





## **Contributions to Aircraft Preliminary**

## **Design and Optimization**

Ing. Dipl. Mihaela Niţă

Supervisors:

CS I Dr. Ing. Mihai Neamțu and Prof. Dr.-Ing. Dieter Scholz

Faculty of Aerospace Engineering

Department of Aerospace Sciences "Elie Carafoli"

28 March 2012











#### **Motivation**

"There is little use of optimization and optimization tools in industry! The understanding of a solution, the transparency of the solution is of prime importance to achieve credibility."

Prof. Dr. Dieter Schmitt

(Vice President, Research and Future Projects Airbus, retired) about aircraft design of commercial aircraft



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Task

- 1. Finding optimal parameters for aircraft preliminary design and aircraft cabin design
- 2. Proposing scientific solutions to process chains optimizations for cabin conversions

Aircraft preliminary design is defined here as aircraft preliminary sizing and conceptual design



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### **Objectives**

- 1. Aircraft preliminary design
  - Developing an aircraft preliminary design methodology
  - Creating a transparent tool that incorporates the methodology
  - Understanding the effect of aircraft and cabin design parameters to the optimal design
  - Understanding the effect of innovative technologies
- 2. Process chain optimization
  - Finding the optimal sequence of engineering work processes in cabin design and cabin refurbishing









#### Method

#### 1. Aircraft Preliminary Design

- Equations and methods for aircraft preliminary design were adjusted and new ones were introduced.
- Equations were combined to an aircraft design methodology that ensured a balanced view on benefits and penalties of changing values of design parameters.
- Methodology was implemented into Microsoft Excel to create a preliminary design and optimization tool, called OPerA – Optimization in Preliminary Aircraft Design.



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Method

- 2. Process Chain Optimization
- Process representation models were searched
- Three methods were selected and applied on the selected representation model



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







# 1. Aircraft Preliminary Design



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Research so far...

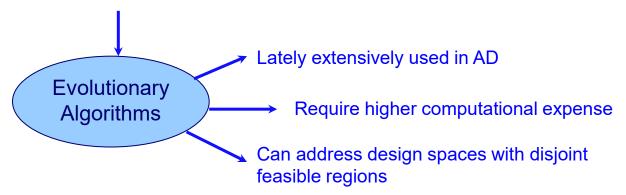
Aircraft Design (AD) software tools:

- Based on books, lecture notes or dissertations (AAA, RDS, PreSTO, QCARD)
- From companies or Research centers (APD, PIANO, CAPDA, ACSYNT, PRADO, FLOPS)
- Cabin Design software tools (FPCC, FPPD)



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





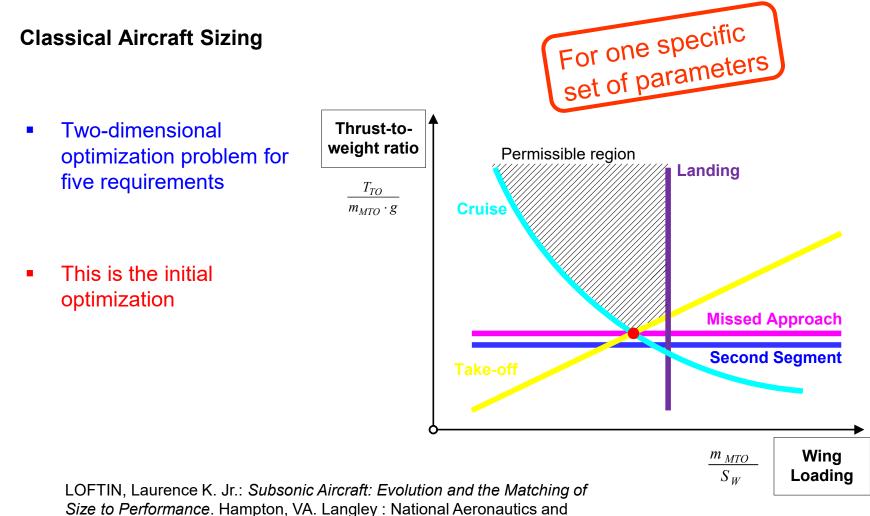



#### Research so far...

#### **Optimization** in Aircraft Design (AD):

 D. Raymer (Dissertation): aircraft conceptual design process can be improved by the proper application of <u>optimization methods</u>




- Y. Crispin: Aircraft Conceptual Optimization Using Simulated Evolution
- N. Ali: Conceptual Aircraft Design A Genetic Search and Optimization Approach
- A.W. Crossley: Design of helicopters via Genetic Algorithm. Journal of Aircraft
- F. Cantelimi: Stochastic Optimization for Aircraft Preliminary Design
- I. Kroo: Multidisciplinary Optimization Methods for Aircraft Preliminary Design
- R. Metzger: Gesamtheitliche Optimierung von Rumpfquerschnitten im Flugzeugvorentwurf











Space Administration, Research Center, 1980



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 10 Aero - Aircraft Design and Systems Group



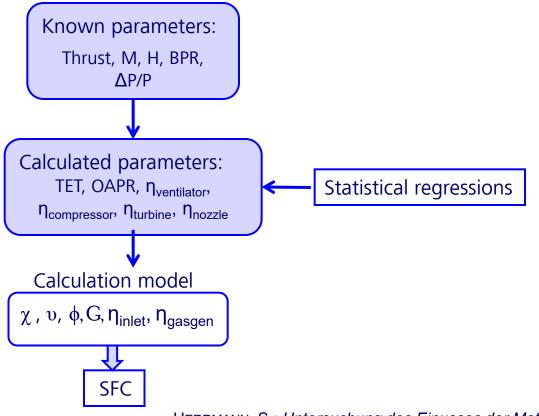




#### From Classical Aircraft Sizing to Formal Optimization

- 1. Automatically finding the design point for each set of parameters (inner optimization) Thrust-toweight ratio Permissible region Landing  $T_{TO}$  $C_{L,Cruise} = C_{L,md}$  $m_{MTO} \cdot g$ Cruise  $C_L / C_{L,m} = 1 \frac{(V / V_m)^2}{2}$  $E = E_{\max} \cdot \frac{2}{\frac{1}{(C_{l_m})^2} + \left(\frac{C_l}{C_{l,m}}\right)}$ **Missed Approach**  $\overline{\left(\frac{C_l}{C_{l,m}}\right)}$ Second Segment Two optimization levels Wing m<sub>MTO</sub>  $S_{W}$ Loading
  - 2. Automatically evaluation of multiple sets of parameters and formal optimization (outer optimization)

#### This special optimization hierarchy is new and allows efficient and traceable optimization










Thrust specific fuel consumption



HERRMANN, S.: Untersuchung des Einusses der Motorenzahl auf die Wirtschaftlichkeit eines Verkehrsugzeuges unter Berücksichtigung eines optimalen Bypassverhältnisses. Graduation Thesis, Technical University Berlin, 2010



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Thrust specific fuel consumption

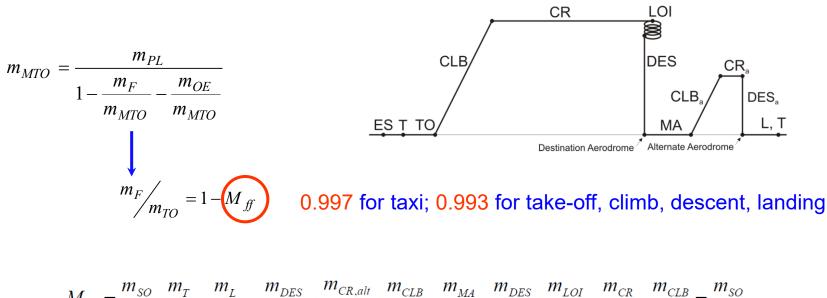
Necessary parametrs: BPR, OAPR, TET,  $\Delta P/P$  and engine component efficiencies:  $\eta_{ventilator}$ ,  $\eta_{compressor}$ ,  $\eta_{turbine}$ ,  $\eta_{nozzle}$ ,  $\eta_{inlet}$ 

$$SFC = \frac{0.697 \cdot \sqrt{\frac{t}{t_0}} \cdot (\phi - \vartheta - \frac{\chi}{\eta_{compressor}})}{\sqrt{5 \cdot \eta_{nozzle} \cdot (1 + \eta_{ventilator} \cdot \eta_{turbine} \cdot BPR) \cdot (G + 0.2 \cdot M^2 \cdot BPR \cdot \frac{\eta_{compressor}}{\eta_{ventilator} \cdot \eta_{turbine}}) - M \cdot (1 + BPR)}$$

$$G = (\phi - \frac{\chi}{\eta_{compressor}}) \cdot \left(1 - \frac{1.01}{\eta_{gasgen} \frac{\kappa - 1}{\kappa} \cdot (\chi + \vartheta) \cdot (1 - \frac{\chi}{\phi \cdot \eta_{compressor} \cdot \eta_{turbine}})}\right);$$

$$\phi = T/t = 1 + \frac{\kappa - 1}{2} \cdot M^2; \quad \chi = \vartheta \cdot \left(OAPR^{\frac{\kappa - 1}{\kappa}} - 1\right); \quad \eta_{gasgen} = 1 - \frac{0.7M^2(1 - \eta_{inlet})}{1 + 0.2M^2}$$




Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### **Refinement of mission fuel fractions**



$$M_{ff} = \frac{30}{m_T} \cdot \frac{1}{m_L} \cdot \frac{1}{m_{DES}} \cdot \frac{1}{m_{CR,alt}} \cdot \frac{1}{m_{CLB}} \cdot \frac{1}{m_{MA}} \cdot \frac{1}{m_{DES}} \cdot \frac{1}{m_{LOI}} \cdot \frac{1}{m_{CR}} \cdot \frac{1}{m_{CLB}} \cdot \frac{1}{m_{TO}} = \frac{30}{m_{TO}}$$



