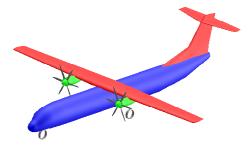


Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences


AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)

OpenVSP-Connect – Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Dieter Scholz Hamburg University of Applied Sciences

Tahir Sousa Hamburg University of Applied Sciences

CEAS European Air & Space Conference 2013 Linköping, Sweden 16 to 19 September 2013

OpenVSP-Connect – Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Abstract

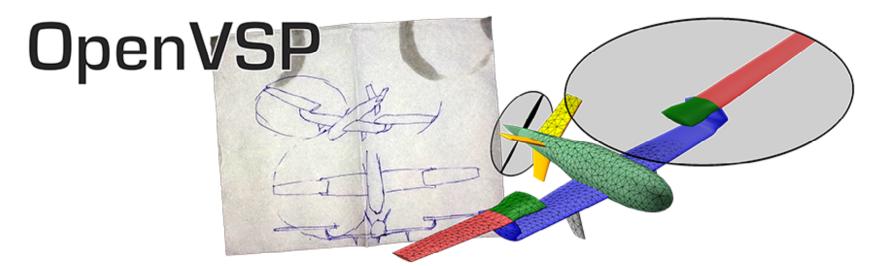
A 3D visualization is missing for many aircraft preliminary sizing tools. NASA's Open Vehicle Sketch Pad (OpenVSP) is easy to use, but lacks an interface to input consistent aircraft data. Such an interface has been programmed and is called OpenVSP-Connect. Aircraft are sketched from about 50 parameters. If these are not known to the user, the interface calculates them as good as possible based on simple equations from aircraft design or statistics. Taken this to the extreme, a decent looking aircraft is drawn from as few as two input parameters.

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Contents

- OpenVSP
- Three Approaches to Visualization with OpenVSP
- OpenVSP-Connect
- Summary

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad


Contents

- OpenVSP
- Three Approaches to Visualization with OpenVSP
- OpenVSP-Connect
- Summary

OpenVSP VSP Hangar Workshop 2013 Blogs Get Started Learn More Participate Sign in

vehicle sketch pad join us NASA open source parametric geometry

www.openVSP.org

<u>OpenVSP</u> <u>VSP Hangar</u> <u>Workshop 2013</u> <u>Blogs</u> Get Started <u>Learn More</u> <u>Participate</u> <u>Sign in</u>

Download and Install

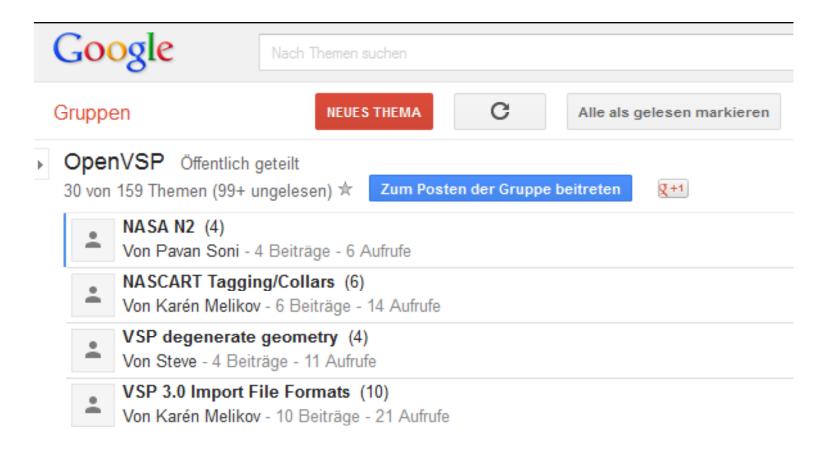
Getting started with VSP is easy. If you're on Windows or MacOS, visit the download page and pull down the latest version ready-to-go. If you're on Ubuntu, there are some installation instructions on the Wiki; installation on most other Linux distributions should be similar.

Tutorials

VSP is very easy to use. Most users get the hang of it after just a few minutes. If you're looking for more help, there are some tutorial videos and a downloadable manual which help you get started in VSP.

