Short Course

Aircraft Design
Deutsche Gesellschaft für Luft- und Raumfahrt
Lilienthal Oberth e. V.
Godesberger Allee 70
D-53175 Bonn

Short Course

Aircraft Design

Berlin, Germany, 11 – 14 September 2007

Dieter Scholz (Editor)
Hannes Ross
Erhard Rumpler
Dieter Schmitt
Jürgen Thorbeck

September 2007

DGLR-Bericht 2007-03
ISBN: 978-3-932182-53-7
Course Leader and Editor
Prof. Dr.–Ing. Dieter Scholz, MSME
• Professor at Hamburg University of Applied Sciences, Department of Automotive and Aeronautical Engineering. Teaching and research in the area of Aircraft Design, Flight Mechanics, Aircraft Systems.
• Head of the DGLR specialist committee Manned Aircraft.
• http://www.ProfScholz.de

Course Instructors and Authors

Dipl.–Ing. Hannes Ross
• Lecturer at Technical University Munich and at Bundeswehrakademie in Mannheim.
• Vice President Advanced Design & Technology EADS Military Air Systems (retired).

Professor Dipl.–Ing. Erhard Rumpler
• Professor at Munich University of Applied Sciences for aircraft design.
• http://www.fh-muenchen.de/fb03/persona/d_rumpler.pcms

Prof. Dr.–Ing. Dieter Schmitt
• Professor at Technical University Munich, Institute of Aeronautical Engineering.
• Airbus Vice President "Research & Future Projects" (retired).
• http://www.llt.mw.tum.de

Prof. Dr.–Ing. Dieter Scholz, MSME
(see above)

Prof. Dr.–Ing. Jürgen Thorbeck
• Professor at Technical University Berlin, Institute of Aeronautics and Astronautics, Aircraft Design and Aerostructures Group.
• Senior Manager Fleet Development Deutsche Lufthansa (retired).
• http://www.ilr.tu-berlin.de/LB

Four universities – one short course
Short Course Management
Peter Brandt (Generalsekretär, DGLR)

Support Team
Christian Matalla (HAW Hamburg),
Druckerei Thierbach.

Venue
Estrel Hotel, Berlin
Target Delegates

The DGLR Short Course is arranged for graduated engineers, equivalent professionals and/or managers. It is likewise suitable for specialists in search of a broader perspective as for newcomers to the field.

Aim

The Short Course gives an insight into the procedures and the multidisciplinary interactions of aircraft conceptual design. The process of iterative synthesis and analysis in aircraft design is illustrated. A software tool for preliminary sizing is demonstrated. Methods and data to enable case studies of subsonic aircraft design are provided.

Content

The Short Course "Aircraft Design" covers following topics:

- Introduction
- Development Process
- Requirements
- Certification Standards
- Preliminary Sizing
- Fuselage Design
- Wing Design
- Empennage Design
- Landing Gear Design and Integration
- Aircraft Configurations
- Design Evaluation / DOC
- Military Aircraft Development

Learning Objectives

On completion of the Short Course, delegates will

- know aircraft design parameters and methods
- know the fundamental relationship of aircraft design parameters
- be able to size and design an aircraft to the detail as covered during the Short Course
- have a capability to structure aircraft design activities systematically and efficiently.
Short Course Schedule

The Short Course is integrated into the First CEAS European Air and Space Conference. The plenary sessions of the congress are included into the short course schedule.

<table>
<thead>
<tr>
<th>Monday, 10.09.2007</th>
<th>Opening Ceremony</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Tuesday, 11.09.07</th>
<th>Short Course, Day 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:30</td>
<td>Congress Space Agencies</td>
</tr>
<tr>
<td>09:40 - 11:00</td>
<td>Short Course Introduction, Development Process D. Schmitt</td>
</tr>
<tr>
<td>11:20 - 12:40</td>
<td>Short Course Requirements, Certification Standards D. Schmitt</td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>Congress A380</td>
</tr>
<tr>
<td>15:10 - 16:30</td>
<td>Short Course Preliminary Sizing D. Scholz</td>
</tr>
<tr>
<td>16:50 - 18:10</td>
<td>Short Course Preliminary Sizing D. Scholz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wednesday, 12.09.07</th>
<th>Short Course, Day 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:30</td>
<td>Congress ATM</td>
</tr>
<tr>
<td>09:40 - 11:00</td>
<td>Short Course Fuselage Design E. Rumpler</td>
</tr>
<tr>
<td>11:20 - 12:40</td>
<td>Short Course Wing Design D. Scholz</td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>Congress Bologna Process</td>
</tr>
<tr>
<td>15:10 - 16:30</td>
<td>Short Course Landing Gear Design E. Rumpler</td>
</tr>
<tr>
<td>16:50 - 18:10</td>
<td>Short Course Empenage Design D. Scholz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Thursday, 13.09.07</th>
<th>Short Course, Day 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:30</td>
<td>Congress Technology</td>
</tr>
<tr>
<td>09:40 - 11:00</td>
<td>Short Course Aircraft Configuration E. Rumpler</td>
</tr>
<tr>
<td>11:20 - 12:40</td>
<td>Short Course Aircraft Configuration E. Rumpler</td>
</tr>
<tr>
<td>14:00 - 15:00</td>
<td>Congress Aeronautics</td>
</tr>
<tr>
<td>15:10 - 16:30</td>
<td>Short Course Aircraft Assessment J. Thorbeck</td>
</tr>
<tr>
<td>16:50 - 18:10</td>
<td>Short Course Aircraft Assessment J. Thorbeck</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Friday, 14.09.07</th>
<th>Short Course, Day 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>08:30 - 09:50</td>
<td>Short Course Military Aircraft Development H. Ross</td>
</tr>
<tr>
<td>10:10 - 11:20</td>
<td>Short Course Military Aircraft Development H. Ross</td>
</tr>
<tr>
<td>12:20 - 13:40</td>
<td>Short Course Military Aircraft Development H. Ross</td>
</tr>
<tr>
<td>14:00 - 15:20</td>
<td>Short Course Military Aircraft Development H. Ross</td>
</tr>
</tbody>
</table>
Authors and Lecture Notes