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

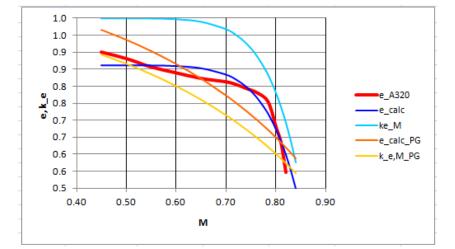
Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 14 Aero - Aircraft Design and Systems Group







#### New method on Oswald efficiency estimation


$$e = e_{theo} \cdot k_{e,M} \cdot k_{e,stat}$$

$$e_{theo} = \frac{1}{1 + f(\lambda - \Delta \lambda) \cdot A}$$

$$\Delta \lambda = -0.35659 + 0.45e^{0.0375\varphi_{25}}$$

$$f(\lambda) = 0.0524 \ \lambda^4 - 0.15 \ \lambda^3 + 0.1659 \ \lambda^2 - 0.0706 \ \lambda + 0.0119$$

$$\begin{aligned} k_{e,M} &= \begin{cases} a_e \bigg( \frac{M}{M_{comp}} - 1 \bigg)^{b_e} + c_e, & \text{for } M > M_{comp} \\ 1, & \text{for } M \le M_{comp} \end{cases} \\ a_e < 0; \quad c_e = 1 \\ a_e = -0.0027 ; \quad b_e = 8.6017 \end{aligned}$$



| Aircraft type             | k <sub>e,stat</sub> | Rank |
|---------------------------|---------------------|------|
| Jet airliner              | 0.896               | 1    |
| Propeller aircraft        | 0.786               | 3    |
| Business Jet              | 0.836               | 2    |
| General aviation aircraft | 0.779               | 4    |
| Fighter                   | 0.762               | 6    |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







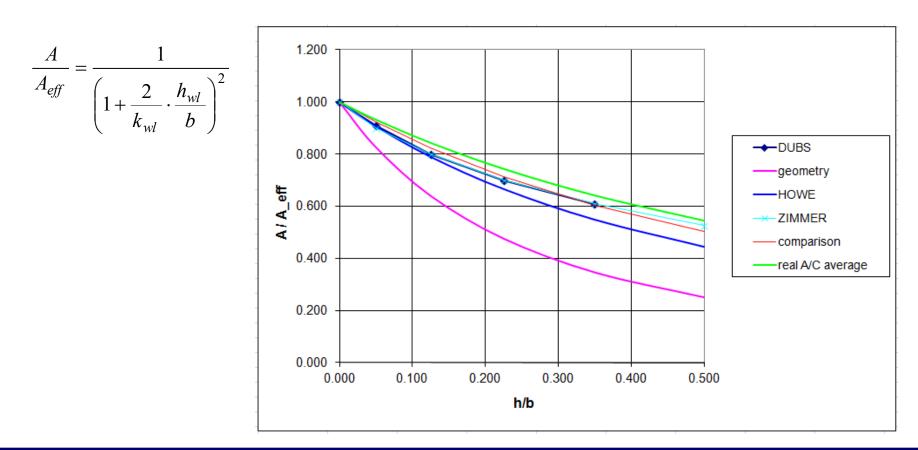
#### New method on Oswald efficiency estimation

#### Oswald factor

| Туре                      | Number | Total in Group | Aircraft Size | Group Name         |
|---------------------------|--------|----------------|---------------|--------------------|
| General aviation aircraft | 5      | 6              | small prop    | GA aircraft        |
| GA aircraft, 2-engines    | 1      |                |               |                    |
| Propeller Aircraft, 2     | 4      | 6              |               | propeller aircraft |
| engines                   | 4      | 0              | medium prop   |                    |
| Propeller Aircraft, 4     | 1      |                |               |                    |
| engines                   |        |                |               |                    |
| Medium Bomber             | 1      |                |               |                    |
| Regionaljet               | 2      | 4              | medium jet    | business jet       |
| Businessjet               | 2      |                | -             |                    |
| Jet aircraft              | 9      | 11             | large jet     | jet airliner       |
| Military transporter      | 1      |                |               |                    |
| Long range bomber         | 1      |                |               |                    |
| Fighter                   | 6      | 6              | fighter       | fighter            |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion








#### The method more precisely...

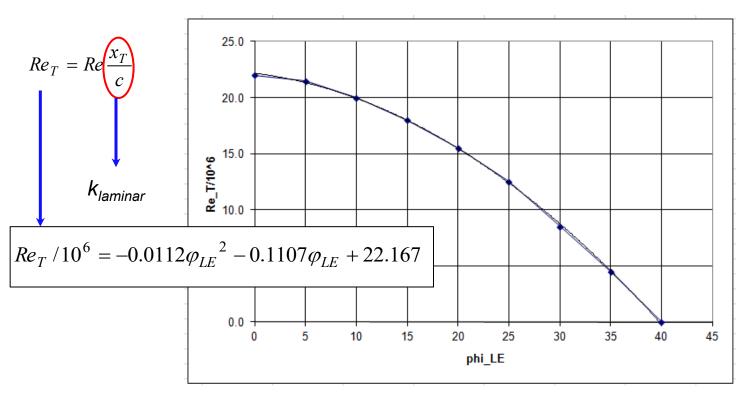
#### **Estimation of winglets efficiency**





Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 17 Aero - Aircraft Design and Systems Group








#### The method more precisely...

#### **Natural Laminar Flow (NLF)**



Based on M. Hepperle: MDO of Forward Swept Wings. In: KATnet II Workshop, 28-29 January 2008, Braunschweig



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





Ho W Ha

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

#### The method more precisely...

#### Strut braced wings

- Wing mass reduction (strut force reduces wing bending)
- Increased aspect ratio becomes possible → Reduced induced drag
- Reduced thickness ratio becomes possible → Reduced wave drag
- → Reduced sweep → Increased areas for NLF → reduced zero-lift drag
- Drag increase due to wetted area of the strut and interference drag (is minimal).

Mass reduction compared to cantilever wing (based on Torenbeek):

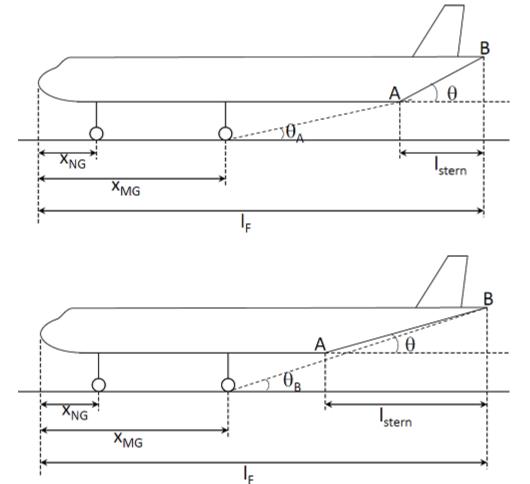
$$\frac{m_{W,ST}}{m_W} = \left(\frac{b_{ST}}{b}\right)^{1.35} \cdot \frac{1 + \sqrt{\frac{b_{ref}}{b_{ST}}}}{1 + \sqrt{\frac{b_{ref}}{b}}} \xrightarrow{(0.7)} \text{Howe: } 0.78$$



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 19 Aero - Aircraft Design and Systems Group








#### Landing gear parameters and mass

Geometry constraints:

- 1. Tail strike prevention
- 2. Engine ground clearance
- 3. Wing tip ground clearance



 $\tan \theta_A = \frac{L_{MG,short}}{l_F - l_{stern} - x_{MG}}$ 

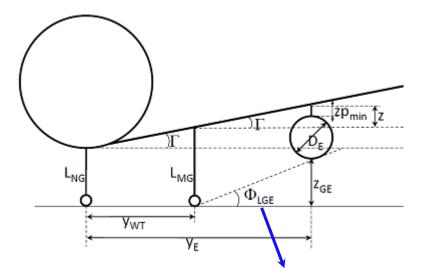
or

$$\tan \theta_B = \frac{L_{MG,long} + d_F}{l_F - x_{MG}}$$



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 20 Aero - Aircraft Design and Systems Group








#### Landing gear parameters and mass

Landing gear lengths (main and nose):



$$L_{MG} = z_{GE} + D_N + z_P - z$$

$$z_{GE} = tan (\varphi_{LGE}) \cdot (y_E - y_{wt}); \quad z_{GE} \leq 17"$$

$$z = tan\Gamma \cdot (y_E - y_{wt})$$

$$L_{MG} = y_{wt} - b_{KB} / 2$$

$$L_{NG} = L_{MG} - z_{NG}$$

$$z_{NG} = tan\Gamma \cdot y_{wt}$$

#### minimum bank angle of 7° must be possible



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 21 Aero - Aircraft Design and Systems Group







#### Landing gear parameters and mass

#### Mass:

$$m_{LG,main} = 5.496 \cdot V_{FL}^{0.172} \cdot V_S^{0.317} \cdot m_{ML}^{0.942} \cdot L_{MG}^{0.152} \cdot l_{WB}^{0.234} \cdot l_{SPRING,main}^{0.101} \cdot p_T^{-0.068}$$
  
$$m_{LG,nose} = 5.538 \cdot V_{FL}^{0.179} \cdot V_S^{0.128} \cdot m_{ML}^{0.779} \cdot L_{NG}^{0.276} \cdot l_{SPRING,nose}^{-0.1} \cdot p_T^{-0.161}$$

#### where:

- V<sub>FL</sub> Approach speed for flapless landing, with values within [114 ; 269] km/h
- $V_{\rm S}$  Safe landing rate of sink, with values within [1.5; 4] m/s
- *m<sub>ML</sub>* Maximum landing mass
- I<sub>SPRING</sub> Spring deflection, with values within [0.2; 0.71] *m* for main gear and [0.22; 0.64] *m* for nose gear
- $p_T$  tire pressure, with values within [0.81; 14.03] *bar* for main gear and [2; 14.2] *bar* for nose gear

Luftfahrttechnisches Handbuch, Band MA – Masseanalyse, Edition 2008









#### Dihedral

$$\Gamma = \frac{\partial \Gamma}{\partial k_{Z,W}} \cdot k_{Z,W} + \frac{\partial \Gamma}{\partial \varphi_{25}} \cdot \varphi_{25} + \Gamma_0$$
with:  

$$k_{Z,W} = 0.0, \text{ for low wing aircraft}$$

$$k_{Z,W} = 0.5, \text{ for mid-wing aircraft}$$

$$k_{Z,W} = 1.0 \text{ for high-wing aircraft}$$

$$\Gamma_0$$

$$\frac{\partial \Gamma}{\partial \varphi_{25}}$$

$$-0.115$$

$$-0.1$$

$$\frac{\partial \Gamma}{\partial \varphi_{25}}$$

$$-0.115$$

$$-0.1$$

- Moving the wing from High to Low, produces the effect of 7.5° of dihedral.
- 8.7° of sweep produce the effect of 1° of dihedral.
- For a low and unswept wing the value of 6.9° of dihedral should be used.