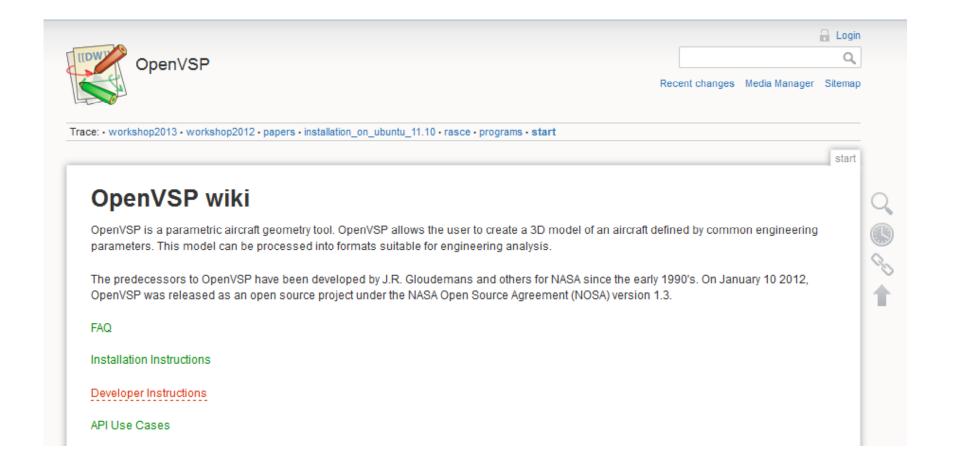
VSP Hangar

The <u>VSP Hangar</u> is a database of community contributed example models. Check it out for a starting point or just for inspiration. Once you've completed your first model, show it off by contributing it to the hangar.

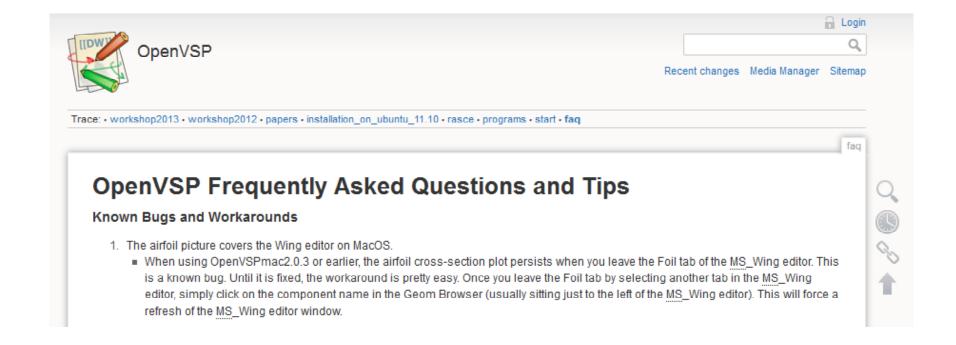


User Manual

81 pages



OpenVSP Google Group

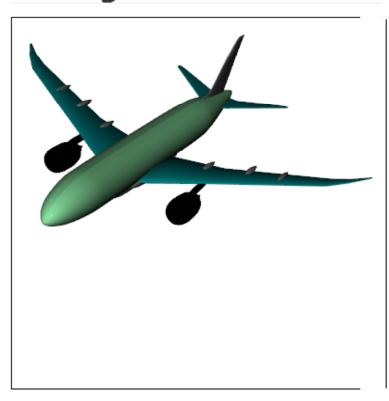


Filter Results

Filter Results		Source	
Source Quality	Name	Quality	ı
□ 5 - Completely Inaccurate (1)	IK-02	3	
1 - Definitive (1) 2 - Essentially Exact (3)	IK-01	3	
3 - Good (11)	LJJ-3X1	5	
Manufacturers			
(5) Bombardier (3)			
NASA (3) Boeing (2)	DC-10	3	[
■ MIT (1)■ McDonnell Douglas (1)	Bombardier	2	Е
Embraer (1)	Dash 8 Q400 clean		
Units	w/o prop		
feet (14)	Danibandian		
dimensionless (2)	Bombardier Dash 8	2	E
Tags	Q400 clean		
▼ transport (16)	w/o prop		
airplane (15)			
animici (/)	Bombardier	2	E
turboprop engine (3) twin-engine (3)	Dash 8 Q400 clean		
blended wing body (2)	Q 100 clean		
lifting body (2)	ATR	3	
utility (1)	₹ 42-600		
	Hybrid Electric		
Filter Results	Electric		
	ATR 42-600	3	E

