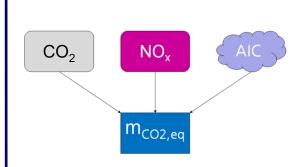


Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

AIRCRAFT DESIGN AND SYSTEMS GROUP (AERO)


Contrail Management – From Basics to Application

Dieter Scholz

Hamburg University of Applied Sciences

Contrail Management – From Basics to Application

Abstract

Purpose – To show how warming persistent contrails can be predicted based on only a few physical parameters. Show the application. Present a simple equation to predict the global effect of Aviation Induced Cloudiness (AIC) considering fuel burn.

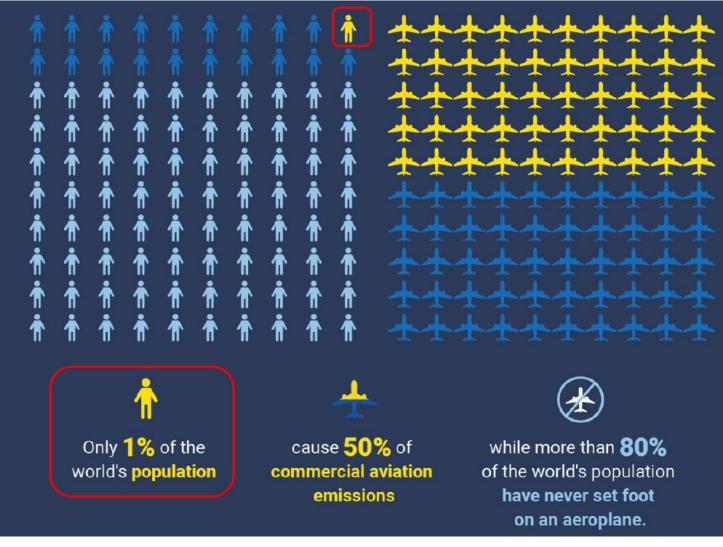
Findings – Contrail formation depends (among other parameters) on the overall efficiency of the aircraft. This efficiency does not depend on aircraft drag, but on Specific Fuel Consumption (SFC), $c = c_a*V+c_b$ and as such on aircraft speed, V. For aircraft flying overhead, contrail persistence can be predicted. Various flight planning tools exist that help to avoid warming contrails. Global AIC is proportional to aircraft fuel burn with respect to average global aircraft fuel burn. Passengers should seek a flight with the lowest fuel burn per passenger. This not only to reduce CO2, but also to avoid contrails.

Social Implications – The International Air Transport Association (IATA) lobbies against contrail management. In contrast, this presentation provides arguments, why contrail management is simple, science based, necessary and ready to be applied.

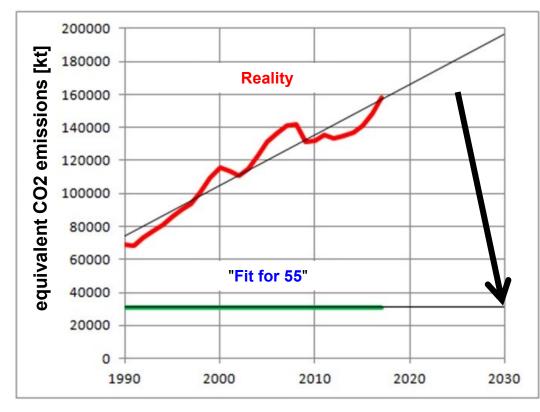
Contrail Management – From Basics to Application

Contents

• Motivation, Aviation & Society, Aviation Politics


Contrails

- Contrail Basics
- Contrail Avoidance
- Contrail Observation & Prediction
- Contrail Management
- Equivalent CO2 Mass: The Equation for Aircraft Design & Ecolabel for Aircraft with Improved AIC Calculation
- Summary



https://stay-grounded.org/get-information

Climate Goals of the EU? => Drastic Reduction of Flights?

1.) 2019: The EU's "Green Deal": "In 2050, net greenhouse gas emissions should no longer be released".

2.) 2020: The European climate targets for 2030 were defined under the motto "Fit for 55". This is the interim goal of the Green Deal: "Greenhouse gas emissions are to be reduced by 55% compared to 1990 – i.e. only 45% of the 1990 value. This value is to be achieved by 2030."

https://doi.org/10.48441/4427.225

The 55% reduction compared to 1990 means a reduction of more than 80% for aviation by 2030, i.e. by about 13.5% per year. Fuel consumption has so far been reduced by 1.5% annually through operational measures and technology. Air traffic would therefore have to shrink permanently by 12% per year from now on for the next 6 years based on 2024 traffic numbers.

Controversy about Monitoring, Reporting, and Verification (MRV)

Press Release No: 14

Date: 30 April 2024

More Data Needed to Understand Contrails, their Climate Effect & Develop Mitigation

EU plans exemption for long-haul flights from emissions monitoring

Reuters, 19.06.2024

The EU is apparently backing down on the planned monitoring of non-CO2 emissions by airlines. This was actually supposed to be mandatory for all flights. But international resistance is heavy - as the EU has already found out.

FINANCIAL TIMES

Airlines lobby against EU plan to monitor non-CO₂ emissions Philip Georgiadis in London April 28 2024

The Telegraph

EU suffers backlash over plan to monitor aircraft contrails

Christopher Jasper Mon, 29 April 2024 at 1:24 pm CEST·2-min read

Mr Walsh urges Brussels to make the scheme voluntary and applicable to flights within the EU only - Moe Zoyari/Bloomberg

https://perma.cc/C3CT-9VME https://perma.cc/3RSS-3WMX https://perma.cc/NM72-Y63E https://perma.cc/Z3JU-UFDA

> Dieter Scholz: Contrail Management – From Basics to Application

Hamburg Aerospace Lecture Series http://AeroLectures.de http://environment.AeroLectures.de

24.11.22	Climate Optimized Flight Routes – The Path from Research to Operations DOI 10.5281/zenodo.7396324	Dr. Ralph Leemüller , DFS Deutsche Flugsicherung GmbH	DGLR	🎏 🗲 🔀 選	Online with Zoom 3.4 MB Related Paper (German): 0.5 MB
03.11.22	Wege zu weniger klimaschädlichem Luftverkehr – Politik in Deutschland DOI 10.5281/zenodo.7325002	Susanne Menge , MdB, Mitglied des Verkehrsausschusses und Berichterstatterin der Fraktion Bündnis 90/Die Grünen für Luftverkehr	HAW	🕅 🖪 🖪 🔀 🗮	Online mit <u>Zoom</u> <u>Biografie</u> (0.7 MB
09.06.22	Detection of Contrails – Challenges and Future Perspectives DOI 10.5281/zenodo.6720795	Dr. Tina Jurkat-Witschas and Prof. Dr. Christiane Voigt , Institut of Atmospheric Physics, German Aerospace Center (DLR)	RAeS	🏂 🗲 🕇	Online with Zoom
02.06.22	Passenger Aircraft at End-of-Life DOI 10.5281/zenodo.6648923	Prof. DrIng. Dieter Scholz , MSME, HAW Hamburg	HAW	🏂 🖪 🖪 🔀 選	Online with Zoom 10.1 MB Scholz: Verkehrsflugzeuge am Lebensende
28.04.22	Fast Measures to Reduce the Climate Impact from Aviation – Contrail Avoidance and New Fuels DOI 10.5281/zenodo.6554590	Prof. Dr. Christiane Voigt , Head of Department Cloud Physics, German Aerospace Center (DLR)	RAeS	選 🖪 F 🔀 選	Online with Zoom
27.01.22	Aviation and the Climate – An Overview	Prof. DrIng. Dieter Scholz , MSME, HAW Hamburg	RAeS	🥦 🖪 🕈 🔀 🖁	Online with Zoom
02.12.21	Formation and Climate Impact from Contrails DOI 10.5281/zenodo.5893117	Dr.rer.nat. Ulrike Burkhardt , Institute of Atmospheric Physics, German Aerospace Center (DLR)	RAeS	🏂 🖪 🕈 🔀 🏦	Online with Zoom

German Aerospace Congress 30.09 - 02.10.2024

NANO vom 8. Mai 2024: Kondensstreifen sind Klimakiller

Die Lufffahrtindustrie wird die Kilmaziele krachend verfehlen. Neben dem CO2 Ausstoß, der durch den weitweiten Luftverkehr verursacht wird, haben auch Kondensstreifen eine kilmaschädliche Wirkung. Lösungsansätze gibt es bereits.

Deutschland 2024

06.05.2024

TELLEN 🗹 🫉 💅 🖒

MEHR

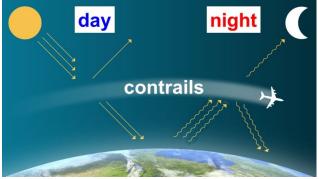
https://youtu.be/HYJawLmiLS8

Moderation: Yve Fehring

Themen der Sendung

Problem Kondensstreifen

Kondensstreifen sind anthropogene, also vom Menschen gemachte Wolken. Sie haben einen wärmenden Effekt, well sie die Warmestrahlung, die von der Erde ausgeht, daran hindert, ins Weitall zu gelangen. Kondensstreifen sind ein wichtiger Faktor bei der Klimaschädlichkeit von Flugzeugen. Doch wie lassen sich diese Kondensstreifen vermeiden?


Dieter Scholz: Contrail Management – From Basics to Application

German Aerospace Congress 30.09 - 02.10.2024

bis 08.05.2029

Contrails

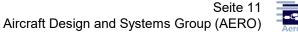
uning generalise ter statistik for statistik de statistik statistik som en en en en som en som en som en som en Men som en so

Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024

Aircraft Design and Systems Group (AERO)

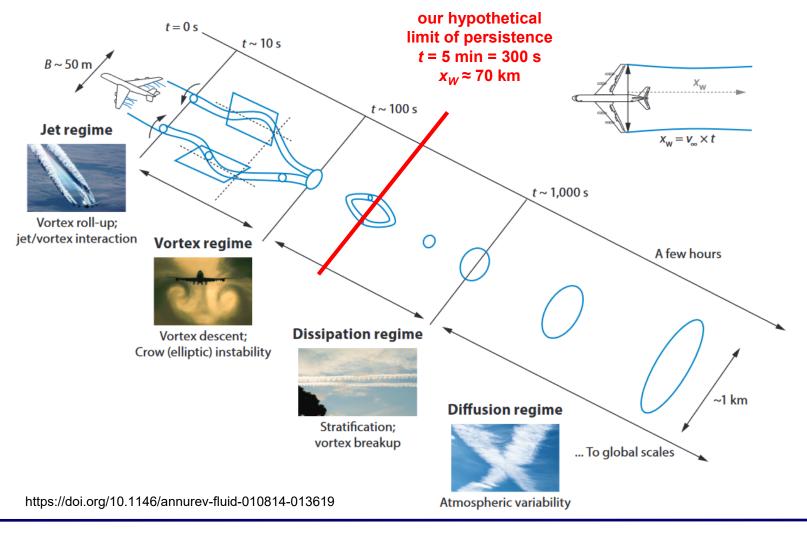
Contrail Basics

Dieter Scholz: Contrail Management – From Basics to Application



Contrail Life Cycle

KRAFT, Martin, 2016. Kondensstreifen, CC BY-SA, https://de.wikipedia.org/wiki/Kondensstreifen#/media/Datei:MK35097_Contrails.jpg https://kitskinny.wordpress.com/2013/07/09/jets-clouds-effects


Dieter Scholz: Contrail Management – From Basics to Application

Contrail Life Cycle

Dieter Scholz:

Contrail Management – From Basics to Application

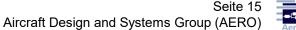
Cooling Persistent Contrails (Daytime)

Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024

Seite 13 Aircraft Design and Systems Group (AERO)