#### Thickness ratio

$$t / c = k_t \cdot M_{DD,eff}^t \cdot k_M$$

$$M_{DD,eff} = M_{DD} \sqrt{\cos(\varphi_{25})}$$

airfoil technology factor  
$$M_{DD} = \frac{\kappa_A}{\cos(\varphi_{25})} - \frac{(t/c)}{\cos^2(\varphi_{25})} - \frac{C_L}{10\cos^3(\varphi_{25})}$$

with:

- *k*<sub>t</sub> 0.100
- t 0.389
- $k_M$  1.057 for supercritical airfoils
  - 1.004 for peaky airfoils
  - 1.000 for conventional airfoils

#### better matching with real A/C data

#### with:

)

 $\kappa_A$  0.87 for NACA 6 series airfoils 0.95 for supercritical

#### higher sweep effect



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





#### The method more precisely...

#### Changes in load factor due to gusts (for Added Value calculation)

$$\Delta n = \frac{\rho K U_{DE} V_{CR} C_{L\alpha}}{2(m_{MTO} g / S_W)} \qquad C_{L,\alpha} = \frac{2\pi A}{2 + \sqrt{A^2 \cdot (1 + \tan^2 \varphi_{50} - M^2) + 4}}$$

$$K = \frac{0.88\mu}{5.3 + \mu}$$

$$\mu = \frac{2(m_{MTO}g / S_W)}{\rho c_{MAC} C_{L\alpha}g}$$
CS-23

$$-1200 \cdot U_{DE}[ft/s] + 80000 = H[ft]$$

$$-1200 \cdot U_{DE}[m/s] + 24384[m] = H[m]$$
CS-25

V\_CR is Equivalent Air Speed (EAS)

rho = rho\_0 = 1.225 kg/m<sup>3</sup> i.e. sea level conditions

The constant 1200 has the unit seconds [s]



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 25 Aero - Aircraft Design and Systems Group







#### Refinement of cabin and fuselage preliminary sizing

Methods found for estimation of (Overview):

- Fuselage nose length (not shown here)
- Baggage and cargo volume
- Overhead stowages volume
- 2 methods for generic cabin length
- Cargo compartment height methods and statistics
- Sill height and cargo hold accessibility factor



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Baggage and cargo volume

 $V_{CC} \geq V_C + \left(V_B - V_{OS}\right)$ 

where:

V<sub>CC</sub> volume of the cargo compartment,

 $V_C$  volume of cargo,

 $V_B$  volume of baggage,

 $V_{OS}$  volume of overhead stowage (OS).

$$V_{CC} = l_F \cdot k_{CC} \cdot S_{CC}$$

where:

 $k_{CC}$  proportion of the fuselage length used for cargo ranging from 0.35 to 0.55,

 $S_{\ensuremath{\textit{CC}}\xspace}$  cross section of the cargo compartment.









#### **Overhead stowages volume**

with:  

$$V_{B} = m_{B} / \rho_{B} \qquad \rho_{B} = 170 \ kg/m^{3}$$

$$V_{C} = m_{C} / \rho_{C} \qquad \rho_{C} = 160 \ kg/m^{3}$$

$$V_{OS} = S_{OS,tot} \cdot l_{OS} \qquad \text{for added value calculation}$$

$$S_{OS,tot} = n_{OS,lat} \cdot S_{OS,lat} + n_{OS,ce} \cdot S_{OS,ce}$$

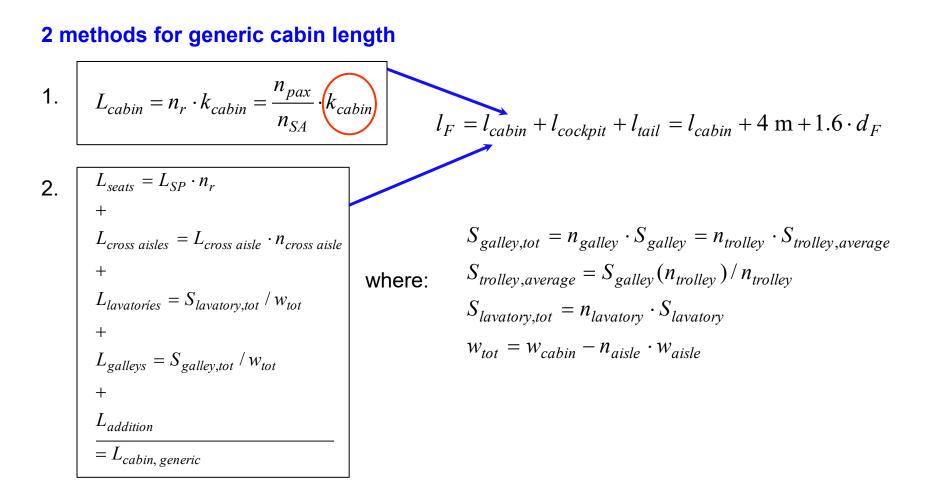
$$l_{OS} = k_{OS} \cdot l_{cabin}$$

where:

| m <sub>B</sub>     | mass of baggage,                                         | n <sub>OS,lat</sub> |
|--------------------|----------------------------------------------------------|---------------------|
| $m_{C}$            | mass of cargo,                                           | n <sub>OS,ce</sub>  |
| $ ho_{B}$          | density of baggage,                                      | I <sub>os</sub>     |
| $ ho_{C}$          | density of cargo,                                        | .03                 |
| S <sub>OS,to</sub> | <sub>r</sub> total cross section of the OS calculated    | k <sub>os</sub>     |
|                    | as a sum of the cross sections of lateral                |                     |
|                    | OS, $S_{OS,lat}$ , (0.201 for single aisle and 0.208 for |                     |
|                    |                                                          |                     |

number of lateral rows of OS number of central rows of OS:  $n_{OS,ce}=n_{aisles}-1$ , total length of the OS (lateral and central), proportion of the cabin length

occupied by the OS: 0.723 for single aisle and 0.751 for wide body


wide bodies) and central OS,  $S_{OS,ce}$ , (0.241 for wide bodies)













Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





#### Refinement of cabin and fuselage preliminary sizing

#### Cargo compartment height (for added value calculation)

Method 1:

 $h_{cargo} = d_F k_{cargo,height}$ 

| Aircraft     | k <sub>cargo,height</sub> |
|--------------|---------------------------|
| Short range  | 0.200                     |
| Medium range | 0.290                     |
| Long range   | 0.281                     |

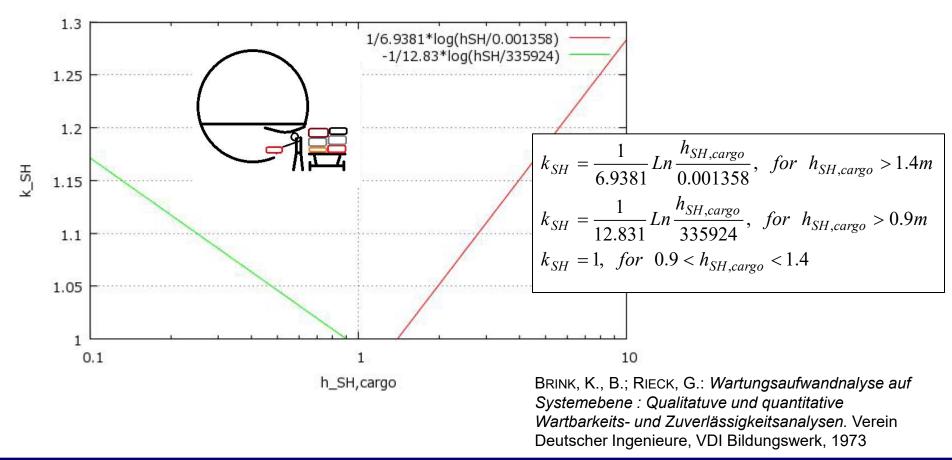
Method 2:

$$h_{cargo} = d_F / 2 - y_{floor,lowering} - t_{floor} - y_{bottom}$$

| Parameter                                    | Single Aisle | Wide Body |     |
|----------------------------------------------|--------------|-----------|-----|
| <b>Y</b> floor,lowering                      | 0.511        | 0.316     | [m] |
| t <sub>floor</sub>                           | 0.179        | 0.232     | [m] |
| <b>Y</b> bottom                              | 0.225        | 0.588     | [m] |
| y <sub>floor,lowering</sub> / d <sub>F</sub> | 0.131        | 0.054     | [-] |
| t <sub>floor</sub> / d <sub>F</sub>          | 0.045        | 0.040     | [-] |
| y <sub>bottom</sub> / d <sub>F</sub>         | 0.056        | 0.101     | [-] |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion


Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 30 Aero - Aircraft Design and Systems Group







#### Sill Height and Cargo Hold Accessibility Factor





Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 31 Aero - Aircraft Design and Systems Group