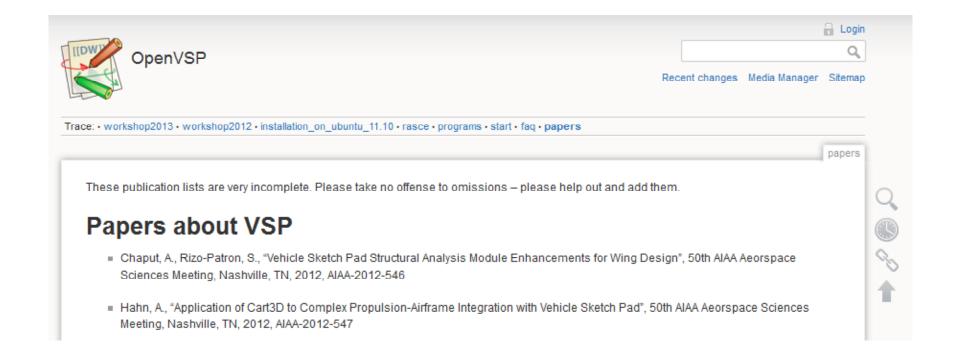
Name	Source Quality	Manufacturer	Model	Downloads	Comments	Date •
IK-02	3			43	0	2013-02-24
IK-01	3			33	0	2013-02-24
LJJ-3X1	5		Jumbo Luxuryliner/ Cargo Transport	42	0	2013-01-31
DC-10	3	McDonnell Douglas	DC-10	99	0	2013-01-23
Bombardier Dash 8 Q400 clean w/o prop	2	Bombardier	Q400	144	0	2012-10-11
Bombardier Dash 8 Q400 clean w/o prop	2	Bombardier	Q400	70	0	2012-10-10
Bombardier Dash 8 Q400 clean	2	Bombardier	Q400	131	0	2012-10-04
ATR 42-600 Hybrid Electric	3		Hybrid ATR-42	119	0	2012-08-15
ATR 42-600	3	Embraer	ATR-42- 600	129	0	2012-08-15

OpenVSP Hangar

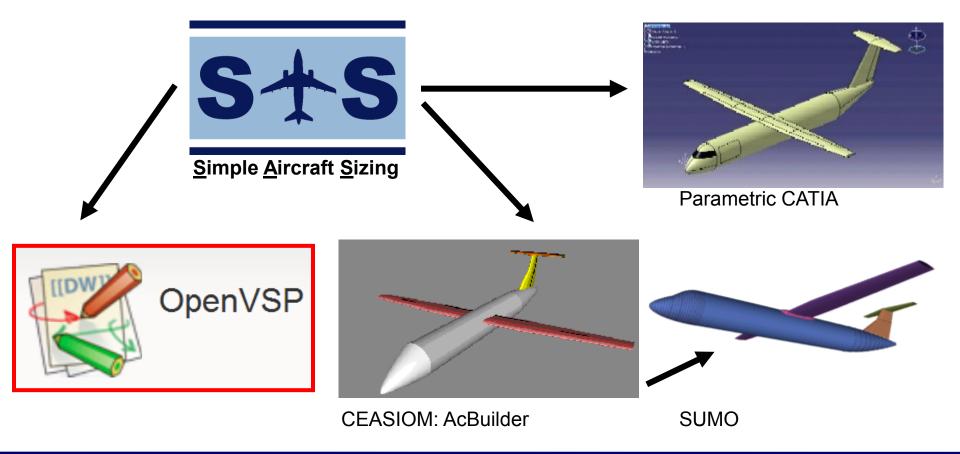


<u>OpenVSP</u> <u>VSP Hangar</u>	Advanced Sear	<u>rch Upload Help Sign in</u>					
Boeing 787-300							
	File ID#	61					
	Manufacuter	Boeing					
	Model	787-300					
	Units	Feet					
OpenVSP Hangar left-click = rotate, middle-button/CTLR-left-click = pan, scroll/right-	Description	A general, non-exact Boeing 787-300 model					
	Source Quality	3 - The source material used to create this model was Good. This means good 3-view drawings were used to create the model.					
	Model Suitability	 2 - Cartoon or Pretty Picture 2 - Weight and balance 2 - OML for wetted areas/drag buildup 2 - Check internal layout/volume 2 - Structures 2 - Build a display model 3 - Accurate OML for detailed aerodynamic analysis or CFD 					
Download Revisions (0)	Tags	airplane , transport					