Warming Persistent Contrails (Dawn and Dusk)

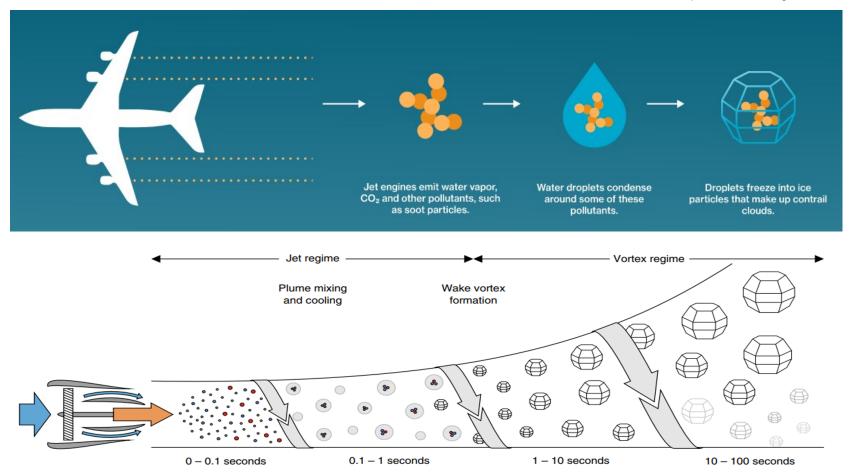
Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024 Seite 14 Aircraft Design and Systems Group (AERO)


Warming Persistent Contrails (Night)

Emirates Airbus A380 registration A6-EKV operating flight EK-232 from Washington Dulles International Airport (IAD/KIAD) destination Dubai (DXB/OMDB) crossing the moon while flying at 39000 feet with ground speed of 497 knots, over Varna city at 01:55 local time on 13 March 2020.

https://www.youtube.com/watch?v=9N1ZxfAsAl0&t=442s

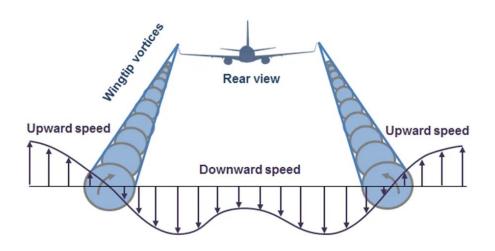
Dieter Scholz: Contrail Management – From Basics to Application

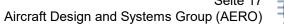


Ice Crystal Growth in Contrails

https://contrails.org/science

KÄRCHER, Bernd, 2018. Formation and Radiative Forcing of Contrail Cirrus. In: *Nature Communications*, Vol. 9, Article Number: 1824. Available from: https://doi.org/10.1038/s41467-018-04068-0

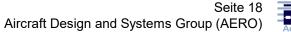

Dieter Scholz: Contrail Management – From Basics to Application


Downwash

https://medium.com/@devavratatripathy/why-do-airplanes-have-winglets-db25ba41d833 https://www.reddit.com/r/pics/comments/pldog/photo_of_the_downwash_effect_from_a_passing_jet

Dieter Scholz: Contrail Management - From Basics to Application

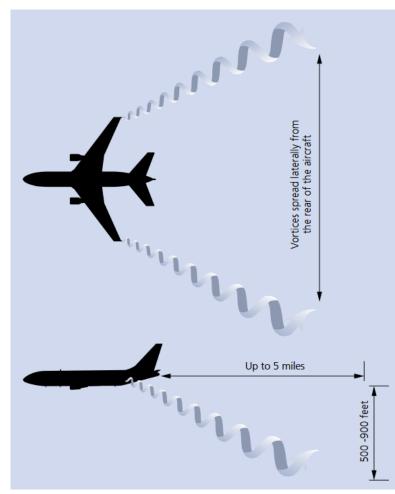
Downwash



http://www.diam.unige.it/~irro/gallery.html

http://www.diam.unige.it/~irro/gallery/Cessna_downwash.jpg

https://forums.flightsimulator.com/t/aircraft-should-make-trails-through-clouds-wingtip-vortices/258814/16 https://forums.flightsimulator.com/uploads/default/original/4X/4/1/f/41facf8e7393aeb51eceffc9cf1223a347afcd2e.jpeg


Dieter Scholz: Contrail Management – From Basics to Application

Downwash

https://skybrary.aero/sites/default/files/bookshelf/660.pdf

Wake vortices spread laterally away from the aircraft and descend approximately 500 ft to 900 ft at distances of up to five miles behind it. These vortices tend to descend at approximately 300 ft to 500 ft per minute during the first 30 seconds. This is equal to a **descent speed** of **2 m/s**.

The downwash at the horizontal tail is with about 20 m/s much higher and decreases with increasing distance from the aircraft. (http://hoou.ProfScholz.de, Eq. 11.29)

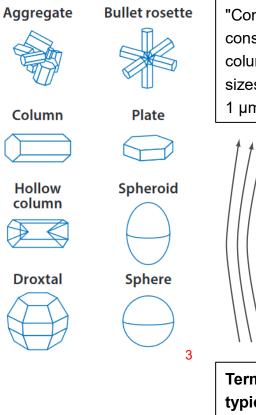
Aircraft	Max Gross Weight (w) 1b	Span (b) ft	Airspeed (V) ft/sec	Vortex Spacing (b') ft	Vortex Sink Rate (w) ft/min	Vortex Radius (r) ft	Max Vertical Velocity (less w) (V _r) ft/min
Convair (C-131)	46,000	92	237	72	162	7	1800
Boeing 727	169,000	108	272	86	372	9	4100
Boeing 707	328,000	145	300	115	366	12	4000
Boeing 747	710,000	196	300	155	432	16	4700
C-5	750,000	222	290	175	354	18	3900
Concorde	385,000	84	338	67	1120	7	12900
Boeing 2707	750,000	143	338	112	760	11	8500

https://web.archive.org/web/20130223191349/

www.airpower.maxwell.af.mil/airchronicles/aureview/1971/jul-aug/carten.html

Dieter Scholz: Contrail Management – From Bas

Contrail Management – From Basics to Application


German Aerospace Congress 30.09 - 02.10.2024

Aircraft Design and Systems Group (AERO)

Sedimentation / Settling

"Contrails predominantly consist of bullet rosettes, columns, and plates with sizes ranging from about 1 μ m to about 100 μ m" ¹

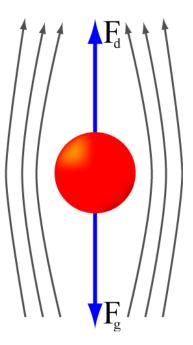
Terminal velocity of typical ice crystals in contrails:

2: JabberWok, CC BY-SA 3.0

https://commons.wikimedia.org/wiki/File:Terminal_Velocity.png 4: https://en.wikipedia.org/wiki/Drag_coefficient (sphere) Fa = 1 Ba. V2. Cn. S sphere: S= +2, m $V = \frac{4}{3}\pi r^3$ $C_{D} = 0.47 4$ tropopause: $S_{\alpha} = 0.364 \frac{k_3}{m^3}$ $\alpha = 295 \frac{m}{5}$ $F_g = m \cdot g = V \cdot S_i \cdot g$ ice : Si = g17 kg/m3 + = 10.10-6 m Fa = Fq 1 Sav2. CD . +2. TT = 4TT +3. Si . g $V = \frac{8}{3} \frac{32}{3a} \cdot \frac{9}{5a} \cdot \sqrt{r}$ $V = 374 \frac{\sqrt{m}}{5} \cdot \sqrt{r} = 1.2 \frac{m}{5}$

1: https://doi.org/10.1016/S0074-6142(02)80023-7 3: https://doi.org/10.1146/annurev-fluid-010814-013619

Dieter Scholz: Contrail Management – From Basics to Application


German Aerospace Congress 30.09 - 02.10.2024

Aircraft Design and Systems Group (AERO)

Sedimentation / Settling

Troposphere: Laps rate, L=0.0065 K/m

$$L = \frac{\Delta T}{\Delta H} \qquad \Delta H = \frac{\Delta T}{L}$$

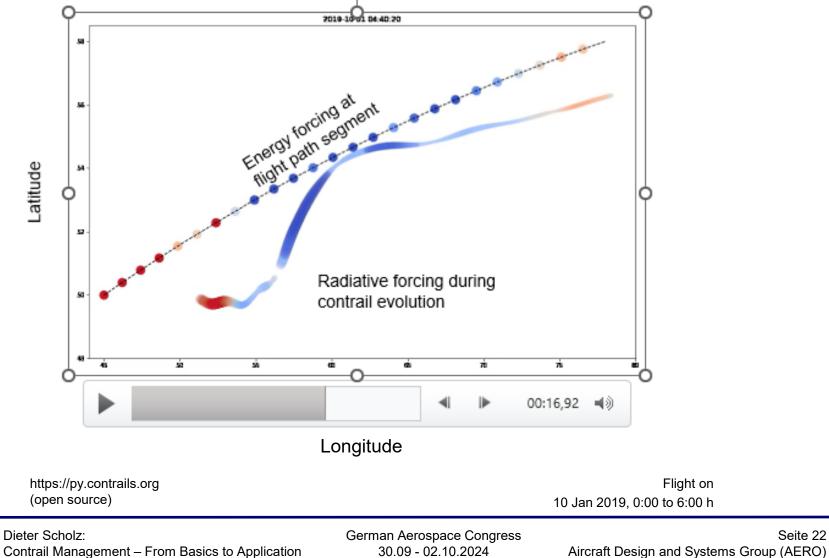
$$V = \frac{\Delta H}{\Delta t} \qquad \Delta t = \frac{\Delta H}{V} = \frac{\Delta T}{V \cdot L}$$

$$\frac{\Delta t}{\Delta T} = \frac{1}{V \cdot L} = \frac{1}{3.2 \cdot 0.0065} \frac{5}{K}$$

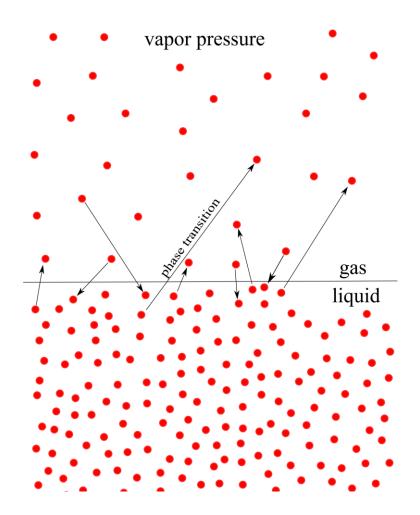
$$= \frac{48}{5} \frac{5}{K}$$

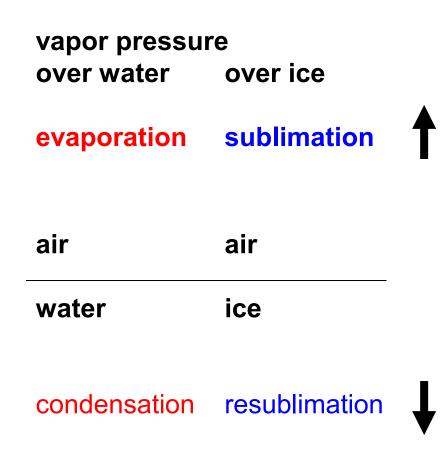
It takes about 48 s for the contrail to sink so far to get into air that is 1 °C warmer. At this temperature vapor pressure over ice is higher and lets the ice sublimate ("dry") faster.