Hoo Wis Ham

#### The method more precisely...

#### Other contributions:

• Aspect ratio of vertical tail as a function of horizontal tail position

$$A_V = -0.8029 \cdot \frac{z_H}{b_V} + 1.6576$$

- Many updated statistical factors:  $k_{TO}$ ,  $k_{APP}$ ,  $C_{LmaxL}$ ,  $C_{LmaxTO}$
- Pylon wetted area
- Wing-nacelle interference factor as a function of minimum distance between engine and wing



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Key Design Variables – Aircraft design

| Parameter                                              |                                                            | Туре                         |
|--------------------------------------------------------|------------------------------------------------------------|------------------------------|
| Maximum lift coefficient, landing, for 0° sweep angle  | <b>C</b> <sub>LmaxL,unswept</sub>                          | design variable              |
| Maximum lift coefficient, take-off, for 0° sweep angle | C <sub>LmaxTO,unswept</sub>                                | design variable              |
| Sweep angle                                            | $\varphi_{25}$                                             | design variable              |
| Taper ratio                                            | λ                                                          | design variable              |
| Relative distance between engine and wing              | $h_P / D_N$                                                | design variable              |
| By-Pass ratio                                          | BPR                                                        | design variable              |
| Maximum landing mass to maximum take-off mass ratio    | $m_{\scriptscriptstyle ML}$ / $m_{\scriptscriptstyle MTO}$ | design variable              |
| Number of engines                                      | n <sub>E</sub>                                             | design variable              |
| Aspect ratio                                           | A                                                          | design variable, but limited |
| Aspect ratio                                           | A                                                          | to airport requirements      |
| Landing field length                                   | S <sub>LFL</sub>                                           | requirement                  |
| Take-off field length                                  | S <sub>TOFL</sub>                                          | requirement                  |
| Cruise Mach number                                     | M <sub>CR</sub>                                            | requirement                  |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### Key Design Variables – Cabin design

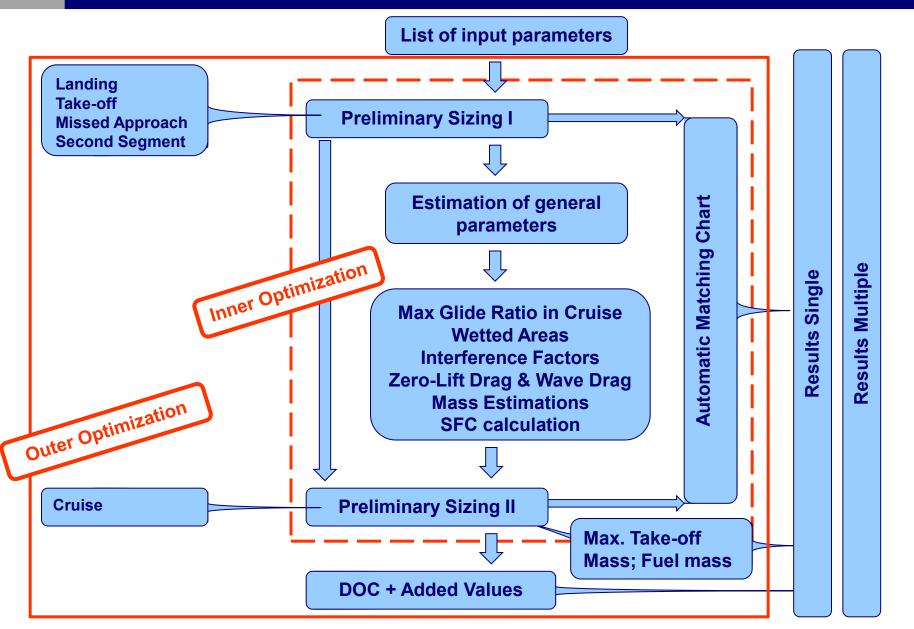
- Number of seats abreast
- Accessibility factor for cargo working conditions, k<sub>SH</sub>
- Cargo compartment height, *h<sub>cargo</sub>*
- Number of "excuse-me" seats
- Sidewall clearance at armrest
- Overhead bin-volume per passenger
- Aisle height and aisle width
- Armrest width and seat width
- Seat pitch

"Excuse-me" seats are those seats that require the permission of two passengers to get to the aisle. Window seats are not considered "excuse-me" seats



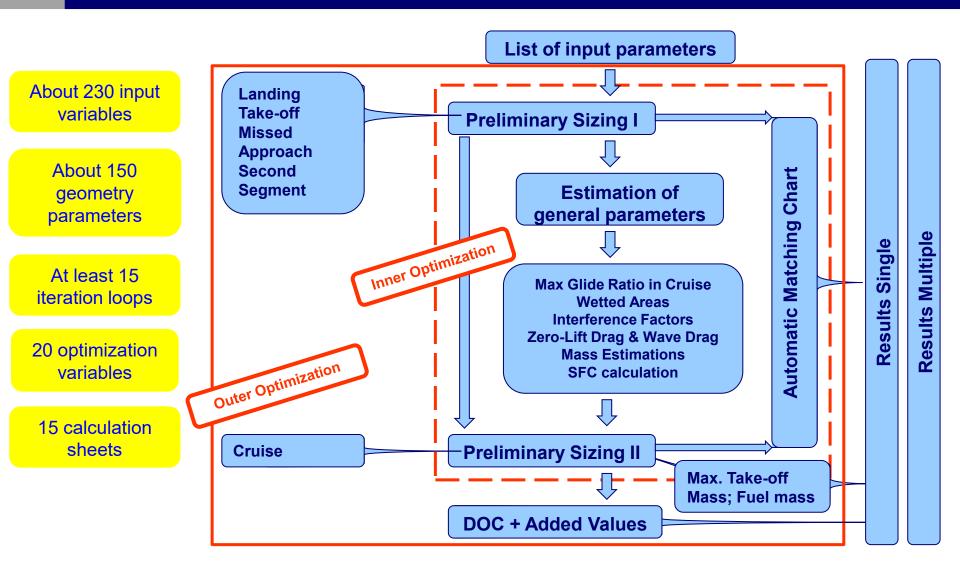
Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion






#### Tool Description

OPerA – Optimization in Preliminary Aircraft Design –




Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences





### OPerA – Optimization in Preliminary Aircraft Design





Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 36 Aero - Aircraft Design and Systems Group







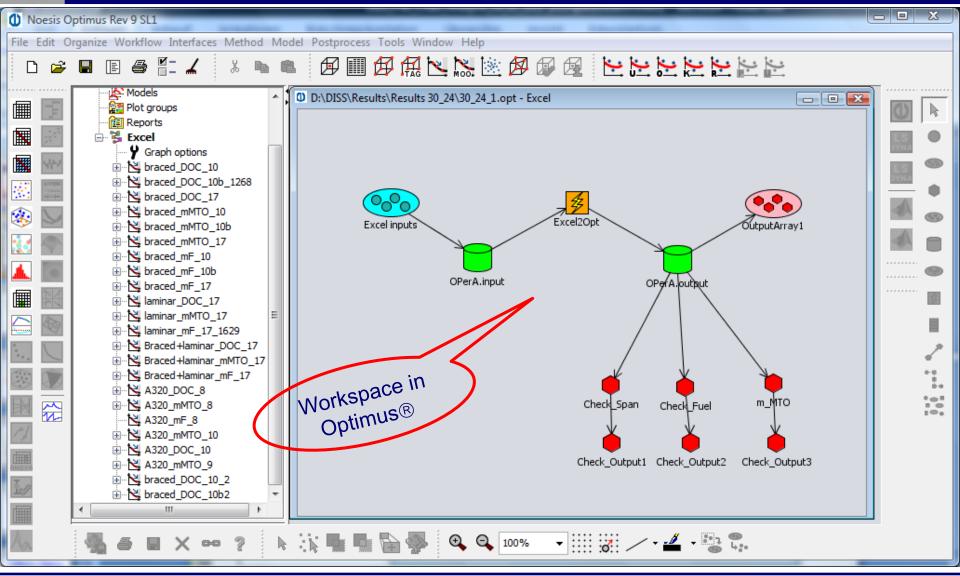
## **Optimization Methods**

Gradient based versus non-gradient based optimization algorithms

| Gradient-Based Methods                                    | Non-Gradient-Based Methods            |
|-----------------------------------------------------------|---------------------------------------|
| Require gradient information about the objective function | Are more effective, and work in noisy |
| Objective function must be continuous, derivable and un   | i- environments                       |
| modal                                                     | Allow direct implementation of        |
| Weak performance for noisy functions                      | constraints                           |
| Risk to get trapped in local minimum                      | Suitable for global optimum (not      |
| The gradient is calculated at considerable computational  | guaranteed)                           |
| cost                                                      | Allow multiple objectives             |
| Multi-objective optimization is only possible through     | Require a large number of function    |
| translation to single-objective optimization, through a   | evaluations, including for a reduced  |
| weighted sum of the objectives                            | number of variables                   |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion








Hochschule für Angewandte Wissenschaften Hamburg

Hamburg University of Applied Sciences



POLITERANICA

Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 38 Aero - Aircraft Design and Systems Group







## **Optimization Methods**

Testing of methods in OPerA with commercial optimization software Optimus®

Decision to use Evolutionary Algorithms

Decision to use **Differential Evolution** Algorithm



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## Implementation of Differential Evolution Algorithm in OPerA

Premise: 
$$\overrightarrow{X_k} = (x_1, x_2 \dots x_n)$$
 Co  
 $\overrightarrow{A_k} \neq \overrightarrow{B_k} \neq \overrightarrow{C_k}$  Po  
Mutation:  $\overrightarrow{Y_k} = \overrightarrow{A_k} + F \cdot (\overrightarrow{B_k} - \overrightarrow{C_k})$   
 $y_i = a_i + F \cdot (b_i - c_i), i = \overline{1 \dots n}$  W  
Recombination:  $z_i = \begin{cases} y_i & \text{if } r_i \leq C \\ x_i & \text{if } r_i > C \end{cases}$  Cr  
Selection:  $\overrightarrow{X_{k-1}} = \begin{cases} \overrightarrow{Z_k} & \text{if } f(\overrightarrow{Z_k}) \leq f(\overrightarrow{X_k}) \end{cases}$ 

ontrol parameters:

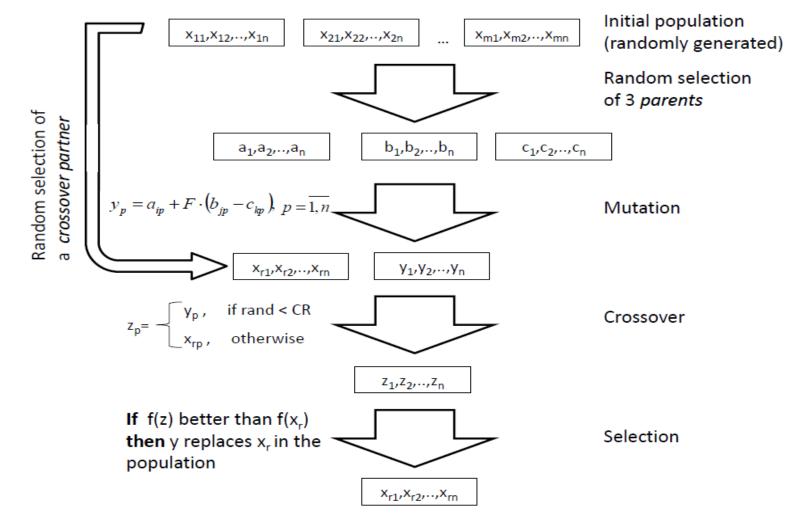
opulation size

eighting factor, F : [0,1]

ross-over factor, C : [0,1]

Selection: 
$$\overrightarrow{X_{k+1}} = \begin{cases} \overrightarrow{Z_k} & \text{if } f(\overrightarrow{Z_k}) \le f(\overrightarrow{X_k}) \\ \overrightarrow{X_k} & \text{if } f(\overrightarrow{Z_k}) > f(\overrightarrow{X_k}) \end{cases}$$




**Optimization Applied from Aircraft Preliminary** Sizing to Cabin Design and Cabin Conversion



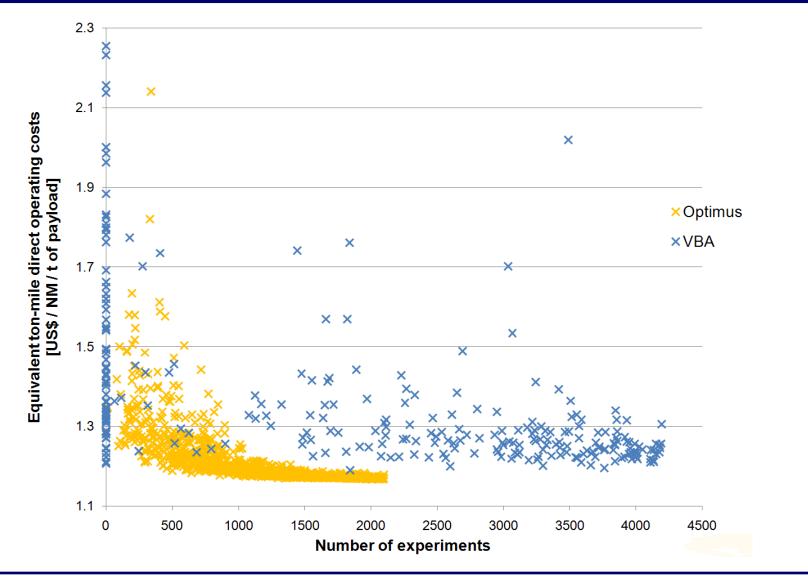




#### Implementation of Differential Evolution Algorithm in OPerA






Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 41 Aero - Aircraft Design and Systems Group



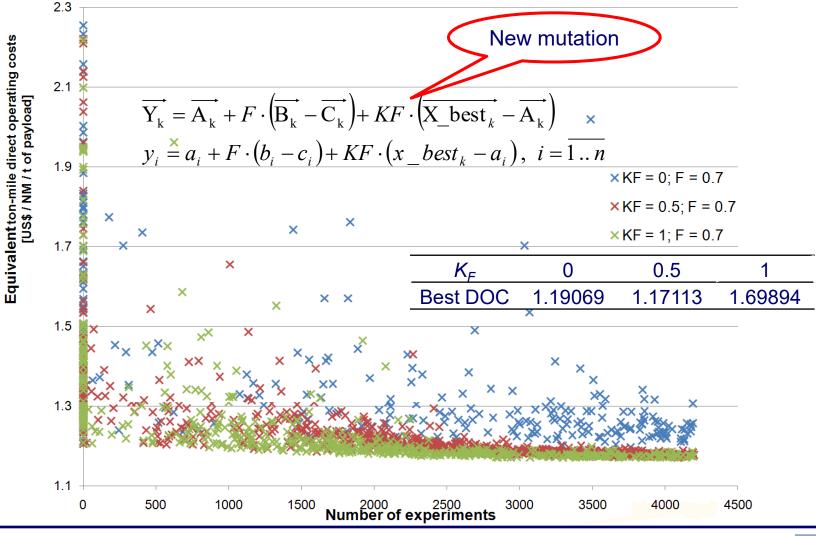








Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion


Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 42 Aero - Aircraft Design and Systems Group



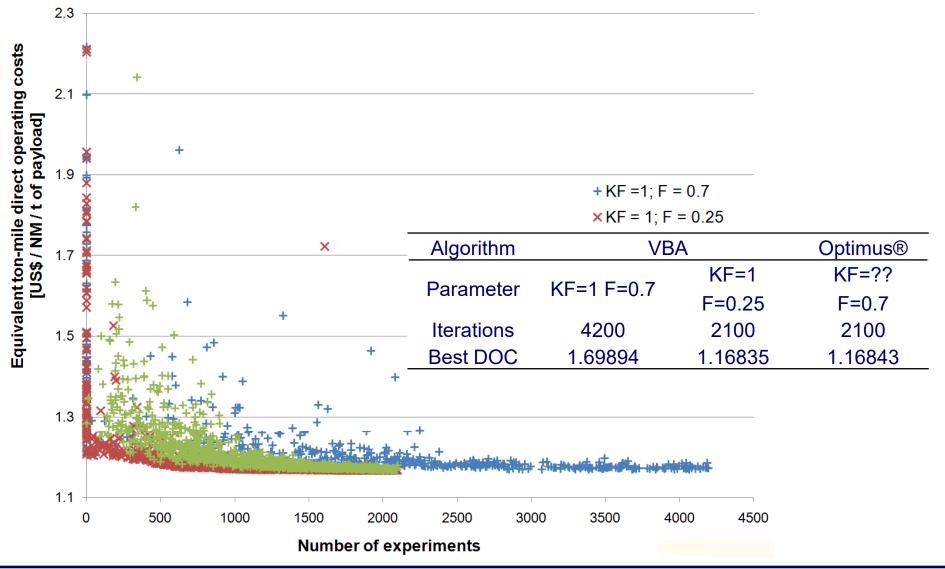











Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 43 Aero - Aircraft Design and Systems Group











Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 44 Aero - Aircraft Design and Systems Group







## Constraints

Besides implicit geometrical constraints (built in OPerA, like e.g. the constraints for landing gear length) the following constraints are implemented into the optimization algorithm / Optimus®:

- 1. Span limitation, according to selected airport category
- 2. Maximum landing mass to maximum take-off mass so to ensure capacity to carry required fuel reserves  $m_{ML} > m_{MZF} + m_{F,res}$
- 3. Fuel tank volume (depending on wing geometry) so to ensure accomodation of required fuel









## **Objective functions**

Classical objectives:

Maximum take-off mass,  $m_{MTO}$  [kg]

Fuel mass, *m<sub>F</sub>* [kg]

Direct Operating costs: equivalent ton-miles costs, C<sub>equiv,t,m</sub> [US\$ / NM / t of payload]

DOC + Added Values



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Objective function: DOC + Added Values**

|              | Economics (represented by equivalent-ton-mile costs) |                     |                                |  |  |  |  |  |  |
|--------------|------------------------------------------------------|---------------------|--------------------------------|--|--|--|--|--|--|
|              |                                                      | Airport Dorformonoo | Take-off field length          |  |  |  |  |  |  |
|              | Performance                                          | Airport Performance | Relative landing mass ratio    |  |  |  |  |  |  |
|              |                                                      | Cruise Performance  | Cruise speed                   |  |  |  |  |  |  |
|              |                                                      |                     | Seat Pitch                     |  |  |  |  |  |  |
|              |                                                      |                     | Seat width                     |  |  |  |  |  |  |
| Added Values | Passenger Comfort                                    | Concerning all      | Armrest width                  |  |  |  |  |  |  |
|              |                                                      | Ű                   | Aisle width                    |  |  |  |  |  |  |
|              |                                                      | passengers          | Aisle height                   |  |  |  |  |  |  |
| dec          |                                                      |                     | Overhead bin volume per pax    |  |  |  |  |  |  |
| Ad           |                                                      |                     | Aircraft gust sensitivity      |  |  |  |  |  |  |
|              |                                                      | Concerning part of  | Sidewall clearance             |  |  |  |  |  |  |
|              |                                                      | the passengers      | Number of "excuse-me seats"    |  |  |  |  |  |  |
|              |                                                      | Concerning Cargo    | Containerized cargo (yes / no) |  |  |  |  |  |  |
|              | Cargo handling                                       | Concerning working  | Accessibility factor           |  |  |  |  |  |  |
|              |                                                      | conditions          | Cargo compartment height       |  |  |  |  |  |  |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Objective function: DOC + Added Values**

Weighting evaluation through questionnaires:

Airbus Future Projects (4) Airbus Senior Expert (1) Aircraft Design Professor (1) Systems Engineer (1) Lufthansa Captain (1)

PhD students (12)

Students (5)

2 pages of information: weightings (1..100 %) in a hierarchical table and points (1..10) in

a square matrix



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Objective function: DOC + Added Values**

|                                                              | В  | Landing field length | Take-off field length | Relative landing weight (mwu/mmro) | Cruise speed | Seat pitch | Seat width | Armrest width | Aisle width | Aisle height | Overhead bin volume per pax | Aircraft gust sensibility | Sidewall clearance | Number of "excuse-me" seats | Containerized cargo (yes/no) | Accessibility factor | Cargo compartment height |
|--------------------------------------------------------------|----|----------------------|-----------------------|------------------------------------|--------------|------------|------------|---------------|-------------|--------------|-----------------------------|---------------------------|--------------------|-----------------------------|------------------------------|----------------------|--------------------------|
| Α                                                            | ^  | 1                    | 2                     | 3                                  | 4            | 5          | 6          | 7             | 8           | 9            | 10                          | 11                        | 12                 | 13                          | 14                           | 15                   | 16                       |
| Landing field length                                         | 1  |                      | 5                     | 7                                  | 5            | 3          | 4          | 7             | 8           | 8            | 5                           | 7                         | 10                 | 6                           | 5                            | 8                    | 8                        |
| Take-off field length                                        | 2  | 5                    |                       | 7                                  | 5            | 3          | 4          | 7             | 8           | 8            | 5                           | 7                         | 10                 | 6                           | 5                            | 8                    | 8                        |
| Relative landing weight (m <sub>ML</sub> /m <sub>MTO</sub> ) | 3  | 3                    | 3                     |                                    | 3            | 1          | 2          | 5             | 6           | 6            | 3                           | 5                         | 8                  | 4                           | 3                            | 6                    | 6                        |
| Cruise speed                                                 | 4  | 5                    | 5                     | 7                                  |              | 5          | 6          | 9             | 10          | 10           | 10                          | 9                         | 10                 | 8                           | 7                            | 10                   | 10                       |
| Seat pitch                                                   | 5  | 7                    | 7                     | 9                                  | 5            |            | 6          | 9             | 10          | 9            | 7                           | 9                         | 10                 | 8                           | 7                            | 10                   | 10                       |
| Seat width                                                   | 6  | 6                    | 6                     | 8                                  | 4            | 4          |            | 6             | 7           | 7            | 5                           | 6                         | 9                  | 6                           | 4                            | 7                    | 7                        |
| Armrest width                                                | 7  | 3                    | 3                     | 5                                  | 1            | 1          | 4          |               | 6           | 6            | 3                           | 5                         | 8                  | 4                           | 3                            | 6                    | 6                        |
| Aisle width                                                  | 8  | 2                    | 2                     | 4                                  | 0            | 0          | 3          | 4             |             | 5            | 2                           | 4                         | 7                  | 3                           | 2                            | 5                    | 5                        |
| Aisle height                                                 | 9  | 2                    | 2                     | 4                                  | 0            | 1          | 3          | 4             | 5           |              | 2                           | 4                         | 7                  | 3                           | 2                            | 5                    | 5                        |
| Overhead bin volume per pax                                  | 10 | 5                    | 5                     | 7                                  | 0            | 3          | 5          | 7             | 8           | 8            |                             | 6                         | 9                  | 6                           | 4                            | 7                    | 7                        |
| Aircraft gust sensibility                                    | 11 | 3                    | 3                     | 5                                  | 1            | 1          | 4          | 5             | 6           | 6            | 4                           |                           | 8                  | 4                           | 3                            | 6                    | 6                        |
| Sidewall clearance                                           | 12 | 0                    | 0                     | 2                                  | 0            | 0          | 1          | 2             | 3           | 3            | 1                           | 2                         |                    | 2                           | 1                            | 4                    | 4                        |
| Number of "excuse-me" seats                                  | 13 | 4                    | 4                     | 6                                  | 2            | 2          | 4          | 6             | 7           | 7            | 4                           | 6                         | 8                  |                             | 4                            | 7                    | 7                        |
| Containerized cargo (yes/no)                                 | 14 | 5                    | 5                     | 7                                  | 3            | 3          | 6          | 7             | 8           | 8            | 6                           | 7                         | 9                  | 6                           |                              | 7                    | 7                        |
| Accessibility factor                                         | 15 | 2                    | 2                     | 4                                  | 0            | 0          | 3          | 4             | 5           | 5            | 3                           | 4                         | 6                  | 3                           | 3                            |                      | 5                        |
| Cargo compartment height                                     | 16 | 2                    | 2                     | 4                                  | 0            | 0          | 3          | 4             | 5           | 5            | 3                           | 4                         | 6                  | 3                           | 3                            | 5                    |                          |
|                                                              | 1  |                      | 1                     |                                    | 1            |            |            |               |             |              |                             |                           |                    |                             |                              |                      |                          |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Objective function: DOC + Added Values**

| Economics       | 75 | % | Equiv. ton-<br>mile costs | 100         | %  |                                        |                                                                                                                                      | %                                                  |                                                   |                                                                                                               | %                    |             |
|-----------------|----|---|---------------------------|-------------|----|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------|----------------------|-------------|
| -               |    |   |                           | Performance | 35 | %                                      | Airport performance                                                                                                                  | 50                                                 | %                                                 | Landing field length<br>Take-off field length<br>Relative landing weight (m <sub>ML</sub> /m <sub>MTO</sub> ) | 40.0<br>40.0<br>20.0 | %<br>%<br>% |
|                 |    |   |                           |             |    | Cruise performance                     | 50                                                                                                                                   | %                                                  | Cruise speed                                      | 100.0                                                                                                         | %                    |             |
| Added<br>Values | 25 | % | Passenger<br>Comfort      |             | 80 | %                                      | Seat pitch<br>Seat width<br>Armrest width<br>Aisle width<br>Aisle height<br>Overhead bin volume per pax<br>Aircraft gust sensibility | 30.0<br>20.0<br>10.0<br>5.0<br>5.0<br>20.0<br>10.0 | %<br>%<br>%<br>%<br>%                             |                                                                                                               |                      |             |
|                 |    |   |                           |             |    | Concerning part of the passengers      | 20                                                                                                                                   | %                                                  | Sidewall clearance<br>Number of "excuse-me" seats | 10.0<br>90.0                                                                                                  | %<br>%               |             |
| -               |    |   | Cargo                     |             |    | Concerning cargo                       | 80                                                                                                                                   | %                                                  | Containerized cargo (yes/no)                      | 100.0                                                                                                         | %                    |             |
|                 |    |   | Handling                  | 10          | %  | Concerning cargo<br>working conditions | 20                                                                                                                                   | %                                                  | Accessibility factor<br>Cargo compartment height  | 50.0<br>50.0                                                                                                  | %<br>%               |             |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 50 Aero - Aircraft Design and Systems Group







Attribute Boundaries

#### Selected Numerical Results Point 10 **Objective function: DOC + Added Values** 9 8 7-10 points for max Matrix consistency index: 6 $CI = \frac{\lambda_{\max} - n}{n - 1}$ with: $Aw = \lambda_{\max} w$ 2 Correlation calculation: max m'in Point, $R(x, y) = \frac{\sum (x - x)(y - y)}{\sqrt{\sum (x - \overline{x})^2 \sum (y - \overline{y})^2}}$ 10 9 10 points for min $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i; \quad \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$ Coefficient of determination: $R^2 = r_{xy}^2$ 2 -0 max min Boundaries



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 51 Aero - Aircraft Design and Systems Group

Attribute







## **Objective function: DOC + Added Values**

|                                                              |       | <u>Absolute</u><br>weights | Attribute<br>Iow limit | Attribute<br>high limit | Values of<br>optimization | Point for<br>optimization | Score for<br>optimization | Comments          |
|--------------------------------------------------------------|-------|----------------------------|------------------------|-------------------------|---------------------------|---------------------------|---------------------------|-------------------|
|                                                              |       |                            |                        |                         |                           |                           |                           |                   |
| Economics (DOC)                                              | 100%  | 75.00%                     | 0.72                   | 0.86                    | 0.785                     | 5.4                       |                           | 10 points for min |
| Landing field length                                         |       | 0.00%                      | 1370                   | 2000                    | 1447.8                    | 8.8                       |                           | 10 points for min |
| Take-off field length                                        | 80%   | 3.50%                      | 1670                   | 2700                    | 1767.83                   | 9.1                       | 0.317                     | 10 points for min |
| Relative landing weight (m <sub>ML</sub> /m <sub>MTO</sub> ) | 20%   | 0.88%                      | 0.8                    | 1                       | 0.878                     | 3.9                       | 0.034                     | 10 points for max |
| Cruise speed <sup>1</sup>                                    | 100%  | 4.38%                      | 224.25                 | 237.3279                | 224.25                    | 0.0                       | 0.000                     | 10 points for max |
| Seat pitch                                                   | 30.0% | 3.30%                      | 28                     | 32                      | 29                        | 2.5                       | 0.082                     | 10 points for max |
| Seat width <sup>2</sup>                                      | 20.0% | 2.20%                      | 0.44                   | 0.53                    | 0.508                     | 7.4                       | 0.162                     | 10 points for max |
| Armrest width                                                | 10.0% | 1.10%                      | 0.04                   | 0.06                    | 0.051                     | 5.4                       |                           | 10 points for max |
| Aisle width                                                  | 5.0%  | 0.55%                      | 0.2                    | 0.61                    | 0.508                     | 7.5                       | 0.041                     | 10 points for max |
| Aisle height <sup>3</sup>                                    | 5.0%  | 0.55%                      | 1.75                   | 2.1                     | 2.264                     | 10.0                      | 0.055                     | 10 points for max |
| Overhead bin volume per pax                                  | 20.0% | 2.20%                      | 0.03                   | 0.1                     | 0.044                     | 2.1                       | 0.045                     | 10 points for max |
| Aircraft gust sensibility <sup>4</sup>                       | 10.0% | 1.10%                      | 0.1                    | 1                       | 0.34                      | 7.4                       | 0.081                     | 10 points for min |
| Sidewall clearence <sup>5</sup>                              | 10%   | 0.28%                      | 0.007                  | 0.02                    | 0.015                     | 6.2                       | 0.017                     | 10 points for max |
| Number of "excuse-me" seats                                  | 90%   | 2.48%                      | 0                      | 3                       | 0                         | 10.0                      | 0.248                     | 10 points for min |
| Containerized cargo (yes/no)                                 | 100%  | 2.00%                      |                        |                         | Yes                       | 10.0                      | 0.200                     | 10 points for yes |
| Accessibility factor <sup>6</sup>                            | 50%   | 0.25%                      | 1                      | 1.1                     | 1.09                      | 1.2                       | 0.003                     | 10 points for min |
| Cargo compartment height                                     | 50%   | 0.25%                      | 0.7                    | 1.8                     | 1.22                      | 4.7                       | 0.012                     | 10 points for max |
|                                                              |       | 100%                       |                        |                         |                           |                           |                           |                   |
|                                                              |       |                            |                        |                         |                           |                           | 5.40075693                | =maximum          |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### **Selected Numerical Results**