D. Schmitt:
Lecture Notes: "Introduction, Aircraft Development, Certifications, Configurations"

D. Scholz:
Lecture Notes: "Preliminary Sizing"

E. Rumpler:
Lecture Notes: "Fuselage Design"

D. Scholz:
Lecture Notes: "Wing Design"

E. Rumpler:
Lecture Notes: "Landing Gear Design"

D. Scholz:
Lecture Notes: "Empenage Design"

E. Rumpler:
Lecture Notes: "Engine Integration"

E. Rumpler:
Lecture Notes: "Aircraft Configuration Design"

J. Thorbeck:
Lecture Notes: "From Aircraft Performance to Aircraft Assessment"

H. Ross:
Lecture Notes: "Military Aircraft Development"

The total notes of this short course consist of more than 390 pages.
Table of Contents

1 Introduction
 1.1 Air Transport System
 1.2 Air Vehicle Classification

2 Aircraft Development
 2.1 Aircraft Development Cycle
 2.2 Market Requirements
 2.3 Design Problematic in Engineering
 2.4 Design Methodology

3 Certification

4 Configurations
 4.1 Actual Configurations
 4.2 Unconventional Configurations

5 Preliminary Sizing
 5.1 Landing Distance
 5.2 Take-off Distance
 5.3 Climb Rate during 2nd Segment
 5.4 Lift-to-Drag Ratio with Extended Landing Gear and Extended Flaps
 5.5 Climb Rate during Missed Approach
 5.6 Cruise
 5.6.1 Thrust-to-Weight Ratio
 5.6.2 Wing Loading
 5.7 Lift-to-Drag Ratio during Cruise
 5.8 Matching Chart
 5.9 Maximum Take-Off Mass
 5.9.1 Operating Empty Mass and Useful Load
 5.9.2 Fuel Fractions
 5.10 Take-off Thrust and Wing Area

6 Fuselage Design
 · design methodology
 · cabin layout
 · airworthiness
 · design loads
 · structural technology
 · cutouts
 · passenger doors
 · inboard profile
7 Wing Design
7.1 Wing Parameters
7.2 Basic Principle and Design Equations
7.3 Flight and Operational Characteristics
7.4 Ailerons and Spoilers
7.5 Example: The Wing of the Airbus A310

8 Landing Gear Design
 · gear arrangement
 · airworthiness
 · design loads
 · energy dissipation
 · retract kinematics
 · brakes, wheels
 · gear configurations

9 Empennage General Design
9.1 Functions of Empennages
 Trim
 Stability
 Control
9.2 Shapes of the Empennage
9.3 Design Rules
9.4 Design According to Tail Volume
9.5 Elevator and Rudder

10 Engine Integration
 · standard turbofan engines
 · engine attachment points
 · engine pylon
 · load transfer
 · ground clearance
 · turboprop engines
 · innovative concepts

11 Aircraft Configuration Design

Chapter 1
 · design methodology
 · structural components integration
 · CG travel
 · zero-lift drag
 · airworthiness
 · design loads
 · structural concept

Chapter 2
 · configuration problem: 160 – 200 PAX medium transport
 · configuration problem: 30 PAX regional transport
Chapter 3
 · special configurations
 · conclusion

12 From Aircraft Performance to Aircraft Assessment
12.1 Objectives of the Lecture
12.2 Preface for a Simple Approach to DOC
12.3 Operational Cost Structure
12.4 A simplified DOC Model
 a. DOC Notations
 b. Fuel Demand
 c. Average Aircraft Weight
 d. Payload Range Diagram
 e. Unit Cost
 f. JAVA DOC Applet
12.5 Aircraft Family Economics
12.6 Presentation of DOC Calculation Results
12.7 Total Quality Assessment

13 Military Aircraft Development
13.1 Development Scenario/Environment
13.2 Requirements
13.3 Development Process and Tools
13.4 Technologies
 13.4.1 Composites
 13.4.2 Ejection Systems and Pilot "g" Protection
 13.4.3 Unstable Configurations and Digital Flight Controls
 13.4.4 Thrust Vectoring
 13.4.4.1 X-31 Enhanced Fighter Manoeuvrability (EFM) Program
 13.4.4.2 The VECTOR Program
 13.4.5 Aircraft Signature
13.5 Unmanned Systems
13.6 Future Aspects

14 References (from Chapters 5, 7 and 9)