JabberWok, CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Terminal_Velocity.png


Dieter Scholz: Contrail Management – From Basics to Application

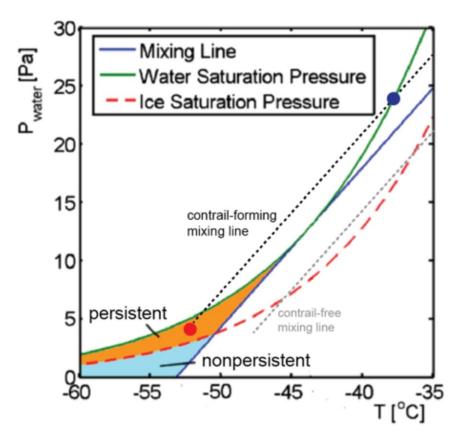
Contrail-Cirrus Prediction Tool (CoCiP)




Contrail Management - From Basics to Application

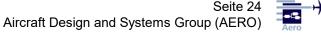
30.09 - 02.10.2024

Vapor Pressure


HellTchi, CC BY-SA 3.0 https://commons.wikimedia.org/wiki/File:Vapor_pressure.svg

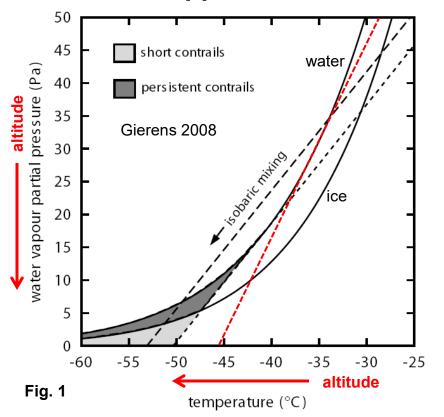
Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024 Seite 23 Aircraft Design and Systems Group (AERO)

Exhaust Gas Mixing in Ambient Air


Graphical representation of the Schmidt-Appleman criterion analysis. When the mixing line (representing mixing of engine exhaust and ambient air) crosses the water saturation line, a will form. As the contrail mixture continues to cool and water deposits as ice, the mixing may cease in ice conditions supersaturated (shaded orange) where a contrail will persist.

NOPPEL, F., SINGH, R., 2007. Overview on Contrail and Cirrus Cloud Avoidance Technology. In: Journal of Aircraft, vol. 44, no. 5. Available from: https://doi.org/10.2514/1.28655

via


BREAKTHROUGH ENERGY, 2023. Contrails & Climate Change. Archived at: https://perma.cc/YT8Q-V3KW

Dieter Scholz: Contrail Management – From Basics to Application

Schmidt-Appleman Criterion for Contrail Formation

G is the slope of the dotted line. The dotted line is tangent to the water saturation line.

The mixing process is assumed to take place isobarically, so that on a *T*-*e* diagram the mixing (phase) trajectory appears as a straight line (*e* is the partial pressure of water vapour in the mixture, *T* is its absolute temperature, see Fig. (1)). The slope of the phase trajectory, *G* (units Pa/K), is characteristic for the respective atmospheric situation and aircraft/engine/fuel combination. *G* is given by

$$G = \frac{EI_{H2O}pc_p}{\varepsilon Q(1-\eta)}$$

where ε is the ratio of molar masses of water and dry air (0.622), c_p =1004 J/(kg K) is the isobaric heat capacity of air, and p is ambient air pressure. G depends on fuel characteristics (emission index of water vapour, $EI_{H2O} = 1.25$ kg per kg kerosene burnt; chemical heat content of the fuel, Q = 43 MJ per kg of kerosene), and on the overall propulsion efficiency η of aircraft. Modern airliners have a propulsion efficiency (η) of approximately 0.35.

G is the slope of the red dotted line with increased slope. The point on the line tangent to the water saturation line is shifted to the right (to higher temperatures).

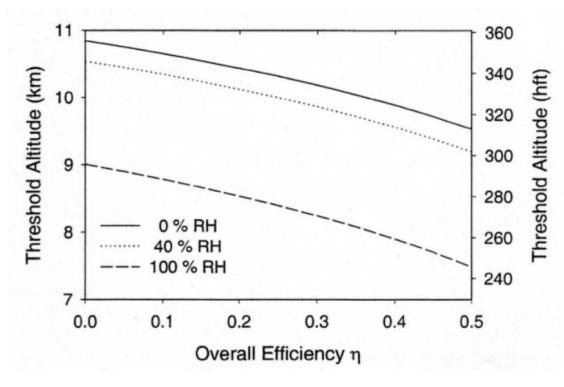
GIERENS, Klaus, LIM, Limg, ELEFTHERATOS, Kostas, 2008. A Review of Various Strategies for Contrail Avoidance. In: The Open Atmospheric Science Journal, 2008, 2, 1-7. Available from: https://doi.org/10.2174/1874282300802010001

Heating Value Q, Emission Index EI, and Slope G

fuel	Q [MJ/kg]	El _{H2O} [kg/kg]	El _{H2O} /Q [kg/MJ]	G _{H2} /G _{Jet-A1}
H2	120	8,94	0,0745	2 5 9
Jet –A1	43	1,24	0,0288	2,58

The slope G of the dotted line is 2,58 times steeper in case of LH2 combustion. This means: Contrails more often and also at lower altitudes.

2,58 times more water <u>vapor</u> is produced with LH2 combustion compared to kerosene combustion (for the same energy used).



Effect of the Propulsion Efficiency

Propulsion efficiency

$$\eta = FV/(m_f Q)$$

m_f: fuel flow F: thrust or drag

A lower efficiency, η means a smaller slope, *G* which is tangent to the water saturation line further left (at lower temperatures or increase altitude).

A lower efficiency, η results in more heat losses and a warmer plume, which needs lower temperatures (at higher altitudes) for condensation to form the contrail.

Schumann, 2000, https://doi.org/10.2514/2.2715, Open Access: https://elib.dlr.de/9281

Dieter Scholz: Contrail Management – From Basics to Application

Efficiency η Does NOT Depend on Drag (only on SFC and Speed)

eta = F*V/(m f*Q) m f mass flow rate of the fuel m f = c * F with c Specific Fuel Consumption (SFC) in kg/(Ns) F cancels out 0.335 0.330 0.325 eta = V/(c*0)0.320 0.315 0.310 σ c = c a*V + c b e 0.305 0.300 See: Poster from DLRK 2024 for details. 0.295 0.290 0.285 $eta = V/(Q^*(c a^*V + c b))$ 0.280 0.65 0.70 0.75 0.80 0.85 $eta = 1/(Q^*(c a + c b/V))$ Μ Example calculation: FL 360 eta is function of V (a little depending on thrust, T) c = 3.38E-08 kg/(Ns)/(m/s)and clearly of BPR and altitude, h. c b = 1.04E-05kg/(Ns)

c = 16 mg/(Ns) at M = 0.7

https://purl.org/aero/M2017-07-15 (Memo) https://www.fzt.haw-hamburg.de/pers/Scholz/Aero/AERO_POS_DLRK2024_SFC_2024-09-30.pdf (Poster, => Database) https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2021-09-15.018 (Master Thesis)

Calculating Saturation Pressure with the Magnus Equation

The saturation vapor pressure for water vapor in the pure phase (absence of air) can be calculated using the Magnus formula recommended by the WMO. This formula has the advantage that it requires only three parameters and is reversible. However, more accurate formulas exist. The ones shown here have an accuracy (standard deviation) of $\pm 0.3\%$ over water and $\pm 0.5\%$ over ice.

Over flat water surfaces

$$E_w(t) = 6,112\,\mathrm{hPa}\cdot\expigg(rac{17,62\cdot t}{243,12\ ^\circ\mathrm{C}+t}igg) \qquad \mathrm{f\ddot{u}r} \quad -45\ ^\circ\mathrm{C} \leq t \leq 60\ ^\circ\mathrm{C}$$

Over flat ice surfaces

$$E_i(t) = 6,\!112\,\mathrm{hPa}\cdot\exp\!\left(rac{22,\!46\cdot t}{272,\!62\,^\circ\mathrm{C}+t}
ight) \qquad \mathrm{f\ddot{u}r} \quad -\,65\,^\circ\mathrm{C}\leq t\leq 0\,^\circ\mathrm{C}$$

WMO, 2018. Measurement of Meteorological Variables. In: Guide to Instruments and Methods of Observation, Annex 4.B Formulae for the Computation of Measures of Humidity. Archived at: https://web.archive.org/web/20220205104246/https://library.wmo.int/doc_num.php?explnum_id=10616 via https://de.wikipedia.org/wiki/Sättigungsdampfdruck

Dieter Scholz: Contrail Management – From Basics to Application

The Tangent Mixing Line of the Schmidt-Appleman Criterion

Determination of the straight line in the Schmidt-Appleman criterion. We only know the slope, G of the straight line

$$f(t) = G t + G_0$$

f(t) is the tangent to $E_w(t)$. At the point of contact, the slope of $E_w(t)$ and f(t) must be the same. $E_w(t)$ is differentiated with respect to *t* and set equal to *G*.

$$E_w(t)' = \frac{dE_w(t)}{dt} = G$$

This gives the temperature t_{SAC} at the point of contact (details on next page). The temperature t_{SAC} is the highest temperature at which a contrails can form. Furthermore, $E_w(t) = f(t)$ at point of contact. From this we obtain G_0 .

$$G_0 = E_w(t) - G t$$

The Tangent Mixing Line of the Schmidt-Appleman Criterion

$$E_w(t) = a \cdot e^{\frac{bt}{c+t}}$$

$$\frac{dE_w(t)}{dt} = a \cdot e^{\frac{bt}{c+t}} \cdot \frac{b(c+t) - bt}{(c+t)^2}$$

$$= a \cdot e^{\frac{bt}{c+t}} \cdot \frac{bc+bt-bt}{(c+t)^2}$$

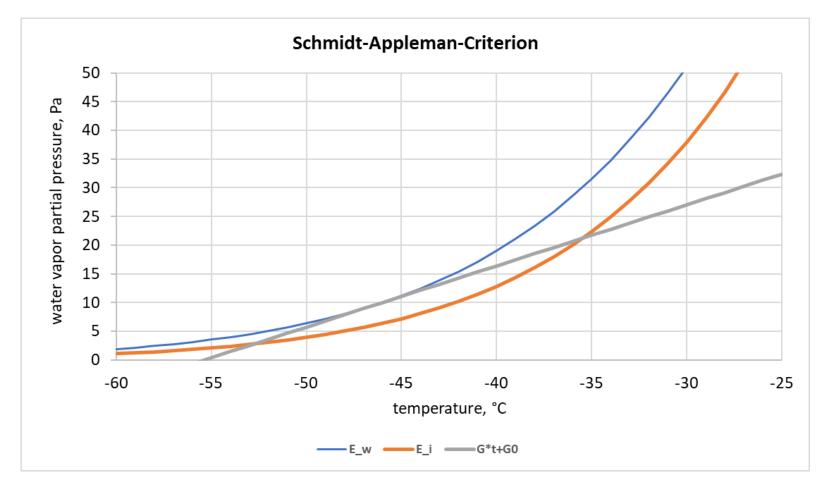
$$\frac{dE_w(t)}{dt} = \frac{abc \cdot e^{\frac{bt}{c+t}}}{(c+t)^2}$$

$$\frac{dE_w(t)}{dt} = \frac{abc \cdot e^{\frac{bt}{c+t}}}{(c+t)^2}$$

Magnus formula for saturation water vapor pressure over a flat water surface a = 6.112 hPa b = 17.62c = 243.12 °C

This equation can be solved for *t* with the *Solver* in Excel

$$\frac{abc \cdot e^{\frac{bt}{c+t}}}{(c+t)^2} - G = 0$$


The temperature, *t* is where $E_w(t)$ and f(t) touch. This temperature is called t_{SAC} . It is the highest temperature for contrails to form.

SAC stands for Schmidt-Appleman Criterion.