Boeing 787-300


hangar.openvsp.org

OpenVSP Hangar



OpenVSP and **Other Options** for 3D Aircraft Visualization

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Contents

- OpenVSP
- Three Approaches to Visualization with OpenVSP
- OpenVSP-Connect
- Summary

Open Vehicle Sketch Pad Aircraft Modeling Strategies

Andrew S. Hahn ¹
NASA Langley Research Center, Hampton, VA, 23681

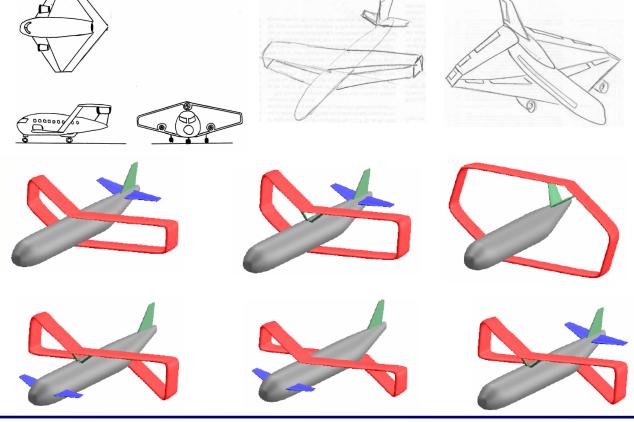
Geometric modeling of aircraft during the Conceptual design phase is very different from that needed for the Preliminary or Detailed design phases. The Conceptual design phase is characterized by the rapid, multi-disciplinary analysis of many design variables by a small engineering team. The designer must walk a line between fidelity and productivity,

. . .

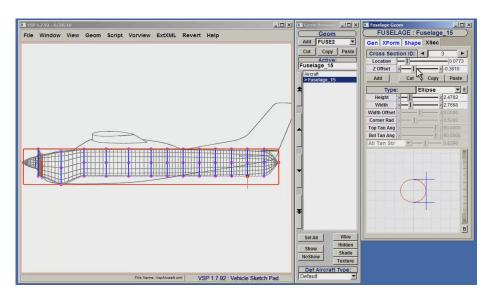
American Institute of Aeronautics and Astronautics

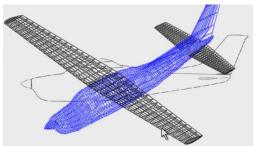
Hahn: There are two basic kinds of models created in Open VSP:

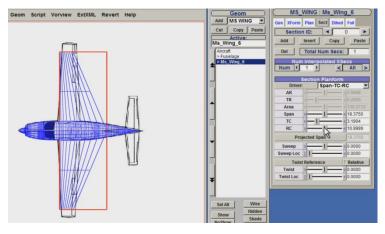
The first approach is the "clean sheet" design in which the parameters are all chosen by the designer using Open VSP. In this case, there is no other geometry and so this model is considered definitive.


The **second approach** basic kind of model is the "match" design. ... In this case, there is some other standard of comparison, be it a real aircraft or a geometry from a different modeler such as CAD. It takes significantly more effort to produce a model that is as good of a representation as possible. Usually, the only **geometric information available is limited tabular data and a three - view drawing**. There are different ways of building this kind of model, but the preferred way is to gather the most accurate information and then expend some effort to derive the parameters that Open VSP needs to create the model.

