for online monitoring. 

These parameters were used to generate a feature vector for each data sample. A genetic evolution 

algorithm was used to optimize the parameters to generate a decision tree with high classification 

accuracy. The three best decision trees were used to form a decision tree forest [18]. 20 randomly 

ordered samples of every class were selected for the decision tree generation. 

4.1.3. Single Fuzzy Decision Tree Inference 

The experiments themselves were simple. A decision tree was calculated using the data samples and 

the signal analysis parameters. The decision tree was then evaluated with fuzzy decision tree 

inference. Test case "15/0" was used to compare the results and was the correct class for all data 

samples. Five different node weighting functions are tested to be able to evaluate the influence of 

the node weighting function. The average of all 20 fuzzy inferences of test case "15/0" was taken to 

reduce the influence of noise.  

• Equation Error! Reference source not found. as the default node weighting function 

• Equation 3 as an example of a function where the weights are always close to 1 and 0 

• Equation 4 as a "flat" function with many values close to 1 

• Equation 2 as a function that always does have a value 0 < 3 ≤ 1 

• Equation 5 as a function with more values that are 0 and which scales with the value range 

  

 ��$%&%��!ℎ�(),  )� = 1 − |() −  )|0.01 )  (7) 
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Each equation (set) replaces Equation Error! Reference source not found.. For each equation the 

same parameter set and decision tree was used. 

4.1.4. Decision Tree Forest 

A decision tree forest with three trees was created for the experiments with a decision tree forest. 

Each tree does have a classification accuracy of at least 90%. Every tree uses a different signal 

processing parameter set, which generates different training vectors and test vectors for the 



inference. During the experiments the classification accuracy compared to a single decision tree with 

a classification accuracy of 95% was evaluated. The fuzzy evaluated results for the same 20 data 

samples and neighbouring classes as in the experiments for the single decision tree were also 

evaluated. 

4.2. Results 

This section shows the results of the experiments. First the results for a single fuzzy decision tree 

inference are shown and second the results for a fuzzy decision tree forest inference are shown. 

4.2.1. Single Fuzzy Decision Tree Inference 

Table 3 shows the averaged results for five fuzzy decision tree inferences with data samples of class 

"15/0". The numbers show that the correct class is classified. For comparison the similarity of the 

three neighbouring classes (0/0, 15/15 and 30/0) is shown. The classes are very similar to class 

"15/0", but the variance in the results depends on the node weighting function. If a node weighting 

function is "flat" (meaning that the results are often higher than zero) then the similarities are all 

close to 1 and have little variance (often between 0.9 and 1). On the other hand, if the function is 

"narrow" (meaning that often results are produced, which are zero) then the variance is higher and 

similarities can range from 0 to 1. 

 

Class Eq. Error! 

Reference 

source not 

found. 

Eq. ( Eq. ( Eq. ( Eq. ( 

0/0 0.9585 0.5714 0.9917 0.8294 0.6462 

15/0 1 1 1 1 1 

15/15 0.9872 0.8357 0.9974 0.9209 0.8505 

30/0 0.9996 0.9213 0.9999 0.8 0.8 
Table 3: Averaged inference results 

This effect occurs because the PathWeight is often much higher than zero for "flat" functions. The 

maximum "narrow" function is, if only 1 or 0 would be valid results. Then the similarity is based on 

the number of the "True" decision. This may be desirable for some applications, but it hides some 

information that might be useful for condition monitoring. Small variations of an attribute are not 

represented in a very "narrow" function, they are filtered out. But often the goal of condition 

monitoring is not only the similarity but also the ability to detect slight movements in the similarity to 

predict into which "direction" a similarity is moving if one or more values are modified. Finding a 

fitting node weighting function depends on the problem and the goals of the application. 

 

Table 4 shows a complete similarity matrix. The matrix contains the results of all leafs of the decision 

tree for Equation 7. In the matrix the full similarity variance of the results is visible. The table shows 

that the most similar classes do not always have to be neighbours, but instead they can be classes 

farther away. Two of the neighbours are very similar, which is the desired result. The similarity of the 

other classes is mixed. The tendency is that the similarity is lesser if a class does have a higher 

distance from "15/0". 