Schmidt-Appleman Criterion (Scholz)

Schmidt-Appleman Criterion, Zoom In (Scholz)

Constructing the Schmidt-Appleman Diagram

An aircraft flies at altitude, H and air temperature, t. At what relative humidity, ϕ does it show contrails?

$$G \cdot t + G_0 = P \cdot E_w(t)$$

$$P = \frac{G \cdot t + G_0}{E_w(t)}$$

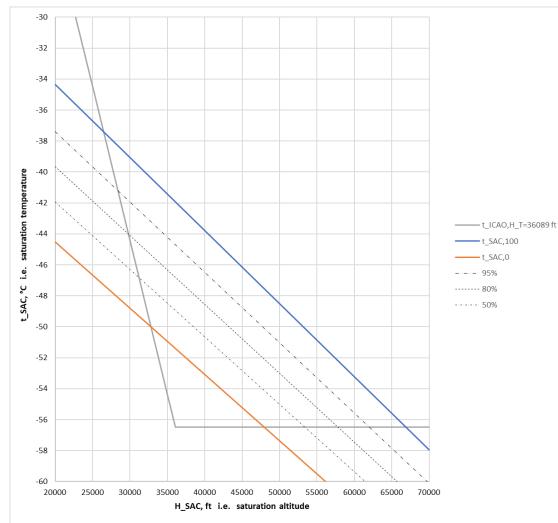
Results need to be limited, if: $G t + G_0 < 0 \Rightarrow \phi < 0\%$ (not defined) $t > t_{SAC} \Rightarrow \phi > 100\%$ (not defined)


Constructing the Schmidt-Appleman Diagram

A		В	С	D	E	F	G	Н	I.				
Constructing the Schmidt-Appleman-Diagram (SAD)													
3 1.) Enter altitu	1.) Enter altitude, H in tab "SAC" and operate Solver (e.g. for a calculation of a new altitude)												
4 2.) Copy new c	2.) Copy new colum "C" into the column to the right to safe for later												
5													
6 G	Pa/	°C	1,354	3,361	1,354	2,172	1,721	1,634	1,354				
7 G0	Pa		72,0	149,1	126,3	105,8	87,7	84,0	72,5				
8 <mark>H</mark>	ft		40000	20000	25000	30000	35000	36089	40000				
9 H	m		12192	6096	7620	9144	10668	11000	12192				
LO p	Pa		18754	46559	18754	30087	23840	22632	18754				
l1 t_SAC,100	°C		-43,9	-34,2	-36,6	-39,0	-41,5	-42,0	-43,9				
L2 t_SAC,0	°C		-53,2	-44,4	-46,5	-48,7	-50,9	-51,4	-53,2				
L3 ∆t,tot	°C		9,26	10,19	9,96	9,73	9,49	9,44	9,26				
14													
15	t	E_w	phi										
LG	-60	1,901	n.a.										
17	-59	2,158	n.a.										
18	-58	2,447	n.a.										
19	-57	2,771	n.a.										
20	-56	3,134	n.a.										
21	-55	3,539	n.a.										
22	-54	3,992	n.a.										
23	-53	4,497	0,0595	n.a.	n.a.	n.a.	n.a.	n.a.	0,0595				
24	-52	5,060	0,3204	n.a.	n.a.	n.a.	n.a.	n.a.	0,3204				
25	-51	5,686	0,5232	n.a.	n.a.	n.a.	n.a.	0,1264	0,5232				
26	-50	6,382	0,6783	n.a.	n.a.	n.a.	0,2555	0,3686	0,6783				
27	-49	7,155	0,7943	n.a.	n.a.	n.a.	0,4684	0,5571	0,7943				
28	-48	8,011	0,8783	n.a.	n.a.	0,1928	0,6332	0,7015	0,8783				
29	-47	8,960	0,9364	n.a.	n.a.	0,4147	0,7582	0,8095	0,9364				
30	-46	10,010	0,9734	n.a.	0,1403	0,5882	0,8506	0,8878	0,9734				
31	-45	11,171	0,9935	n.a.	0,3687	0,7215	0,9163	0,9418	0,9935				
32	-44	12,452	1,0000	0,0981	0,5487	0,8217	0,9602	0,9761	1,0000				
33	-43	13,865	n.a.	0,3305	0,6885	0,8946	0,9864	0,9945	n.a.				

Excel Table download:

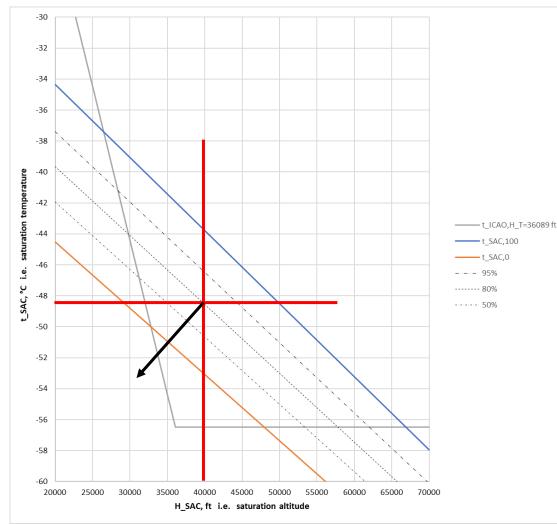
https://purl.org/aero/SAC


Dieter Scholz: Contrail Management – From Basics to Application

Schmidt-Appleman Diagram and the ISA (Scholz)

Contrails form down or left of the respective humidity lines.

The International Standard Atmosphere (light gray) shows:


- Conditions exist for contrails to form even with relative humidity of 0%.
- At 100% relative humidity contrails can form down to 27000 ft (but not below this altitude).

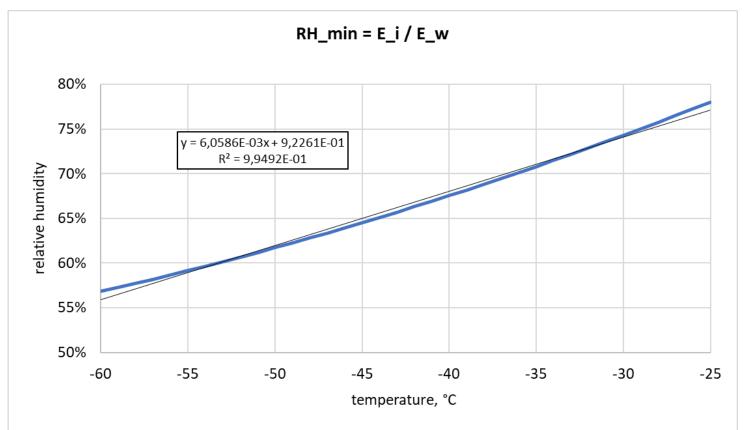
Dieter Scholz: Contrail Management – From Basics to Application

Schmidt-Appleman Diagram, Application (Scholz)

An aircraft flies at altitude, *H* and air temperature, *t*.

The red cross shows: There is one relative humidity, ϕ at which the aircraft starts to show contrails!

If the relative humidity is less than φ , it must be colder, or the same low temperature must occur at lower altitudes.

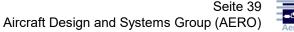

Contrails form down or left of the respective humidity lines. See black arrow.

Dieter Scholz: Contrail Management – From Basics to Application

Minimum Relative Humidity for Persistent Contrails

Ice crystals tend to sublimate (go directly from the solid to the gas phase) or dry up, if the air is dry enough. The blue line shows the relative humidity, above which ice does not sumblimate anymore and contrails are persistent.

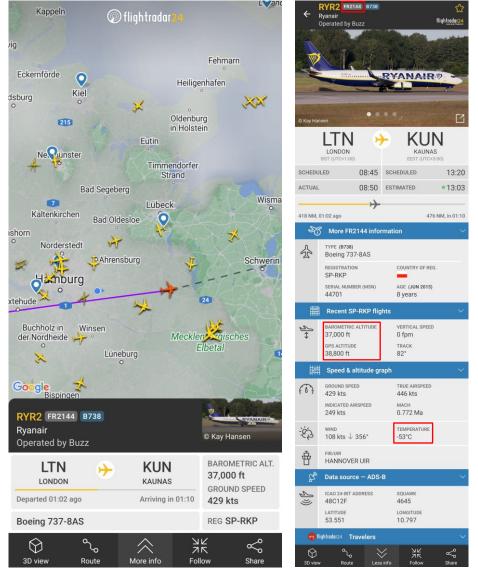
Dieter Scholz: Contrail Management – From Basics to Application



Contrail Prediction & Observation

BRIEGERT, Finn, 2024. *Aircraft Contrails – Observation and Prediction*. Project. Hamburg University of Applied Sciences, Aircraft Design and Systems Group (AERO). Available from: https://nbn-resolving.org/urn:nbn:de:gbv:18302-aero2024-03-14.019

Dieter Scholz: Contrail Management – From Basics to Application



Observation & Prediction

At 10:53 AM, on September 3, a Boeing 737-8AS, registration SP-RKP, was flying eastbound. This plane left a persistent contrail. The aircraft was at a GPS altitude of 38800 ft (FL 370). The outside temperature was -53 °C.

Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024

Aircraft Design and Systems Group (AERO)

Seite 40

EGGW

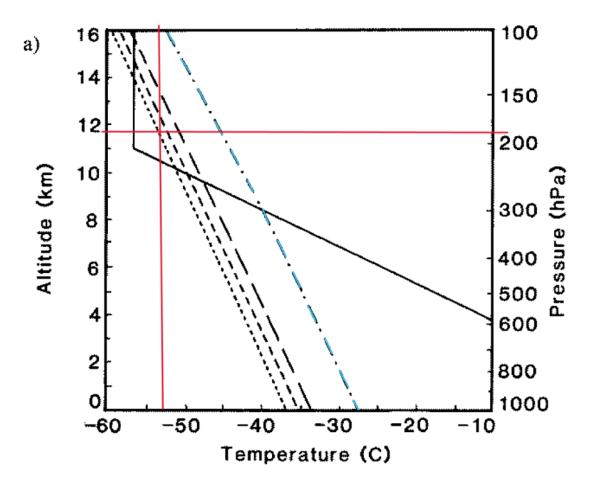
EYKA

Relative Humidity

Relative humidity at FL340: 100% Relative humidity at FL390: 100%

Interpolated relative humidity at FL370: 100% (trivial here).

Aircraft Data


Obtained in the project with: <u>https://flightradar24.com</u> Free data: <u>https://globe.adsbexchange.com</u>

Dieter Scholz: Contrail Management – From Basics to Application

Evaluation of the Schmidt-Appleman Diagram

The red cross is far left of the blue line (100% relative humidity).

A contrail is expected to form.

Definition of the Persistence Factor, R

This project defines a factor that can be used to see whether a contrail is persistent or not. This factor is called the **persistence factor**.

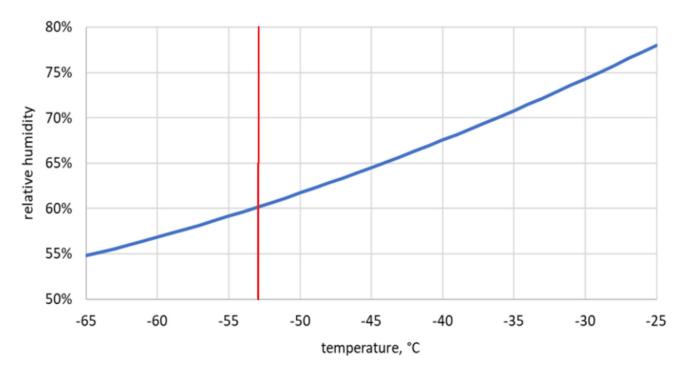
$$R = \frac{\text{relative humidity of ambient air}}{\text{relative humidity for saturation with respect to ice}} = \frac{RH}{RHmin}$$
(3.1)

The relative humidity of the ambient air is divided by the relative humidity for saturation with respect to ice (the theoretical relative humidity for a persistent contrail). However, it is unlikely that R = 1 is sufficient for a persistent contrail in reality. A somewhat higher factor is probably necessary.