#### **Test Cases**

2 redesign cases: A320-200 reference and A320 NEO

## 4 optimization cases:

- A. Standard configuration
- B. Configuration with braced wings
- C. Configuration with natural laminar flow on wings
- D. Configuration with braced wings and natural laminar flow on wings



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







#### List of parameters for optimization

| Parameter                                                        | Value fo                           | or A320-200 | aircraft |
|------------------------------------------------------------------|------------------------------------|-------------|----------|
| Landing field length                                             | S <sub>LFL</sub>                   | 1447.80     | [m]      |
| Take-off field length                                            | S <sub>TOFL</sub>                  | 1767.83     | [m]      |
| Max. lift coefficient, landing for unswept wing                  | C <sub>L,max,L,unswept</sub>       | 3.39        |          |
| Max. lift coefficient, take-off for unswept wing                 | C <sub>L,max,TO,unswept</sub>      | 2.95        |          |
| Mass ratio, max landing to max take-off                          | m <sub>ML</sub> /m <sub>MTO</sub>  | 0.88        |          |
| Aspect ratio                                                     | A                                  | 9.50        |          |
| Number of engines                                                | n <sub>E</sub>                     | 2.00        |          |
| Number of passengers                                             | n <sub>PAX</sub>                   | 180         |          |
| Number of seats abreast                                          | n <sub>sA</sub>                    | 6           |          |
| Wing sweep at 25% chord                                          | $\varphi_{25}$                     | 25          | [°]      |
| Taper ratio                                                      | λ                                  | 0.24        |          |
| Position of the vertical tail in case of cruciform configuration | z <sub>H</sub> /b <sub>V</sub>     | 0.56        |          |
| Minimum distance from engine to wing over nacelle diameter       | z <sub>P.min</sub> /D <sub>N</sub> | 0.15        |          |
| By-Pass ratio                                                    | BPR                                | 6           |          |
| Mach number, cruise                                              | M <sub>CR</sub>                    | 0.76        |          |
| Seat pitch                                                       | SP                                 | 29          | ["]      |
| Seat width                                                       | W <sub>seat</sub>                  | 20          | ["]      |
| Aisle width                                                      | W <sub>aisle</sub>                 | 20          | ["]      |
| Armrest width                                                    | W <sub>armrest</sub>               | 2           | ["]      |
| Sidewall clearance (at armrest)                                  | S <sub>clearance</sub>             | 0.015       | [m]      |



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 54 Aero - Aircraft Design and Systems Group







#### **Selected Numerical Results**

#### **Optimization strategy**

Single design parameter variation

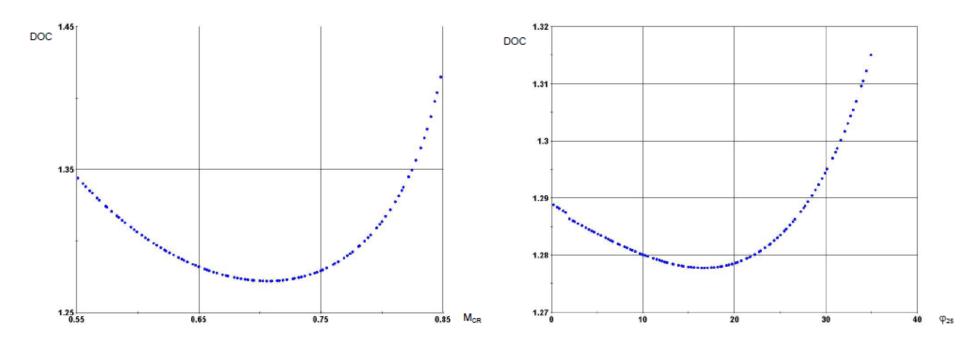
Multiple design parameters variation

Single requirement variation

Multiple requirement variation

Multiple design parameters and multiple requirements variation




Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





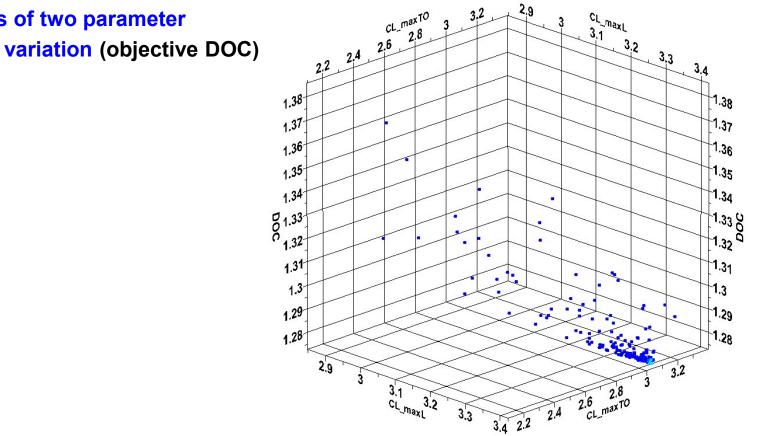


## **Examples of single parameter (objective DOC)**





Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion


Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 56 Aero - Aircraft Design and Systems Group







## **Selected Numerical Results**

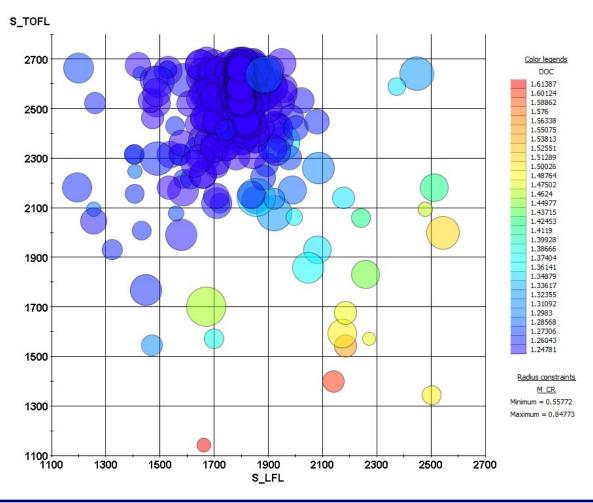


**Examples of two parameter** 



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 57 Aero - Aircraft Design and Systems Group







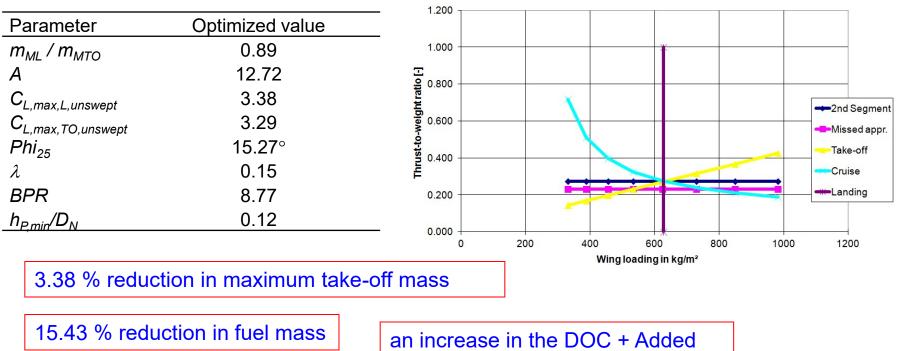

#### **Selected Numerical Results**

Examples of three parameter variation (objective DOC)





Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion


Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niţă, 29.02.2012, Folie 58 Aero - Aircraft Design and Systems Group







## Case A : A320-200 standard (objective DOC)



3.42 % reduction in DOC

an increase in the DOC + Added Values score from 5 to 6.8



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## Case A : A320-200 standard (objective DOC)

- The improvement in DOC when allowing a 52 m span limitation is, 9 % when varying all aircraft parameters, and 11 % when optimizing aircraft parameters together with cabin parameters.
- As a secondary effect of DOC optimization, fuel is improved by 30 % in the first case and 34 % in the second case



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## Case A : A320-200 standard (objective DOC)

- To benefit from span increase and yet remain in the same airport category, some solutions are possible:
  - Folding wings up
  - Rotating main landing gear
  - Discussing (in particular) with airports



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Case B : A320-200 with braced wings (objective DOC)**

 The assumptions that braced wings consistently reduce mass and allow aerodynamical improvements, are proven.

20.5 % reduction in maximum take-off mass

Aspect ratio of 22

35.5 % reduction in fuel mass

Glide ratio of 23.6

14.5 % reduction in DOC



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion





## **Selected Numerical Results**

## **Case C : A320-200 with natural laminar flow on wings (objective DOC)**

 Compared to case A, NLF brings an additional 1 % improvement in DOC, while braced wing configuration brought a 3.2 % improvement.

