

Aero – <u>Aircraft Design and Systems Group</u>

Current Status

Prof. Dr.-Ing. Dieter Scholz, MSME

09-03-26

Aero: Projects and Activities

- FLECS
- Green Freighter
- ALOHA
- PAHMIR
- Efficient Airport 2030 (Aviation Cluster Hamburg)
- CARISMA
- MOZART Health Monitoring of Fuel Cell Systems in Aviation
- Training on Airbus A320 System Simulators
- Short Courses:
 - Aircraft Design
 - Introduction to Aeronautical Engineering

• Aero is part of:

Research Focal Point Aeronautical Engineering Department of Automotive and Aeronautical Engineering Faculty of Engineering and Computer Science

 Aero's aim is to guide research assistants to cooperative dissertations and to conduct funded projects in research, development and teaching (short courses).

Emphasis of our work is on:

- Aircraft Design
- Aircraft Systems
- Flight Mechanics

Current projects with partner organisations:

- Green Freighter
- ALOHA, Efficient Airport 2030 (Aviation Cluster Hamburg)
- PAHMIR
- CARISMA
- MOZART

Past projects with partner organisations:

• FLECS

Cooperative Dissertations

Dipl.-Ing. Kolja Seeckt (Green Freighter) Dipl.-Ing. Francisco Gómez Carrasco (ALOHA)

Dipl.-Ing. Mihaela Niță (CARISMA)

Presently two short courses are being offered.

- Aircraft Design
 Next course: May 2009 (one week)
- Introduction to Aeronautical Engineering Next course: June 2009 (one week)

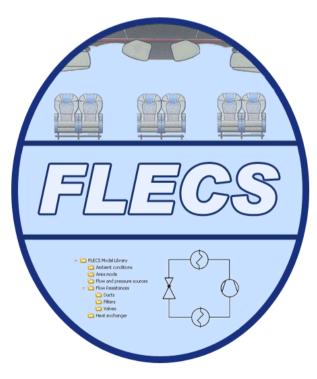
Research assistants at Aero: Dipl.-Ing. Kolja Seeckt (Green Freighter) Dipl.-Ing. Francisco Gómez Carrasco (ALOHA) Dipl.-Ing. Mike Gerdes (PAHMIR) Dipl.-Ing. Mihaela Niță (CARISMA) Dipl.-Ing. Philip Krammer (Fuel Cell Integration)

Information available on the WWW: http://bibliothek.ProfScholz.de

• Digital Library: Student Projects, Thesis Work

http://Aero.ProfScholz.de

Reports@Aero


http://server_at_Aero.ProfScholz.de

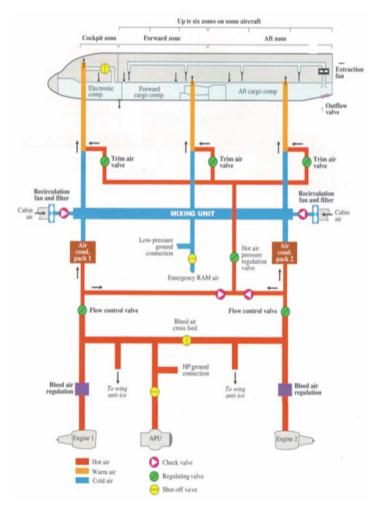
• News

FLECS <u>Functional Model Library of the</u> <u>Environmental Control Systems</u>

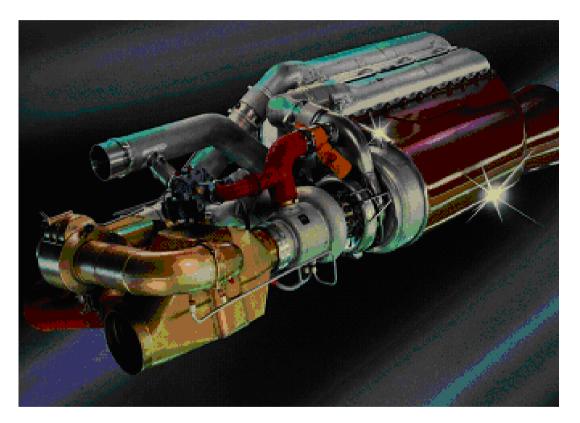
- Total: 648 k€
- HAW: 162 k€
- 2 years
- Partners:

- CeBeNetwork
- Airbus, CeBeNetwork
- Sponsors:
 - **Cities of Hamburg & Bremen**

Freie und Hansestadt Hamburg Behörde für Wirtschaft und Arbeit

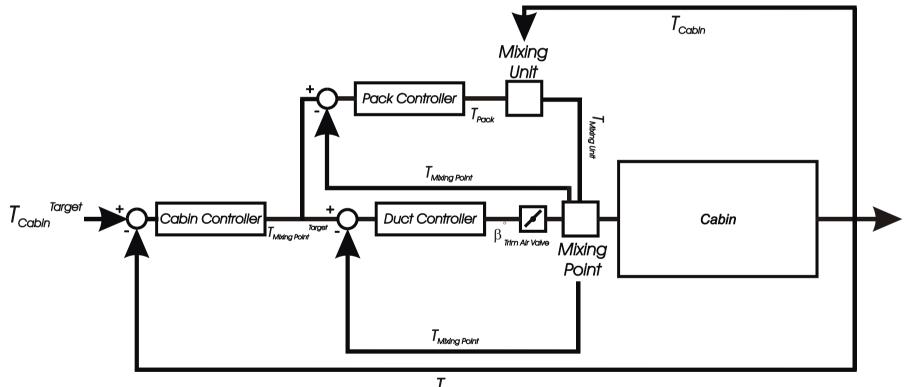


	🙀 Simulink Library Browser	
Functional Simulation of the	File Edit View Help	
Environmental Control System and the Cabin	🗅 😅 -14 🦓	
•	FR: basic_components/FR	
=> FLECS Database		
Support all Phases in the Design	🗆 🖬 Simulink	Viewer-Block
Processes	💁 Commonly Used Blocks	
		z 1 Duct
Pre Design	b- Discrete	Q_801 2
Simple Dynamics		2 <u>'0x</u> 2 Duct_10x
Detailed Dynamics	2- Lookup Tables 2- Math Operations	
· Detailed Dynamics		యాగాల్లో Duct_Heat_Transfe
	Model-Wide Utilities	ن المربع الم
Investigation of a large Number of	Ports & Subsystems	
System Architectures	····· 화· Signal Attributes ····· 화· Signal Routing	
-	Sinks	
=> Optimum Architecture	Sources	HR_Cond
	🖶 🗠 📴 Additional Math & Discrete	z ^{conu} -z T HR_Conv
Graphical User Interface	FLECS Aircraft Level	
 Parameter Input Masks 	FLECS Basic Components	
Main GUI	FLECS Detailed Components	¹ Node_2D
	💼 🙀 Real-Time Workshop	
\rightarrow Cockpit GUI, Display GUI	🕂 🙀 Simulink Extras	z 🖬 Node_3D
\rightarrow Interactive Mode, Batch Mode	🗽 🙀 Stateflow	
· · · · · · · · · · · · · · · · · · ·	Ready	



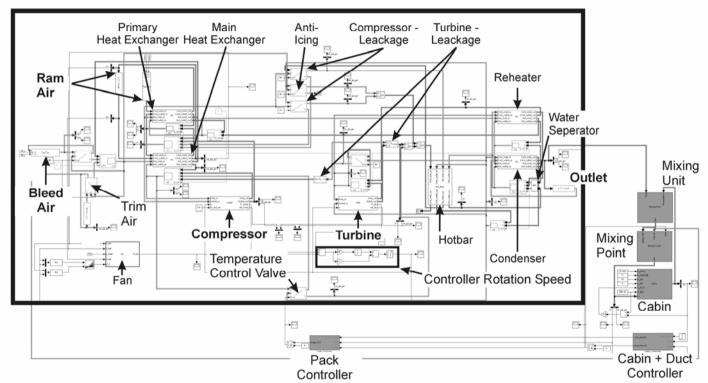
Component Classes

- Ambient Conditions
- Aircraft Boundaries
- Flow Resistances
- Flow and Pressure Sources
- Volumes
- Area models
- Mixing Unit
- Heat Exchangers
- Air Cycle Machine and Air Compressor
- Ram Flow
- Vapor Cycle Systems
- Sensors
- Controls