This project starts with this hypothesis:

- R < 0.5 no contrail,
- $R = 0.5 \dots 1.3$ transient contrail,
- R > 1.3 persistent contrail.

The persistence factor, R is the same as the relative humidity with respect to ice, RH_i .


 RH_i > 100% is called **supersaturation**.

Seite 43

Evaluation of the Schmidt-Appleman Criterion

Minimum relative humidity for given temperature for persistent contrails to form. If above the blue line persistent contrails are expected to form. Here

R = 100% / 60.2% = 1.66 => persistent contrail (survival longer than 5 min.)

Observation & Prediction – Summary of 6 Flight

Prediction	n and Obse	rvation of	Cont	rails										
Aircraft	Registration	Date	Time	Geo Alt.	Geo Alt.			Pressure		RH	RH_min	R = RH / RHmin	Prediction	Observation
				ft	m	ft	m	Pa	°C					
B737 MAX 8	TF-IHC	05.09.2023	14:54	39250	11963	37000	11278	21662	-51	27%	61.2%	0.44	Category 1	Category 1
B767-424(ER)	N76062	21.08.2023	13:07	31450	9586	30000	9144	30087	-35	35%	70.8%	0.49	Category 1	Category 1
B737-8AS	SP-RSG	22.08.2023	19:10	39450	12024	38000	11582	20646	-54	42%	59.7%	0.70	Category 2	Category 2
Cessna 560XL	OK-CAA	11.09.2023	17:03	44825	13663	43000	13106	16235	-61	24%	56.4%	0.43	Category 1	Category 2
						43000	13106	16235	-61	34%	56.4%	0.60	Category 2	Category 2
B737-8U3	OY-JPZ	24.08.2023	11:32	38375	11697	37000	11278	21662	-59	100%	57.3%	1.75	Category 3	Category 3
737-8AS	SP-RKP	03.09.2023	10:53	38800	11826	37000	11278	21662	-53	100%	60.2%	1.66	Category 3	Category 3

Wrong categorization due to Geometrical Altitude (GPS Altitude) instead of Barometric Altitud Correct categorization with Barometric Altitude.

Definition								
	R							
Category 1	R < 0.5	no contrails						
Category 2	R = 0.5 1.3	transient cor	ntrails (l	ifespan of	a few sec	onds up to	o five minu	tes)
Category 3	R > 1.3	persistent co	ntrails					

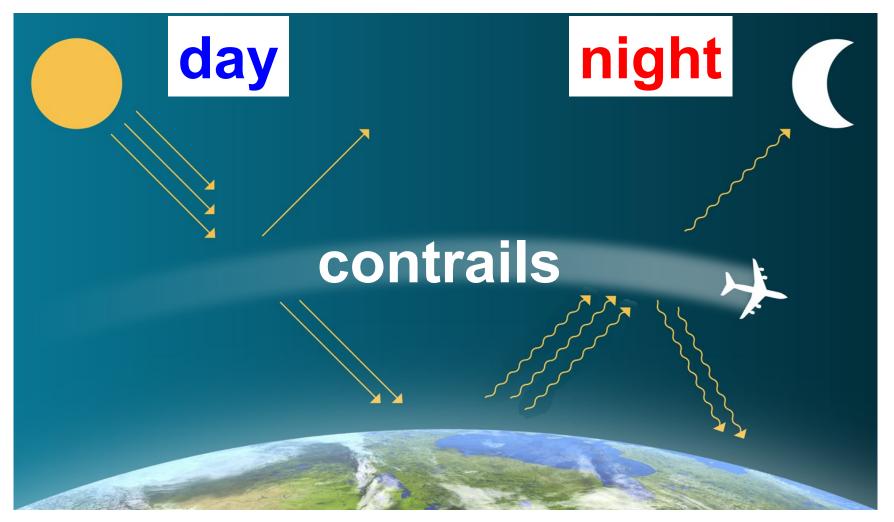
All 6 flight were classified correctly based on the Persistence Factor, R.

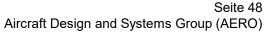
More flights in a database, but not yet fully evaluated.

Which Aircraft Types Potentially Produce Contrails?

aircraft typ	example	altitude	contrail ?
business jet	OK-CAA	very high	
passenger jet	Contraction of the second seco	high	and and a second
propeller aircraft		low	
single engine piston aircraft		very low	

Contrail Avoidance


Dieter Scholz: Contrail Management – From Basics to Application

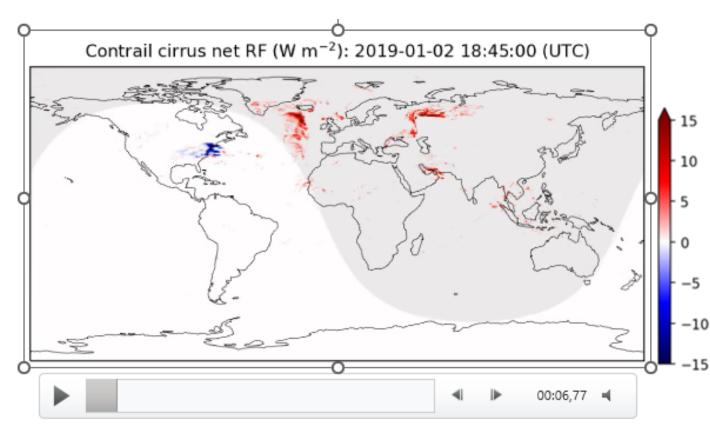


Cooling (Day) versus Warming (Night) Contrails

Dieter Scholz: Contrail Management – From Basics to Application

Systematic of Cooling and Warming Contrails

C/SKC	D/N	R/NR	=7 w/c/1	C: cloud (ovc)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	AAZZAA	R NR R NR NR		SKC: Sky clear D: day N: night R: reflective NR: non-reflective W: warming
G. : NR 7. 10 8. : No	e.g. ocean	R NR e present s reflection "swallow	W W , contrail re, (veflect s'' sun's f	C: cooling 1: indifferent OVC: overcast does not make difference ive contrail radiation, contrail precludes this eflection back to earth he to contrail is important.


Dieter Scholz: Contrail Management – From Basics to Application

Prediction of Regions with Contrails and Their Energy Forcing

One moment in time from a video showing radiative forcing, RF of contrails in W/m². During the night, all contrails are warming. During the day, some contrails are cooling.

Teoh, Stettler, Imperial College; Shapiro, Breakthrough Energies; Schumann, Voigt, DLR

https://py.contrails.org (open source)

Dieter Scholz: Contrail Management – From Basics to Application

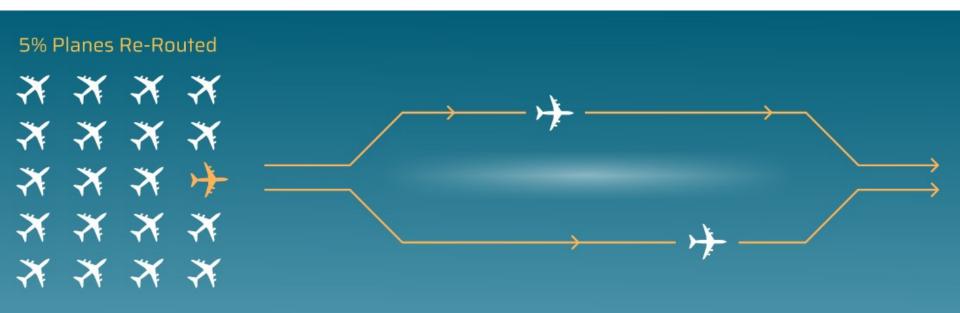
Contrail Management

Dieter Scholz: Contrail Management – From Basics to Application

https://contrails.org

Re-route 5% of flights

5%	Number of planes slightly redirected to avoid making most harmful contrails
80%	Portion of contrail climate warming avoided by re- routing 5% of planes
<\$0.5	Average cost of avoiding warming equivalent to one tonne of CO2
Days	Time it takes to get the full cooling effect of avoiding contrails


...avoid 80% of warming

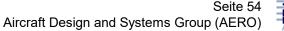
Dieter Scholz:
Contrail Management – From Basics to Application

https://contrails.org/science

The best available data indicates a kind of "super-Pareto principle" at play, where tweaking only a few flight paths would eliminate almost all of contrails-induced warming. In practice, this means that just 1 in 20 flights would need to fly over, under, or around areas of the sky predicted to produce harmful contrails.

Better yet properly implemented, these adjustments would be cheap: Our studies show a fleet-average cost of roughly \$5.00 per flight, or less than \$0.50 per ton of CO2 equivalent warming avoided.

https://map.contrails.org


See How It Works

Explore the contrail map

Our contrail map shows you how contrailinduced cirrus clouds are warming the planet. Learn whether your recent flight created harmful contrails, see how small changes to flight paths can prevent contrails, and more.

START EXPLORING » https://map.contrails.org

An Initiative of:

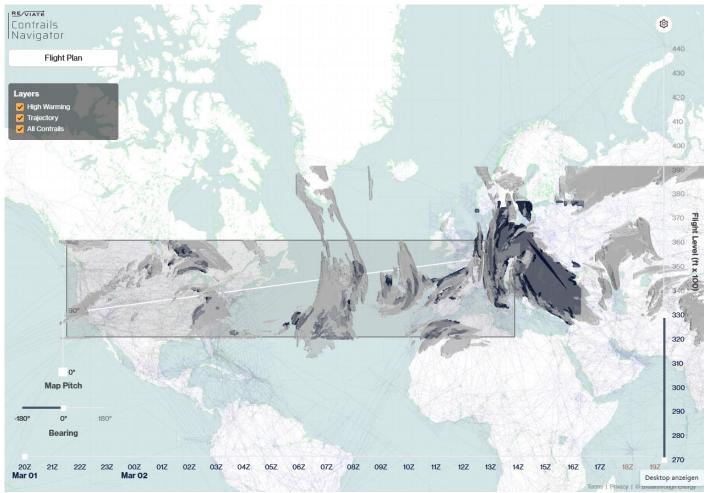
Bill Gates

FOUNDER, BREAKTHROUGH ENERGY

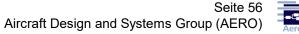
🔅 Breakthrough Energy

https://contrails.org

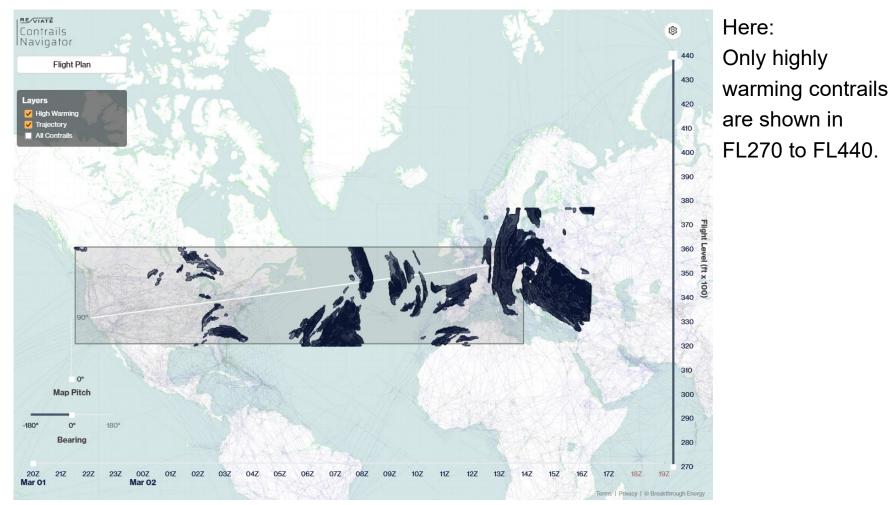
https://www.breakthroughenergy.org


Our Mission

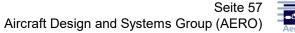
Our mission is to accelerate the transition of contrail research into actionable climate solutions.