## Case D : A320-200 braced wings + natural laminar flow (objective DOC)

 For case D expected is an overall additional improvement of more than 4 % in DOC → expectation fulfilled

21.5 % reduction in maximum take-off mass

39.7 % reduction in fuel mass

15.4 % reduction in DOC









## Cases A, B, C, D for objective $m_{MTO}$

- Design for objective  $m_{MTO}$  is similar to DOC, but it prefers smaller speeds
- 2 % of mass reduction compared to DOC is achieved (from 16 % to 18 %).

Case A: A320-200 standard (objective  $m_F$ )

- Design for minimum fuel goes more towards extremes: it prefers small speeds, high aspect and by-pas ratios
- Small speed considerably affects the DOC: they increase by 10 % when a limit is set of  $M_{CR} = 0.1$  (with optimum of 0.47) they drop by 2.85 %, when the limit is  $M_{CR} = 0.55$  (optimum is 0.55)
- Total fuel reduction is of 44.1 %

## Case D: A320-200 braced wings + natural laminar flow (objective $m_F$ )

• Adding the two innovations produces !! 47.9 % !! For 9.4 % DOC reduction and 15.2 %  $m_{MTO}$  reduction.









## Case A : A320-200 standard (objective DOC + AV)

 The weightings of this objective function increase the importance of higher speed, smaller landing and take-off field length, higher comfort standards and better ground handling.

11.2 % reduction in maximum take-off mass

27.5 % reduction in fuel mass

7.3 % reduction in DOC

Case B : A320-200 with braced wings (objective DOC+AV)

- aspect ratio increases and sweep reduces substantially
- better aerodynamic efficiency allows landing and take-off field lengths to be reduced
- ...thus reaching a score of 9.1 out of 10







He W

## **Selected Numerical Results**

## Case D: A320-200 braced wings + natural laminar flow (objective DOC + AV)

11.0 % reduction in maximum take-off mass

7.4 % reduction in DOC

27.9 % reduction in fuel mass

9.3 score of DOC + AV



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







# 2. Process Chain Optimization



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 67 Aero - Aircraft Design and Systems Group





## **Optimization of the Process Chain for Cabin Conversions**

- 1. Identification of the chain of processes for cabin conversions
- 2. Proposal of 3 methods, based on a square matrix containing the processes and their relations, called DSM (Design Structure Matrix)
  - a. Partitioning algorithm delivering optimized sequence
  - b. Eigenstructure analysis identifying the most important processes
  - c. Cross Impact analysis identifying zones of processes: reactive, dynamic, impulsive, low impact, neutral



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







- A. Setting up a new methodology for preliminary aircraft design and optimization, that finds the equilibrium between penalties and benefits of variables
- B. Creating a <u>"white box" preliminary design and optimization tool</u>, OPerA <u>Optimization in</u> <u>Preliminary Aircraft Design</u>, that incorporates the matching chart as an inner optimization
- C. Producing traceable results:
  - optimal aircraft design parameters
  - technology evaluation



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







- A. Setting up a new methodology for preliminary aircraft design and optimization
  - 1. proposal of new mission fuel fractions
  - 2. method for estimating Oswald factor
  - 3. method for estimating proportion of laminar flow as a function of the transition Reynolds number and leading edge sweep
  - 4. unified method for determining winglet efficiency + extensive literature study
  - 5. incorporation of braced wing configuration + extensive literature study
  - 6. incorporation of a constraint-responsive geometry for landing gear, able to account for the effects of new generation engines (with higher BPR)
  - 7. incorporation of landing gear mass estimation as a function of landing gear length
  - 8. method adjustment for wing thickness ratio
  - 9. estimation of aircraft sensitivity to gusts
  - 10. method for estimating generic cabin length and cabin length factor









- A. Setting up a new methodology for preliminary aircraft design and optimization
  - 11. method for estimating the fuselage nose length
  - 12. method for estimating cargo compartment height
  - 13. method for estimating overhead stowage volume (per pax)
  - 14. method for estimating sill height
  - 15. many updated statistical parameters
  - 16. definition of added values for aircraft design
  - 17. incorporation of added values in a new, composed objective function; study on added value boundaries
  - 18. incorporation of decision making techniques and consistency check for establishing weightings of added values
  - 19. utilization of matrix based methodology for process chain optimization







|  |  | 1 |
|--|--|---|
|  |  |   |
|  |  |   |
|  |  |   |
|  |  |   |

- B. Creating a "white box" preliminary design and optimization tool, OPerA
  - 1. covering aircraft preliminary design optimization, from preliminary sizing to cabin design
  - 2. including independent optimization model, able to compete with commercial optimization tool
  - 3. building on two optimization levels (with automated inner optimization)
  - 4. covering conventional configurations but able to incorporate new technologies (high BPR engines, NLF, braced wings, winglets), thus able to look into the future
  - 5. emphasizing overall intergration (opposite to MDO tools), with adaptable geometries
  - 6. containing cabin and cargo models
  - 7. including various methods for L / D estimation
  - 8. combining the effect of cabin parameters on preliminary aircraft design
  - 9. allowing model traceability and results traceability (facilitating knowledge transfer)
  - 10. allowing efficient research, but also learning (pedagogic side)
  - 11. stressing simplicity and openness









## C. Producing traceable results

- 1. there is an optimum BPR for a given Mach number
- 2. lower speeds (thus lower altitude) allow an increase in BPR and a reduction in drag, and thus dramatic fuel reduction (43 %)
- 3. increased landing and take-off distance allow a smaller engine and thus a more efficient design for the same Mach number
- 4. aircraft can be optimized with higher span, especially with a braced wing
- 5. winglets are beneficial if span is limited
- 6. span increase is more efficient than winglets
- 7. braced wings allow a low wing sweep and enable NLF
- 8. braced wings alone are more efficient than NLF (on the wing) alone
- 9. if environment protection is the goal, the objective function should not be DOC
- 10. when optimizing for DOC, traditional cruise Mach number should be maintained
- 11. with increasing fuel prices, DOC optimized aircraft will resemble  $m_F$  optimized aircraft









## Outlook

- The tool opens a lot of roads for reserach.
  - Papers
  - Dissertations
  - Research projects on aircraft designs:
    - Increased span limitations
    - Braced wing
    - New large turboprop aircraft
    - Box Wing Aircraft
    - ...



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## List of publications

- SCHOLZ, Dieter; NIŢĂ, Mihaela: Preliminary Sizing of Large Propeller Driven Aeroplanes. In: *Czech Aerospace Proceedings*, (2009), No. 2, S. 41-47. - ISSN: 1211—877X
- NIŢĂ, Mihaela; SCHOLZ, Dieter: The Process Chain to a Certified Cabin Design and Conversion. In: DGLR: *Deutscher Luft- und Raumfahrtkongress 2009 : Tagungsband* - *Ausgewählte Manuskripte* (DLRK, Aachen, 01.-04. September 2009). - ISBN: 978-3-932182-63-4. DocumentID: 121161. Download: http://CARISMA.ProfScholz.de
- NIŢĂ, Mihaela; SCHOLZ, Dieter: Business Opportunities in Aircraft Cabin Conversion and Refurbishing. In: *Journal of Aerospace Operations*. Amsterdam : IOS Press (2011), Vol. 1, No. 1-2, pp. 129-153. - ISSN 2211-002X
- NIŢĂ, Mihaela; SCHOLZ, Dieter: From Preliminary Aircraft Cabin Design to Cabin Optimization. In: DGLR: Deutscher Luft- und Raumfahrtkongress 2010 : Tagungsband - Ausgewählte Manuskripte (DLRK, Hamburg, 30.August-02. September 2010). - ISBN: 978-3-932073-87-9ICAS 2010









- NIŢĂ, Mihaela; SCHOLZ, Dieter: Process Chain Analysis and Tools for Cabin Design and Redesign Activities. In: *CD Proceedings : ICAS 2010 - 27th Congress of the International Council of the Aeronautical Sciences* (ICAS, Nizza, 19.-24. September 2010). Edinburgh, UK : Optimage Ltd, 2010. - ISBN 978-0-9565333-0-2. Paper: ICAS2010-7.3.4 (363.pdf)
- NIŢĂ, Mihaela; SCHOLZ, Dieter: Parameter Optimization for an Interactive Aircraft Design, EWADE 2011 (10th European Workshop on Aircraft Design Education, University of Naples "Federico II", Italy, 24. - 27. May 2011 ). - Download: http://OPerA.ProfScholz.de
- NIŢĂ, Mihaela; SCHOLZ, Dieter: Parameter Optimization for an Interactive Aircraft Design (Aerodays 2011, Madrid, 30. March - 01. April 2011). - Poster for the Student Participation Program. Download: http://OPerA.ProfScholz.de









## Papers to be published:

- NIŢĂ, Mihaela; SCHOLZ, Dieter: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. In: *DGLR: Deutscher Luft- und Raumfahrtkongress 2012,* 10-12 September 2012, Berlin (astract was sent)
- 8. NIŢĂ, Mihaela; SCHOLZ, Dieter: From Preliminary Aircraft Cabin Design to Cabin Optimization. In: Buletin Stiintific, UPB (paper sent, confirmation for publication received)



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







# I dedicate this thesis to all those who encouraged me with their love and support.

## Dedic această teză tuturor celor ce m-au încurajat prin susținerea lor și dragostea cu care m-au înconjurat



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion







## **Contributions to Aircraft Preliminary Design and Optimization**

## Thank you!

Contact:

Mihaela.Nita@HAW-Hamburg.de





Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences



Optimization Applied from Aircraft Preliminary Sizing to Cabin Design and Cabin Conversion

Politehnica University Bucharest Faculty of Aerospace Engineering Dipl.-Ing. Mihaela Niță, 29.02.2012, Folie 79 Aero - Aircraft Design and Systems Group