Example: Airconditioning Pack

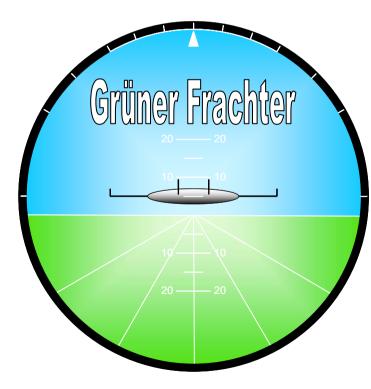
- Air Cycle Machine
 - (Compressor, Turbine)
- Heat Exchangers
- Water Separator

From the Block Diagram ...



 T_{Cabin}

... to the Simulation of Detailed Dynamics


MATLAB/Simulink

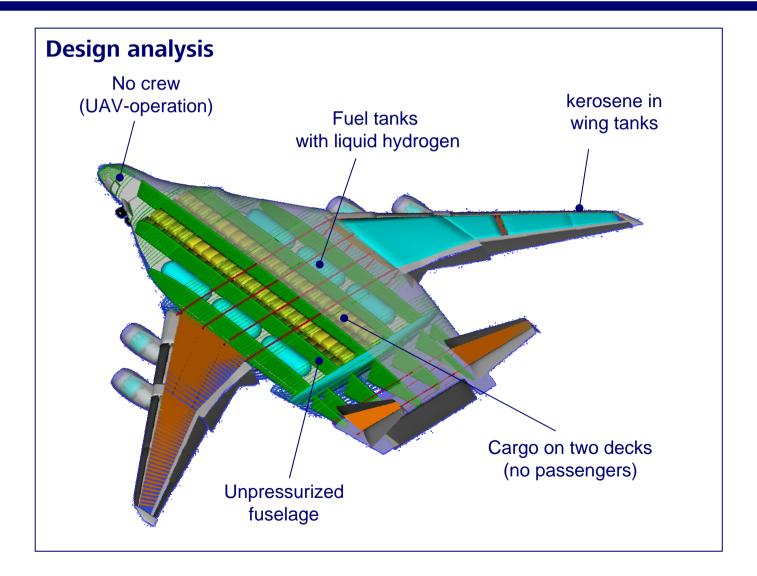
- C-Code Generation
- Real-Time Capability
- \rightarrow Hardware in the Loop Testing

GF <u>Green Freighter</u>

- Total: 646 k€
- HAW: 234 k€
- 3 years
- Partner:

- Airbus, TU Braunschweig, Bishop GmbH
- Sponsors:
 - Federal Ministry of Education and Research

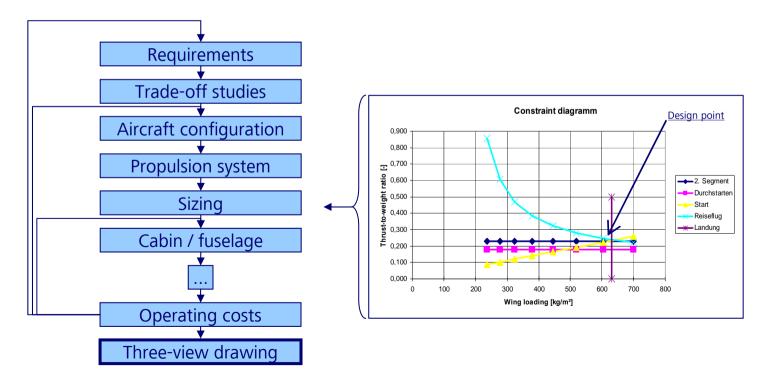
Bundesministerium für Bildung und Forschung