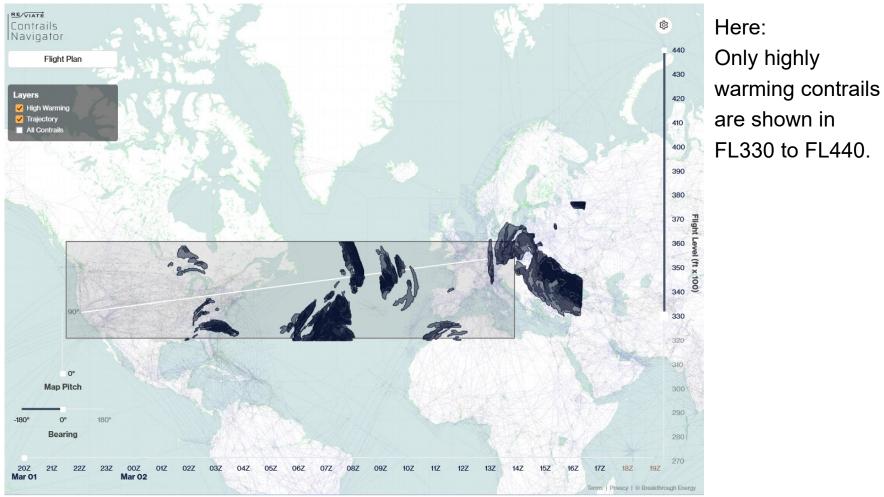


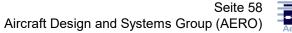
Here:

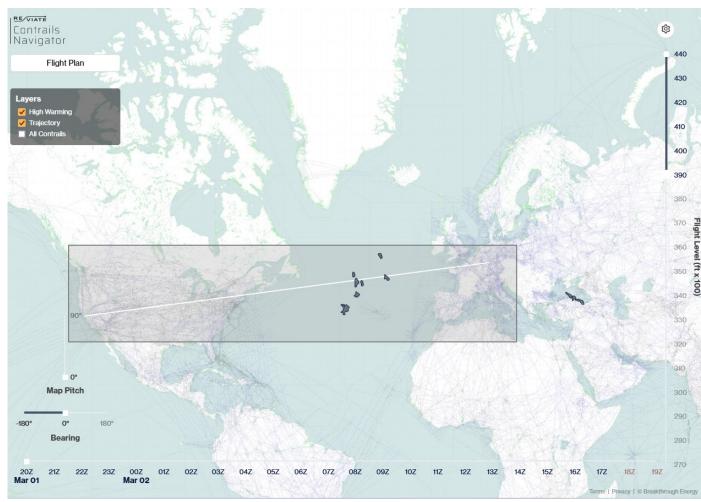

All contrails are shown in FL270 to FL330.

Free on request.


Dieter Scholz: Contrail Management – From Basics to Application




Dieter Scholz: Contrail Management – From Basics to Application



Dieter Scholz: Contrail Management – From Basics to Application

Here: Only highly warming contrails are shown in FL390 to FL440.

A business jet using these high flight levels would not need to be rerouted for contrail avoidance.

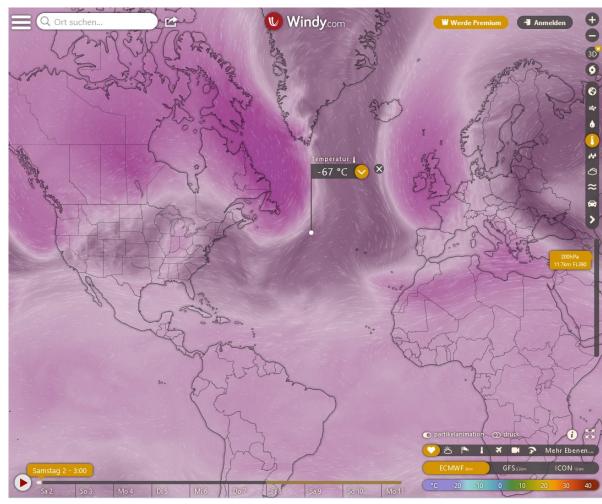
Dieter Scholz: Contrail Management – From Basics to Application

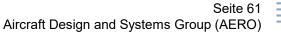


Flight Planning with https://www.windy.com

Windy.com Q Ort suchen. Werde Pre 0 3D 6 Feuchtigkeit 🔥 100 % Mehr Fhene

Relative humidity. Data from ECMWF and 7 other weather models. Forecast 5 days ahead. Vertical resolution is rather course: FL 100, 140, 180, 240, 300, 340, 390, and 450.

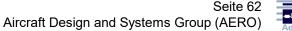

Dieter Scholz: Contrail Management – From Basics to Application



Flight Planning with https://www.windy.com

Temperature. Data from ECMWF and 5 other weather models. Forecast 5 days ahead. Vertical resolution is rather course: FL 100, 140, 180, 240, 300, 340, 390, and 450.

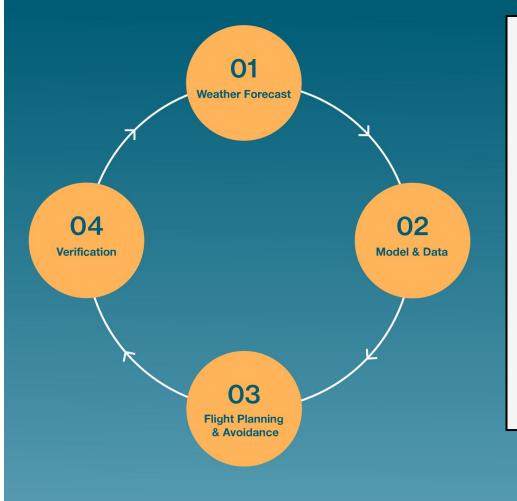
Dieter Scholz: Contrail Management – From Basics to Application



Flight Planning with https://www.windy.com

× õ

Clouds. Data from ECMWF and 7 other weather models. Forecast 5 days ahead. No vertical information. Cloud cover from brown (0%), via grey to white (100%). Precipitation (dots) from blue to purple according to scale.


Dieter Scholz: Contrail Management – From Basics to Application

https://contrails.org

Forecast Input

Weather forecasts, satellite images, flight locations, and other data are fed into contrail forecast models

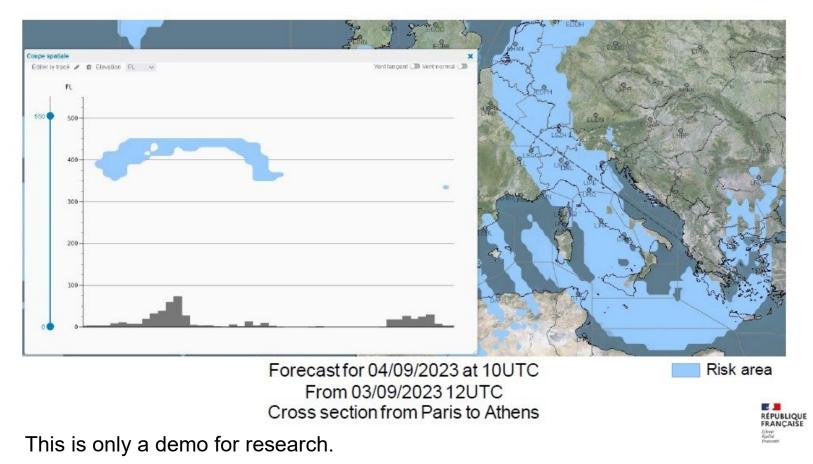
• Modeling

Models determine where harmful contrails are likely to occur and compare these predictions with observations

• Flight Planning

Flight planners calculate the fastest route with the lowest fuel consumption accounting for contrail impact in their flight plan

• Verification


Ground-, air-, and satellite observations verify contrail avoidance and feed back into forecasting models to improve accuracy

Dieter Scholz: Contrail Management – From Basics to Application

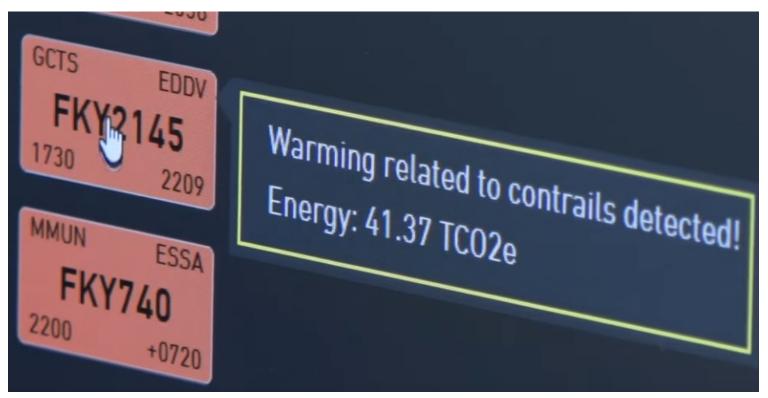
Meteo France: Cross Section along Flight with ISSR (Blue) WIMCOT - Demonstration

https://www.eurocontrol.int/sites/default/files/2023-11/2023-11-07-contrails-conference-session-004-curat-pechaut-prediction-contrail-formation-observation-process.pdf

Dieter Scholz: Contrail Management – From Basics to Application German Aerospace Congress 30.09 - 02.10.2024

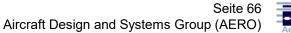
METEO

https://www.flightkeys.com


0 - UTC: 12 Mar 14:27 + 0 -3h ●	© ■ +21h DEPARTURE DESTINATION Q		Release 3 I VALID ACOST TO ? D 0
Aircraft type	•		
B38M 1/8 CCTS EDDF TUI2143 1338 1743		Flightplan Flightdata Suitability Flightlog Filing History Briefing Development SysLog	NON] NON]
32/70 1015 1518 1130 1220 1135 EDDL GCFV GCLP EDDV EDDV	UI2162 00075 COLP ECOP UI2144 1000 1132 1011 1131 1131 1014 1200 1032 00075 COLP ECOP UI2144 1225 1324 1225 1326 1326 1225 1308 1324 1225 1326 1225 1326 1225 1308 1326 1225 1225 1225 1225 1225 1225 1225 12	EDDV RW09R VALEVIC CONT3% 365 00.09 PLD 16388 Destination 1 HAJ HAMMOVER ALTN 1308 00.29 ZEM 59538 61685 GCLP 1 TS TRANSPER SUR RW07 KONBAGE FRES 100 00000 H TOM 74483 78999 S GCCFV 1 12 2022 TUI6BM ADD 00000 H TOM 74483 76999 S GCRR 1 TAX 200 0010 H TOM 74863 76999 S GCRR 1 CL 5 hLbs/h C -337USD/T EXTRA 0 00000 C DATUO DATUO [274) CAPTAIN FUTURE FRAPP 15145 06.23 MEL/ CDL/ S 1/1 Fuel Enroute Short Haul VARE VARE VARE VARE LPPS 1/1	D FUEL TIME 1 1308 00.29 72 1461 00.33 9 1571 00.35 13 2326 00.53 4 of 5 5
C700 0916 New enroute weather ACK ALERTI Apply & Force re-calc Intermediate (IA) airpt Unsuitable Airports: E Recale E If FLIGHT LOCKED I FLIGHT RELEASED IFLIGHT RELEASED I FLIGHT FILED STATU Destination airport ED check suitability Repo ACK ALERTI	(do nothing) culation of Flightplan ort unsuitable EDDS TOPS/IA IS ACK DDS unsuitable ort and EDDS weather	PEF L12 0 - 5921 CPSeV12 4' 0 - 5921 DB 2022-03-12 DB 2022-03-12 L124/1202-03-12 400 DPF / L126/1202-03-12 400 DPF / L126/1202-03-12 400	250 ADSB RMK(3)

FlightKeys flight planning system "5D".