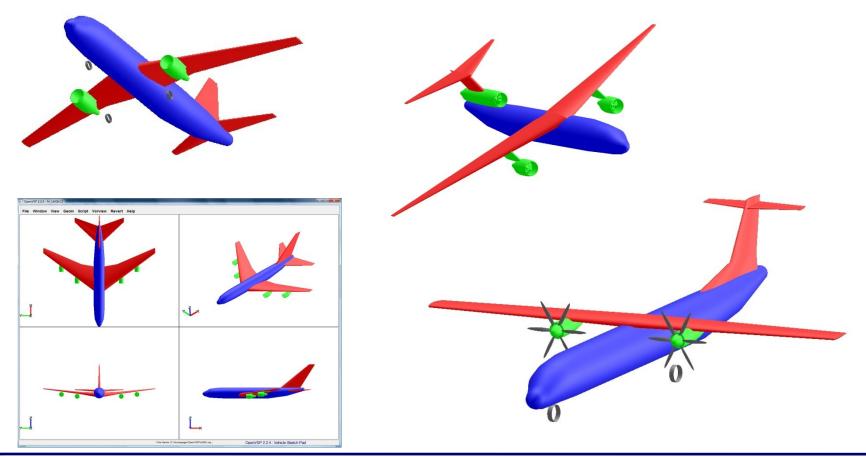
The first approach: clean sheet design

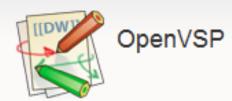

- Hand Sketches
- Creative Methods
 - Brainstorming
 - Gallery Method
 - Visualization with OpenVSP




The second approach: matched design

Edit the cross sections of the fuselage in order to line them up over the background image.


Edit wing parameters to match the wing and the tail in the background image.



The **third** approach: calculated design: OpenVSP-Connect

An approach to "calculated design" under OpenVSP?

Trace: • workshop2013 • workshop2012 • papers • installation_on_ubuntu_11.10 • start • programs • rasce

RASCE

Rapid Air System Concept Exploration

RASCE is developed by Armand J. Chaput, and is distributed with the following license statement.

DRAFT

Rapid Air System Concept Exploration (RASCE)

Overview July 2009

University of Texas at Austin Air System Laboratory

Armand J. Chaput, Director

See also: OpenVSP-Workshop 2012

DRAFT

© 2009 Armand J. Chaput

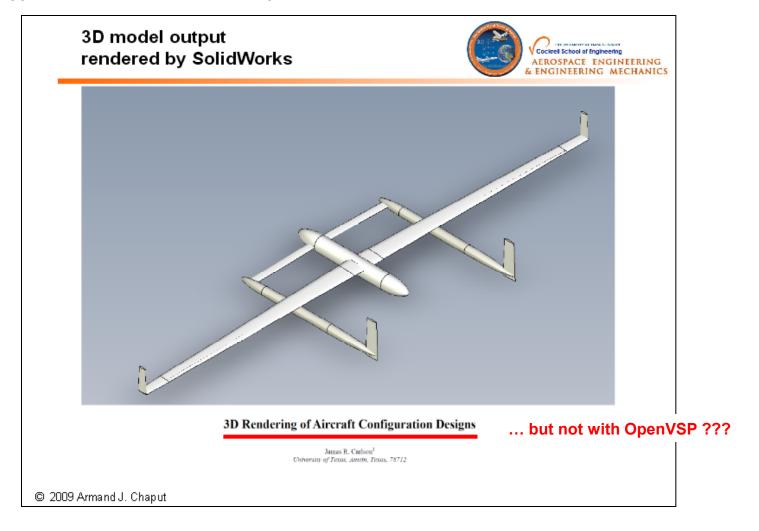
Summary

RASCE - a physics-based, conceptual level, air system design and analysis M&S environment developed to provide students with hands-on experience in air system design including real world design drivers not typically taught

- In continuous use since 2003 on student design projects
- Also applied to government and industry concept studies

RASCE is particularly well suited for concept screening and quantitative design and technology trade studies

 Configuration features and trade offs can be carefully and systematically controlled over a broad trade space

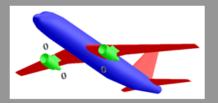

RASCE runs in real time on a standard laptop

No laborious input data preparation and/or hand calculations
 Experienced users can go from initial concept to complete
 air system sized to standard mission rules in < 1 hour

© 2009 Armand J. Chaput

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Contents


- OpenVSP
- Three Approaches to Visualization with OpenVSP
- OpenVSP-Connect
- Summary

OpenVSP-Connect

Connect YOUR Aircraft Design Tool with Vehicle Sketch Pad from NASA

OpenVSP-Connect started as an interface tool between ANY aircraft design tool and Open Vehicle Sketch Pad (openVSP) from NASA.