Aim of the project

- Investigations on <u>environmentally friendly</u> and cost effective freighter aircraft configurations
- "Environmentally friendly" due to:
 - Low fuel consumption
 - Low emissions (CO₂, NO_x)
 - Future fuels (Liquid hydrogen LH₂, Synfuel, Biofuel)
 - Low noise level

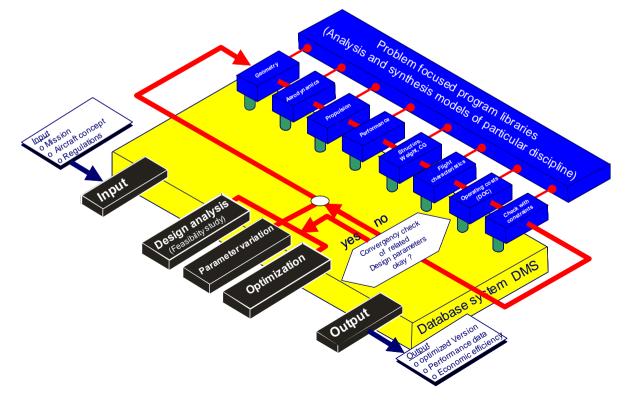
17



Tools

• PreSTo:

Aircraft Preliminary Sizing Tool



Tools

• PrADO:

Preliminary Aircraft Design and Optimization

ALOHA <u>Aircraft Design for Low Cost Ground Handling</u>

- HAW: 140 k€
- 2 years and 4 month
- Partner:

Airbus, Airport Research Center GmbH, Hamburg Airport

• Sponsor:

Federal Ministry of Education and Research

Bundesministerium für Bildung und Forschung

Airport Research Center

Background

- Low Cost Airlines (LCA) fly today with mostly Boeing B737 und Airbus A320.
- Ryanair was the first European LCA founded in 1985.
- The B737 was developed in the 60th, the A320 in the 80th also still at a time, where LCA requirements were not included into the aircraft design.
- Aircraft manufacturers started to work on replacements for the models B737 and A320.
- ALOHA helps to include LCA requirements already from the start into the development of the successors of current single aisle aircraft.

Turn Around Time and Cost Reduction

- New aircraft designs (lower sill height, ...)
- Faster boarding and deplaning (new door arrangement)
- Simpler baggage loading (moving belt, sliding carpet, ...)
- Autonomous boarding (integrated stairs, ...)
- Autonomous push-back
- Autonomous taxiing
- New handling operations
- Less airport charges

New Aircraft Designs (Previous Studies)

PAHMIR

<u>Preventive Aircraft Health Monitoring for</u> <u>Integrated Reconfiguration</u>

PAHMIR

- Lead: Airbus
- HAW: 195 k€
- 3 years
- Partners:
 - Airbus, Philotech
- Sponsors:

Cities of Hamburg

Freie und Hansestadt Hamburg Behörde für Wirtschaft und Arbeit

philotech

Work Structure

Two topics in the area of aircraft cabins and cabin systems:

- a) the reconfiguration of cabins,
 - cabin modules and components
- b) error detection and diagnostic systems
 - for preventive maintenance
 - of cabin systems.

CARISMA Aircraft <u>Cabin and Cabin System Refurbishing</u> Opti<u>mization of Technical Processes</u>

- HAW: ??? k€
- 3 years
- Partners:
 - ELAN GmbH

Training on Airbus A320 System Simulators

Short Course: Aircraft Design

W·In·Q, e·V

Summary

- Aero: Aircraft Design and Systems Group
- FLECS
- Green Freighter
- ALOHA
- PAHMIR
- Efficient Airport 2030 (Aviation Cluster Hamburg)
- CARISMA
- MOZART
- Training on Airbus A320 System Simulators
- Short Courses:
 - Aircraft Design
 - Introduction to Aeronautical Engineering