Dieter Scholz: Contrail Management – From Basics to Application



FlightKeys flight planning system "5D" with new features for contrail avoidance.

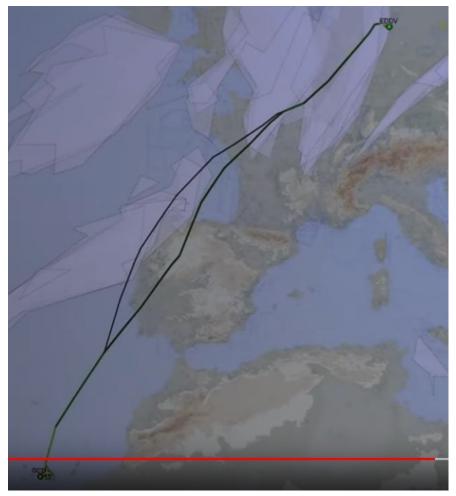
https://youtu.be/HYJawLmiLS8

Dieter Scholz: Contrail Management – From Basics to Application

🔾 👘 🛅 🖾 50 Visual / FKY-DEV x 🖾 Optimizer View x 🖾 Optimizer View x	Coppensan View x 🖻 3D Visual / TU-SAT (DUB) x X Anisate - Contrait avoidance : x 🖬 Contraits Map x + - 🗆 ×
C 🖞 https://dublin-legin.geodispatch.com/Sd-visual-angular/	A' A' C' C' Q' @ Q' 🔇
5D	Refease 3.0 ∯ CPT Z ● CPT Z ● CONTRAL Z + . FP# CALCTIME I.0 ITMPTME I MMPTUEL 16/UELTO_ I CPTUELTO_
1885 flights match the filter. Only the first 1000 flights are displayed!	★ OPT 0 (TOM) 0530 6 03.58 9736 0 12493 -00.99 2142 VALID 0
Contrails warming POP OUT	Ø OPT 1 (TOM) 0 530 6 03.58 9736 0 12493 -00.09 2142 VALID 0 Ø CON 2 (TOM) 0530 6 03.58 9796 60 12554 -00.09 2142 VALID 61
Warman INCLS EGBD HIGHO HELK EEER LEND EEER GHAIN EEER OVER	Flightplan Flightplata Suitability Route Suitability Flightlog Filing History Briefing Development SysLog
→ TOM637 NOS235 JAF1011 JAF2533 JAF2031 -0036 -0812 0500 1017 0510 0601 0514 0628 0514 1107	Optimize i ★ ♀ 4' >:= i ···· ···· USER ×: CON. ×: CON. ×: B737 TOM B738 I
EBER OCTS EBLO LEAL ESSA OCLP EDOV OCTS EDOL OVBA	Inflight Fuels (104) 🖬 👳 Masses 🔍 Alternates 🗘 🔍
UITIN 0515 055 055 055 055 055 055 055 055 05	► EGCC RW23R - KLIXEM1R TRIP 9796 03.58 DOM 42391 C0 FUEL TIME CONT3% 294 00.07 H PLD 16342 Destination 1 / 1
U JAF2511 TFL3715 JAF111 TOM8036 TOM2354	MAN HANSESTER ALTN 949 00:21 ZEE9 59333 62731 S GCRR P 87 949 00:21
WELATION 0652 1011 0656 1317 0201 1850 0707 0916 0733 1156 E500 CCLP E008 HESH EGNT HESH E008 0VEA EHAM MOPC	COMPANY 0 0000 H LOM 61762 66360 S GCLP P 148 1440 00:34
BLX233 TOM502 TOM870 TOM734 TFL703	PUE FUERTONTINAL ADD 0 0 0000 B 87381(kg) E 6C00 190 1655 00:37 0 7 FEB TOM 3 WK TAX 264 00:17 6CTS 221 1617 00:43
CONTRACTOR OF STATE	REQ 12429 05:15 GTUKO 4 of 5
TOM2384 CONTENT IS AND ON THE SANDORNE	Ct: 6htbs/h CT: 60USD/T > EXTRA V 0 00:00 C EXTRA V 0 00:00 C EXTRA V 12429 05:15 MEL/CDI/SEL/ 0/0 Fuel Enroute
Energy: 209.40 TCO2e	(3/4) FEW, FAQ: TOM -> Elipht Progress
Beer Tow ACK ALERT (do nothing)	Short Haul AWY POINT ETO FL FOB PETO PFOB POS ATO AFL AFOB EO SEOB SRC
TOM3WK	LC2 OUT ON IN ACT78R1 1105 370 4344 1110 344744A0100530W 1110 370 ADS8 TIME 08:10 08:25 NEXT 0THER 1119 370 3815 1124
TOATHA	C tan
	5 0000 04:25 1225 EXEMP 04:15 12:15 LAND 6CTV 1215 1 2429 1220
The returned route violates mandatory route(s). See SysLog for details: UIDs can be looked up in SD NAV ACK ALERT (for nothing)	Image: Contract of Laboratory Perification NOTION NOTION NOTION NOTION NOTION Image: Contract of Laboratory Image: Contract of Laboratory Notion Notion Notion Notion Image: Contract of Laboratory Image: Contract of Laboratory Notion Notion Notion Notion Image: Contract of Laboratory Image: Contract of Laboratory Notion Notion Notion Notion
	More 1010 310 0012 CONTRAV UI 1010 J COLL 10
	200 a model and a mode
	CONTRAV UN PRO 330 0007
	OXTRAV UI 1010 JS0 0010
	Land Land
	Love have
	And S. Martin Contraction of the
	FLUTO ALL CONTRACTOR AND ALL CON
•	19:10 State
are have	
(e sprat	Linned and Linned and States
RZ no-risual 50 (master-v1.30.33)	
Raimund Zopp instead solar+1.30.33)	

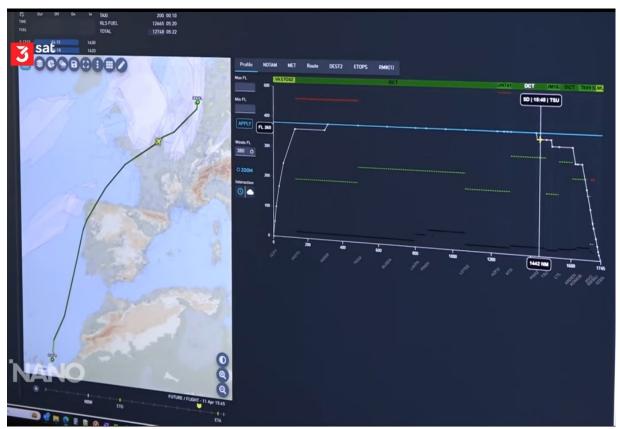
FlightKeys flight planning system "5D" with contrail avoidance.

Dieter Scholz: Contrail Management – From Basics to Application


FlightKeys

Release 3	10 😭 OPT 🗸	1 OPT 🖍	2 CONTRAIL	Z +		
	FP#	CALCTIME	a	TRIPTIME	TRIPFUEL	I AFUEL TO
RLS	3.0	0530	6	03:58	9736	•
🖈 ОРТ	0 (TOM)	0530	6	03:58	9736	•
2 OPT	1 (TOM)	0530	6	03:58	9736	•
2 CON_	2 (TOM)	0530	6	03:58	9796	60
Inflight	stor FV					

Compared to the optimum flight plan, the contrail avoidance flight plan requires 60 kg more fuel (plus 0.6%). On average, contrail avoidance requires 0.11% more fuel (calculated by FlightKeys).


FlightKeys flight planning system "5D" with new features for contrail avoidance. ISSRs are indicated in white. Lateral and vertical avoidance of ISSRs is possible.

https://youtu.be/HYJawLmiLS8

Dieter Scholz: Contrail Management – From Basics to Application

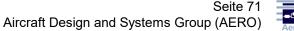
FlightKeys flight planning system "5D" with new features for contrail avoidance.

Lateral avoidance on the map (left).

The vertical flight profile (right).

https://youtu.be/HYJawLmiLS8

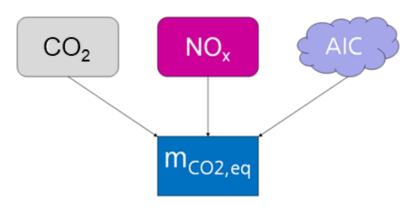
Dieter Scholz: Contrail Management – From Basics to Application



Use of the Electronic Flight Bag (EFB) on a tablet in an Airbus A320 cockpit.

The EFB helps the pilot to make inflight adjustments to the flight (tactical contrail avoidance) if Air Traffic Control (ATC) allows.

https://youtu.be/HYJawLmiLS8


Dieter Scholz: Contrail Management – From Basics to Application

Equivalent CO2 Mass: The Equation for Aircraft Design & Ecolabel for Aircraft with Improved AIC Calculation

German Aerospace Congress 30.09 - 02.10.2024

Seite 72 Aircraft Design and Systems Group (AERO)

Calculating Altitude-Dependent Equivalent CO2 Mass

$$\begin{split} m_{CO2,eq} &= \frac{EI_{CO_2} \cdot f_{NM}}{n_{seat,typical}} \cdot CF_{midpoint,CO_2} + \frac{EI_{NO_X} \cdot f_{NM}}{n_{seat,typical}} \cdot CF_{midpoint,NO_X} + \frac{R_{NM} \cdot f_{NM}}{R_{NM} \cdot f_{NM,ref}}, n_{seat,typical}} \cdot CF_{midpoint,AIC} \\ \hline \\ \textbf{Sustained Global Temperature Potential, SGTP (similar to GWP):} \\ CF_{midpoint,CO_2} &= 1 \\ CF_{midpoint,NO_X}(h) &= \frac{SGTP_{O_3,100}}{SGTP_{CO_2,100}} \cdot s_{O_3,S}(h) + \frac{SGTP_{O_{3L},100}}{SGTP_{CO_2,100}} \cdot s_{O_{3,L}}(h) + \frac{SGTP_{CH_{4,100}}}{SGTP_{CO_{2,100}}} \cdot s_{CH_{4}}(h) \\ CF_{midpoint,AIC}(h) &= \frac{SGTP_{contrails,100}}{SGTP_{CO_{2,100}}} \cdot s_{contrails}(h) + \frac{SGTP_{cirrus,100}}{SGTP_{CO_{2,100}}} \cdot s_{cirrus}(h) \\ \hline \\ \frac{Species}{CO_2} \frac{Emission Index, El (kg/kg fuel)}{SO_2} \\ NOx & 1.45 \cdot 10^2 (typical value) \\ s_{O_3,L}(h) &= s_{CH_{4}}(h) \\ s_{contrails}(h) &= s_{cirrus}(h) \\ SCHWARTZ 2009, JOHANNING 2014 \\ \hline \end{array}$$

Dieter Scholz:

Contrail Management – From Basics to Application

German Aerospace Congress 30.09 - 02.10.2024

Seite 73

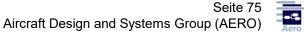
Contrail Radiative Forcing (CRF) as a Function of Fuel Flow (ff)

JEßBERGER, Philipp, et al. Aircraft type influence on contrail properties. Atmospheric Chemistry and Physics, 2013, 13. Jg., Nr. 23, S. 11965-11984. Available from: https://doi.org/10.5194/acp-13-11965-2013

Dieter Scholz: Contrail Management – From Basics to Application

Contrail Radiative Forcing (CRF) as a Function of Fuel Flow (ff)