OpenVSP renders a 3D visualization of an aircraft. Follow this link for more information on OpenVSP:

http://www.openVSP.org

OpenVSP-Connect still runs on OpenVSP 2.2.4 for Win 32.
This version of OpenVSP is provided together with the OpenVSP-Connect download.

In the order of 47 core parameters of the aircraft are used to calculate the input parameters required by OpenVSP to sketch a passenger aircraft. For each parameter a proposed value is given and automatically applied as long as the user does not specify his/her own value.

By using all default values, the program works in "Automatic Mode":

Based on just two input values "Cruise Mach Number" and "Number of Passengers" an aircraft can be sketched automatically based on passenger aircraft statistics.

For further information, documentation, and software download please refer to: http://OpenVSP.ProfScholz.de

OpenVSP-Connect is primarily intended as an interface tool between ANY aircraft design tool and Open Vehicle Sketch Pad (OpenVSP) from NASA.

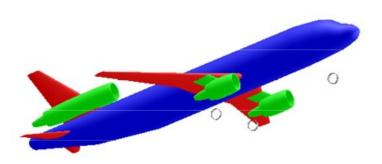
OpenVSP-Connect needs OpenVSP for the display of the aircraft. You can download OpenVSP for free: http://www.openVSP.org

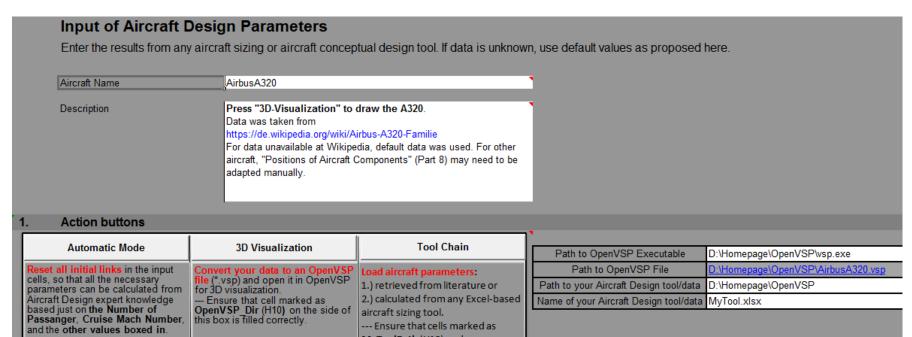
In the order of 50 core parameters of the aircraft are used to calculate the input parameters required by OpenVSP to sketch a passenger aircraft.

For each parameter a proposed value is given and automatically applied as long as the user does not specify his/her own value.

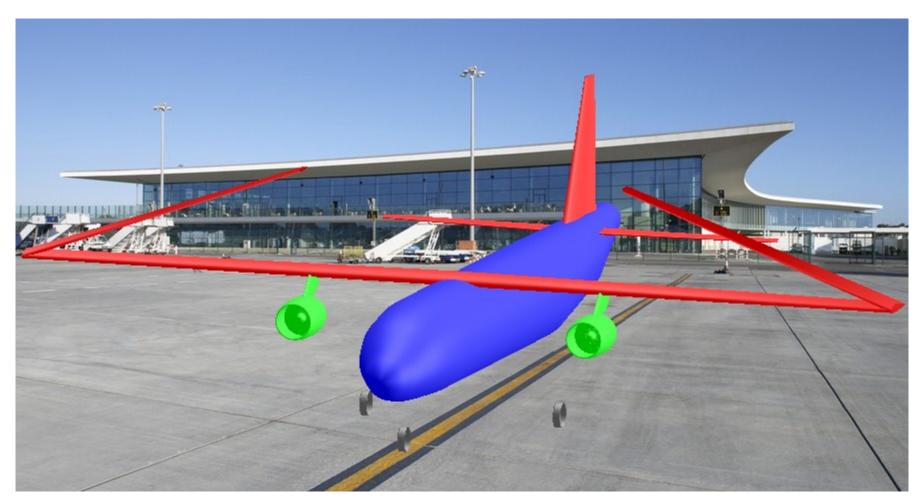
By using all **default values**, the program works in "automatic mode": Ultimately, based on just two input values "Number of passengers" and "Cruise Mach number" an aircraft can be sketched automatically based on passenger aircraft statistics.