 

Valve2/Valve1 0 15 30 45 60 75 90 

0 0.5714 1 0.9213 0.5 0.65 0.7583 0.655 

15 0.672 0.8357 0.6929 0.6667 0.6512 0.7278 0.4944 



30 0.75 0.5 0.5 0.6 0.4444 0.5714 0.4286 

45 0.65 0.75 0.5712 0.5667 0.25 0.5 0.25 
Table 4: Similarity matrix 

4.2.2. Fuzzy Decision Tree Forest Inference 

This section shows how the results improve, when a decision tree forest is used. The similarity values 

of the decision tree forest were calculated by taking the average similarity values of the single 

decision trees. 

4.2.3. Classification Accuracy 

The accuracy of a classification is defined as the number of correct classifications (CC) in relation to 

the number of all classifications (TS), where TS is the number of correct classification plus the 

number of wrong classifications (see Equation 10).  

 

 H��II�"�J�!��� (JJKL�JM = HHN  (10) 

 

Classification accuracy is a number between 0 and 1, which can be transformed into a percentage 

value. The accuracy of the decision tree inference is not influenced by the fuzzy decision tree 

inference. This is because of the fact that the True paths are weighted with "1" while all other paths 

are weighted with a positive number lower than 1 (0 < 3 ≤ 1). The True path will always have the 

highest weight. However it is possible that the classification accuracy of fuzzy decision tree inference 

is slightly lower than for standard decision tree inference because of the limits of numerical 

computations. If the weight of a node is very close to 1 then it is possible that due to rounding errors 

it is counted as a 1 instead of a value that is lower than 1. This case happened in some experiments 

and was more frequent, if a 32 bit Java floating point data type was used instead of 64 bit Java 

floating point data type. Using a forest with three decision trees increased the classification accuracy 

from 95% per single tree to 99% for the complete forest. This is a significant classification accuracy 

improvement, which comes at the cost of three times the calculation time. However in the example 

application of air filter monitoring the time is not a critical factor. 

4.2.4. Fuzzy Decision Tree Inference 

Comparing the results of the same four classes that were evaluated for a single decision tree we get 

Table 5. The results are similar to a single decision tree with fuzzy inference, but the average 

similarity and the overall classification accuracy is higher. These results show that the fuzzy inference 

also works with a decision tree forest. But if one value changes in the input changes then the 

influence on the similarity is less. Decision tree forests with fuzzy inference are better at calculating 

the overall similarity of an input, because different signal analysis steps are used and different trees 

are evaluated. Thus different features are checked and used to calculate the similarity result of a 

single decision tree. 

 

Class Eq. 5 Eq. 8 Eq. 9 Eq. 7 Eq. 10 

0/0 0.9654 0.6905 0.9931 0.8725 0.7206 

15/0 1 1 1 1 1 

15/15 0.9815 0.8665 0.9963 0.9370 0.8736 

30/0 0.9976 0.8528 0.9995 0.9286 0.9095 
Table 5: Averaged fuzzy decision tree forest inference 



Valve2/Valve1 0 15 30 45 60 75 90 

0 0.6905 1 0.8528 0.5972 0.4833 0.5950 0.04718 

15 0.6843 0.8665 0.7403 0.5637 0.4929 0.5537 0.4127 

30 0.6630 0.5650 0.4061 0.6071 0.4648 0.6071 0.6111 

45 0.6667 0.6533 0.4904 0.6389 0.4087 0.4401 0.4556 
Table 6: Similarity matrix for the decision tree forest 

5. Conclusions & Discussion 
The concept for fuzzy inference of decision trees, which is shown in this paper can achieve the 

desired performance and delivers good results. It is possible to calculate a similarity measurement 

for classes in a decision tree without changing the algorithm to create the tree. However, the design 

of the node weighting function is important. Paths should be weighted with a low PathWeight to get 

a meaningful similarity measurement. A "flat" node weight function is more sensitive the changes in 

the input values. On the downside a "flat" function does have a lower variance in the similarity 

values. "Narrow" node weighting functions have the opposite effect. Fuzzy classification plus decision 

trees are a powerful tool for condition monitoring. The fuzzy decision tree inference is easily 

understood, fast and small, which makes it good for use in environments characterized by high safety 

requirements. With additional optimization of the weighting equation it is possible to increase the 

variance of the fuzzification. 

Another possible variation is to not limit the fuzzfication to the split value and the “false” path, but 

also weight a part of “true” path and thus having a fuzzy border between both paths. The “true” path 

would always have a higher value than the “false” path, but it would only have the value 1, if the 

attribute value is quite away from the split value [15]. 
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