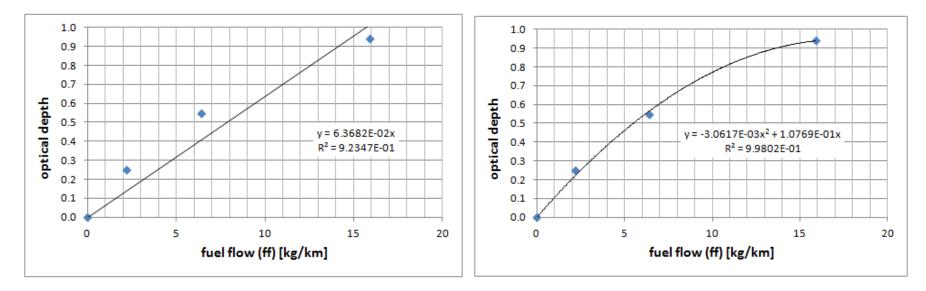
Aircraft	A319-111	A340-311	A380-841
Encounter time	09:14-09:27	08:45-08:48	12:14-12:29
Contrail altitude (km)	10.5-10.7	10.5 - 10.7	10.3-10.7
Latitude	52.91° N	53.35° N	52.37° N
Longitude	8.06° E	8.94° E	9.66° E
Pressure p (hPa)	241	242	241
Temperature T (K)	217	217	218
$T_{\rm C}$ (K)	223.5	223.6	223.6
Brunt-Väisälä frequency	0.0170	0.0126	0.0132
$NO_v (nmol mol^{-1})$	4.3	4.4	6.7
$EI_{NO_{x}}$ (g kg ⁻¹)	8.7	11.6	19.7
RHI (%)	91	94	92
Contrail age (s)	105-118	80-90	102-115
Fuel flow (Mg engine ^{-1} h ^{-1})	0.9	1.3	3.6
Fuel flow rate $(kg km^{-1})$	2.2	6.4	15.9
Aircraft engine	CFM56-5B6/P	CFM56-5C2	Trent 970-84
Mach	0.76	0.737	0.85
Fuel sulphur content (mg kg $^{-1}$)	1155	940	_
Aircraft weight (Mg)	47	150	508
Wingspan (m)	34.09	60.30	79.81


τ	ff	τ / ff [km/kg]	aircraft
0.25 /	2.2	= 0.114	A319
0.55 /	6.4	= 0.0859	A340
0.94 / 1	15.9	= 0.059	A380

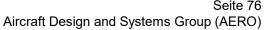
JEßBERGER, Philipp, et al. Aircraft type influence on contrail properties. Atmospheric Chemistry and Physics, 2013, 13. Jg., Nr. 23, S. 11965-11984. Available from: https://doi.org/10.5194/acp-13-11965-2013

Aircraft	$n_{\rm ice} \ ({\rm cm}^{-3})$	D _{eff} (μm)	Projected surface area $A \ (\mu m^2 cm^{-3})$	$IWC (mg m^{-3})$	Extinction (km ⁻¹)	Vertical extension (m)	Optical depth τ
A319	162 ± 18	$5.2(\pm 1.5)$	$0.93(\pm 0.14) \times 10^3$	$4.1(\pm 1.0)$	2.1(±0.3)	120	0.25
A340	164 ± 0.11	$5.8(\pm 1.7)$	$1.12(\pm 0.17) \times 10^3$	$4.0(\pm 1.0)$	$2.5(\pm 0.4)$	220	0.55
A380	235 ± 10	$5.9(\pm 1.7)$	$1.45(\pm 0.22) \times 10^3$	$5.2(\pm 1.3)$	$3.2(\pm 0.5)$	290	0.94

Dieter Scholz:


Contrail Management - From Basics to Application

Contrail Radiative Forcing (CRF) as a Function of Fuel Flow (ff)



The quadratic regression (right) fits amazingly well. However, from the small number of aircraft tested, no such general law may be derived.

The climate model by SCHWARTZ 2009, which calculates AIC effects only based on contrail length (flight distance) was extended to include fuel burn (in kg/km) into the equation. Fuel burn enters optical depth linearly!

SCHWARTZ, Emily, KROO, Ilan M., 2009. *Aircraft Design: Trading Cost and Climate Impact*. 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition, 05.01.-08.01.2009, Orlando, Florida, AIAA 2009, No.1261. Available from: https://doi.org/10.2514/6.2009-1261

JOHANNING, Andreas, SCHOLZ, Dieter, 2014. *Adapting Life Cycle Impact Assessment Methods for Application in Aircraft Design*. German Aerospace Congress 2014 (DLRK 2014), Augsburg, 16.-18.09.2014. Available from: https://nbn-resolving.org/urn:nbn:de:101:1-201507202456. Download: http://Airport2030.ProfScholz.de

Calculating Altitude-Dependent Equivalent CO2 Mass

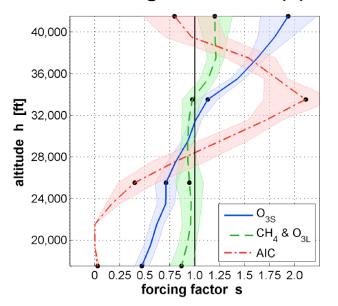
E.g.:
$$CF_{midpoint,AIC}$$
 $(h) = \frac{SGTP_{contrails,100}}{SGTP_{CO_2,100}} \cdot s_{contrails}(h) + \frac{SGTP_{cirrus,100}}{SGTP_{CO_2,100}} \cdot s_{cirrus}(h)$

Forcing Factor s = f(h)44,000 40,000 36,000 Ξ 32,000 ء altitude 28,000 24,000 0₃₅ 20,000 CH & O AIC 16,000 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0 0 forcing factor s SCHWARTZ 2009 and 2011

 $s_{contrails}(h) = s_{cirrus}(h) = s_{AIC}(h)$

- The curves go along with the ICAO Standard Atmosphere (ISA) applicable for average lattitudes.
 With a first approximation, the curves could be adapted to other lattitudes by stretching and shrinking them proportionally to the altitude of the tropopause.
- The curves from SVENSSON 2004 (Fig. 1) show similar shapes. However, the importance of AIC is not yet as distinct.

SVENSSON, Fredrik, HASSELROT, Anders, MOLDANOVA, Jana, 2004. Reduced Environmental Impact by Lowered Cruise Altitude for Liquid Hydrogen-Fuelled Aircraft. In: *Aerospace Science and Technology*, Vol. 8 (2004), Nr. 4, pp. 307–320. Available from: https://doi.org/10.1016/j.ast.2004.02.004


Dieter Scholz: Contrail Management – From Basics to Application

Calculating Altitude-Dependent Equivalent CO2 Mass

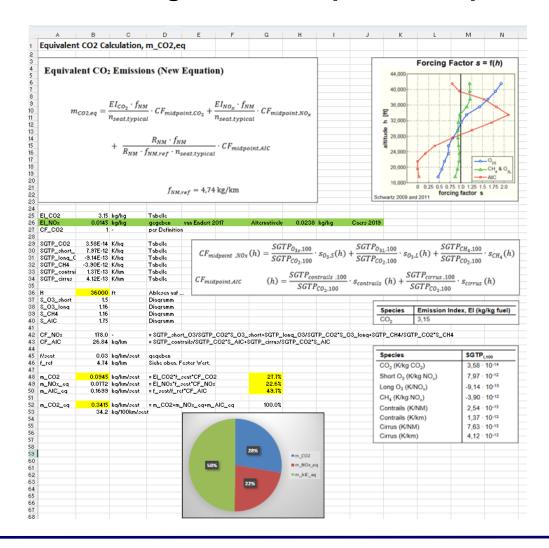
Forcing Factor s = f(h)

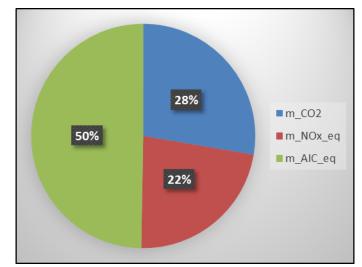
Forcing factors (lines) with **66% likelihood ranges** (shaded areas). Altitudes with forcing factors based on radiative forcing data with independent probability distributions. (SCHWARTZ 2011)

Based on KÖHLER 2008 and RÄDEL 2008.

SCHWARTZ DALLARA, Emily, 2011. *Aircraft Design for Reduced Climate Impact*. Dissertation. Stanford University. Available from: http://purl.stanford.edu/yf499mg3300

KÖHLER, Marcus O., RÄDEL, Gaby, DESSENS, Olivier, SHINE, Keith P., ROGERS, Helen L., WILD, Oliver, PYLE, John A., 2008. Impact of Perturbations to Nitrogen Oxide Emissions From Global Aviation. In: Journal of Geophysical Research, 113. Available from: https://doi.org/10.1029/2007JD009140


RÄDEL, Gaby, SHINE, Keith P., 2008. Radiative Forcing by Persistent Contrails and Its Dependence on Cruise Altitudes. In: Journal of Geophysical Research, 113. Available from: https://doi.org/10.1029/2007JD009117

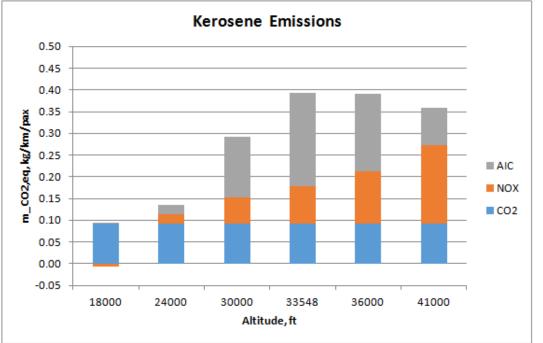


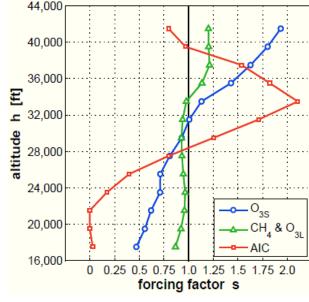
Calculating Altitude-Dependent Equivalent CO2 Mass with Excel

EI_NOx = 0.0145 kg/kg

h = 36000 ft

Standard split of CO2,eq:


1/6 = 1/6 = 16.7% from NOx 2/6 = 1/3 = 33.3% from CO2 3/6 = 1/2 = 50.0% from AIC

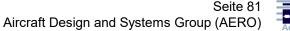


Calculating Altitude-Dependent Equivalent CO2 Mass

SCHWARTZ 2009 and 2011

- https://doi.org/10.7910/DVN/DLJUUK
- At 41000 ft, AIC is low. Equivalent CO2 is now dominated by NOx.
- Equivalent CO2 mass peaks at "peak AIC" (33548 ft) due to contrails and contrail cirrus.
- At lower altitudes (24000 ft) very little equivalent CO2 is produced. NOx effects and AIC are low. CO2 dominates.
- At very low altitudes (**18000 ft**) the forcing factor for CH4 and O3L is getting so large that it dominates the forcing factor of the warming O3S. NOx is now **slightly cooling**.

Seite 80



Summary

Contrail Formation is Physics

Contrail Management – Now !

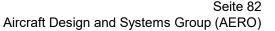
Dieter Scholz: Contrail Management – From Basics to Application

Contrail Management – From Basics to Application

Contact

info@ProfScholz.de

http://www.ProfScholz.de http://AERO.ProfScholz.de


How to quote this document:

SCHOLZ, Dieter, 2024. *Contrail Management – From Basics to Application.* German Aerospace Congress (Hamburg, 30.09. - 02.10.2024). – Available from: <u>https://doi.org/10.48441/4427.2104</u>.

© Copyright by Author, CC BY-NC-SA, https://creativecommons.org/licenses/by-nc-sa/4.0

Dieter Scholz: Contrail Management – From Basics to Application