	1	Convert to OpenVSP X	ML		
	2	Convert data from Input-Tab to an Open\	VSP XML file.		
	3			Visualization	
	4	Parameter names	Parameter values	needed?	XML generated from OpenVSP Connect
	5				
	6	xml version	"1.0"		xml version="1.0"?
₽	7	Vsp_Geometry			<vsp_geometry></vsp_geometry>
	8	Version	3		<version>3</version>
+	9	Name	AeroAircraft		<name>AeroAircraft</name>
	26	VirtWindow_List			<virtwindow_list></virtwindow_list>
	208	Component_List			<component_list></component_list>
	209	•	HORIZONTAL TAIL	Yes	<component></component>
_	339	•	VERTICAL TAIL	Yes	<component></component>
	511	Component	WING	Yes	<component></component>
	512	Туре	Mswing		<type>Mswing</type>
	513	General_Parms			<general_parms></general_parms>
	561	Mswing_Parms			<mswing_parms></mswing_parms>
	562	Total_Area	104,544832		<total_area>0.000.105</total_area>
	563	Total_Span	33,728326		<total_span>0.000.034</total_span>
	564	Total_Proj_Span	33,695906		<total_proj_span>0.000.034</total_proj_span> 0.000.034
•	565	Avg_Chord	3,528260		<avg_chord>0.000.004</avg_chord>
	566	Sweep_Off	0,000000		<sweep_off>0.000.000</sweep_off>
•	567	Deg_Per_Seg	9		<deg_per_seg>9</deg_per_seg>
•	568	Max_Num_Seg	9		<max_num_seg>9</max_num_seg>
•	569	Rel_Dihedral_Flag	0		<rel_dihedral_flag>0</rel_dihedral_flag>
•	570	Rel_Twist_Flag	0		<rel_twist_flag>0</rel_twist_flag>
	571	Round_End_Cap_Flag	Yes		<round_end_cap_flag>1</round_end_cap_flag>
	572	/Mswing_Parms			
+	573	Airfoil_List			<airfoil_list></airfoil_list>





4.	Wing									
	Wing Type	Typew	Double-trapezoida [-]							
	Total Area	Sw	122.600 [m²]	<<<<<	Toral Area Suggestion	Sw	142.830 [m²]			
	Total Aspect ratio	A _w	9.396 [-]		Total Area Suggestion	-11	142.000			
	Total Aspect Tatio	~~	3.350 [-]		Total Span	. 1	33.940 [m]			
	Outboard 25% Sweep	82	25.000 [*]	<<<<<		b _w	21.881 [°]			
		Φ _{25,W,o}			25% Wing sweep suggestion	Ψ _{25,W,0}				
	Taper Ratio	λ _W	0.246 [-]	<<<<<	Taper Ratio Suggestion	λ _W	0.176 [-] 6.741 [m]			
					Root Chord	C _{r,w}				
					Tip Chord	Ct,w	1.658 [m]			
					Outboard Leading edge Sweep	Φο,w,ο	27.282 [*]			
					Outboard Trailing edge sweep	Φ100,W,o	17.641 [m]			
	Airfoil thickness ratio	(t\c) RelPos _w ,	0.130 [-]	<<<<<	Thickness ratio	(t\c)	0.116 [-]	and an invest		
	X position of wing	****	31.500 % of fuselage		X position of wing		31.500 % of fu	iselage length		
	Z position of wing	RelPos _{W,z}	25.000 % of fuselage dia							
	Outboard dihedral angle	Γ _{W.o}	5.100 [*]	<<<<<	Outboard dihedral angle	F _{W.o}	2.166 [°]			
	Edit this section									
	Relative kink position	Π _{k,W}	0.320 [-]	<<<<<	Relative kink position	η _{k,W}	0.320 [-]	Relative kink constant	K _{n,k,W}	0.320 [-]
	Inboard Leading edge Sweep	Φο,w,ι	27.282 [*]	<<<<<	Inboard Leading edge Sweep	Φο,w,ι	27.282 [°]			
	Inboard Trailing edge Sweep	Φ _{100,W,I}	0.000 [*]	<<<<<	Inboard Trailing edge Sweep	Φ100.W.I	0.000 [°]			
	Inboard dihedral angle	Γ _{WJ}	5.100 [*]	<<<<<	Inboard dihedral angle	Γ _{WJ}	5.100 [°]			
-	2 .									
5.	Fuselage									
	Fuselage diameter	d _e	3.960 [m]	<<<<<	Fuselage diameter	de l	3.744 [m]	Number of seats per row	n _{sA}	6
	Fuselage length	L.	35.800 [m]	<<<<<	Fuselage length	L.	43.560 [m]	Slenderness ratio	KLEde	11.000 [-]
	Nose length	L _{nose,F}	6.203 [m]	<<<<<	Nose length	L _{nose,F}	6.203 [m]	Diction Talio	"N.F.O.F.	11.000 [-]
	Cockpit length	L _{cock F}	2.574 [m]	<<<<<	Cockpit length	L _{cock,F}	2.574 [m]	Cockpit length constant	K _{Leock} ,	0.650 [-]
	Fuselage aft length	Latif	13.068 [m]	<<<<<	Fuselage tail length	L _{tall,F}	13.068 [m]	Fuselage tailcone constant	K _{Louil.*}	3.300 [-]
	r declare art length	Laft,F	15.000 [11]		Cylinder length	L _{op}	16.529 [m]	r usciage tallcone constant	11,000,0	3.300 [-]
					Cymract rongin	-c,r	10.020 [11]			
6.	Horizontal Tail									
	Total aspect ratio	Au	5.000 [-]	<<<<<	Aspect Ratio	A _H	5.201 [-]	HT Aspect ratio constant	k _{a,m}	0.554 [-]
	Taper ratio	λ _H	0.295 [-]	<<<<<	Taper Ratio	λ _H	0.295 [-]	HT taper ratio constant	K _{A,H}	1.200 [-]
	Total area	лн Su	31.000 [m²]	<<<<<	Area	Λ _H S _u	25.306 [m²]	Tail volume coefficient of HT	N\.H C⊔	0.991 [-]
	Sweep		28.000 [*]	<<<<<<	Sweep			HT 25% sweep constant		5.000 [-]
		Ф _{25,Н} Г _н	6.000 [1]	<<<<<<	The second second	Ф25,н	30.000 [°]	111 23 /0 SWEEP CONSIGNE	ΔФ25,н	3.000 [-]
	Dihedral angle	RelPos _{Hx}		<<<<<	Dihedral angle X position of HT	Γ _H RelPos _H ,	84.000 % of fu	analaga lanath		
	X position of HT	RelPos _{Hz}	84.000 % of fuselage			RelPos _{Hz}				
	Z position of HT	Keirus _{Hz}	-15.000 % of VT spar	<<<<<	Z position of HT	Keirus _{H,z}	-15.000 % of V	i span		
7.	Vertical Tail									
	10.1.001 1011									



MyToolName (H13) on the side of

MyToolPath (H12) and

Investigation of folding wings at airports

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

Contents

- OpenVSP
- Three Approaches to Visualization with OpenVSP
- OpenVSP-Connect
- Summary

Summary

- OpenVSP-Connect is primarily intended as an interface tool between ANY aircraft design tool and Open Vehicle Sketch Pad (OpenVSP) from NASA.
- For each parameter a proposed value is given and automatically applied as long as the user does not specify his/her own value.
- By using all default values, the program works in "automatic mode": Ultimately, based on just two input values "Number of passengers" and "Cruise Mach number" an aircraft can be sketched automatically based on passenger aircraft statistics and "expert" knowledge.

OpenVSP-Connect - Visualize Your Aircraft Sizing Results with NASA's Vehicle Sketch Pad

http://OpenVSP.ProfScholz.de

