Contaminated Aircraft Cabin Air –
An Aeronautical Engineering Perspective

Dieter Scholz
Hamburg University of Applied Sciences

Meeting 2019
Association des Victimes du Syndrome Aérotoxique (AVSA)
Paris CDG Airport, France, 27.05.2019
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Contents

• Introduction
• Cabin Comfort and Cabin Air Quality – Health and Flight Safety Implications
• Jet Engine Oil
• Air Conditioning Technology
• Jet Engine Technology
• How much Oil Gets into the Cabin?
• Maintenance – The Case of Engine/APU Oil Contamination
• Engineering Design Principles from SAE
• Solution: Sensors and Filters
• Solution: ECS Principles
• Summary
• Contact
Introduction
Introduction

Definition: Aircraft Cabin Air
Aircraft cabin air is the air in the cabin of an aircraft. The air in the cockpit is included in this definition. In pressurized cabins it is the air inside the pressure seals. Pressure control is such that cabin pressure is reduced down to a pressure equivalent to 8000 ft (referring to the ICAO Standard Atmosphere) as the aircraft climbs. In unpressurized aircraft cabins the air is at ambient pressure. Temperature control is done by heating or cooling as required. Venting ensures frequent exchange of cabin air with fresh air from outside. In addition, cabin air can be recirculated and filtered. When flying at high altitudes, cabin air is at similar low relative humidity as the air outside.

Definition: Quality
Degree to which a set of inherent characteristics fulfills requirements.

(ISO 9001)
Introduction

Definition: Contamination

The process of making a material unclean or unsuited for its intended purpose, usually by the addition or attachment of undesirable foreign substances.

Adapted from (Wiktionary 2018)

The presence of a minor and unwanted constituent (contaminant). Related to health: A harmful intrusion of toxins or pathogens e.g. in food, water, or air.

Adapted from (Wikipedia 2018a)

Definition: Fume Event

In a fume event, the cabin and/or cockpit of an aircraft is filled with fume. The fume originates from the bleed air and enters the cabin via the air conditioning system. Air contamination is due to fluids such as engine oil, hydraulic fluid or anti-icing fluid. A Fume Event includes a Smell Event. Note: Other reasons for fume in the cabin are possible. The term "fume event", however, is generally used as defined here.

Adapted from (Wikipedia 2018b)
Introduction

Fume Event on US Airways Flight 432 Phoenix to Maui in 2010
Video on: https://youtu.be/AZqeA32Em2s

Note:
- Smell events (without fumes) are much more frequent than fume events.
- Health effects have been reported from smell events alone (where patients never encountered a fume event).
Definition: Smell Event
A fume event without visible fume or smoke, but with a distinct smell usually described as "dirty socks" from the butyric acid originating from a decomposition of the esters that are the base stock of the synthetic jet engine oil. Note: Other reasons for smell in the cabin are possible. The term "smell event", however, is generally used as defined here.

Definition (ECA): Smoke & Fume / Smell Event (cabin air contamination)
An incident may cause only fume, only smell or both. The European Cockpit Association (ECA) explains: "In the context of the ICAO circular [ICAO Circular 344 'Guidelines on Education Training and Reporting Practices related to Fume Events'], fumes and odours are deemed to be synonymous, and the term 'fume(s)' includes both fumes and odours." (ECA 2017)

Definition (IATA): Cabin Air Quality Event (CAQE)
"Cabin air quality events (CAQEs) [are] particularly ... the so-called fume events" (smoke, fumes / odours). (IATA 2017)
Proposed new Definition:

Definition: Cabin Air Contamination Event (CACE)

In a Cabin Air Contamination Event (CACE) the air in the cabin and/or cockpit of an aircraft is contaminated. Sensation of the contamination can be from vison (fume/smoke), olfaction (smell/odor), a combination of typical symptoms experienced by several passengers and/or or crew or by related measurements of CO, CO2, ozon or other "harmful or hazardous concentrations of gases or vapours" (CS-25.831).

<table>
<thead>
<tr>
<th>Headache</th>
<th>Drowsiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dizziness</td>
<td>Impaired vision</td>
</tr>
<tr>
<td>Nausea</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Tingling (e.g. hands, feet, etc.)</td>
<td>Trembling</td>
</tr>
<tr>
<td>Numbness</td>
<td>Irritated eyes/throat/nose</td>
</tr>
<tr>
<td>Difficulty speaking and finding words</td>
<td>Memory problems</td>
</tr>
<tr>
<td>Muscle incoordination</td>
<td></td>
</tr>
<tr>
<td>Breathing difficulties</td>
<td>Coughing</td>
</tr>
</tbody>
</table>

Typical symptoms following a CACE (ECA 2017)

Intention with the new definition: Detach the definition from merely human sensation. Allow also drastic health degradation to define the event. Objective measurements would certainly be best, but are usually not available.
Introduction

Definition: Condensation Event
In a condensation event, warm and humid air in the cabin mixes with cold air from the air conditioning system. This usually happens during departure, when the cabin is still filled with air from outside and starts to mix with cold air leaving via the cabin outlets. *Note: Do not confuse this with a fume event!*
Introduction

How Do We Know about Oil in the Cabin?

Oil has left traces on its way from the engine to the cabin interior:
1. Oil traces in bleed duct
2. Oil traces in air conditioning ducts
3. Oil traces in recirculation filters
4. Oil traces on cabin surfaces (wall panels, seats, ...)

Evidence collected in: Scholz 2017
Cabin Comfort and Cabin Air Quality – Health and Flight Safety Implications
VOC: Volatile Organic Compounds are (organic chemicals – i.e. including carbon) contained in many products and can be released from these products into the surrounding air. Regulations limit VOCs.

SVOC: Semi-Volatile Organic Compound

(Eurofins 2017)
Potential Concerns Related to Cabin Air Quality

<table>
<thead>
<tr>
<th>Category</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cabin Pressure</td>
<td>Can effect people with cardio-respiratory diseases from lack of oxygen</td>
</tr>
<tr>
<td>Relative Humidity</td>
<td>Temporary drying of skin, eyes, and mucous membranes</td>
</tr>
<tr>
<td>Carbon Monoxide</td>
<td>High concentrations during air-quality incidents. Frequency is believed to be low. CS 25.831: Concentration must be lower than 50 ppm.</td>
</tr>
<tr>
<td>Carbon Dioxide</td>
<td>Concentrations are generally below FAA regulatory limits. Associated with increased perceptions of poor air quality. CS 25.831: Concentration must be lower than 0.5%.</td>
</tr>
<tr>
<td>Ozone</td>
<td>Elevated concentrations on aircraft without ozone converters. Airway irritation and reduced lung function. CS 25.832: Concentration < 0.25 ppm resp. 0.1 ppm.</td>
</tr>
<tr>
<td>Pesticides</td>
<td>From aircraft “disinsection” with pesticides.</td>
</tr>
<tr>
<td>Engine Oil</td>
<td>Fumes from hot engine oil may enter the cabin via the bleed air system.</td>
</tr>
<tr>
<td>Hydraulic Fluids</td>
<td>Frequency of incidents is expected to be relatively low. Mild to severe health effects.</td>
</tr>
<tr>
<td>Deicing Fluid</td>
<td>Hazardous substance. Skin sensitizing and irritant.</td>
</tr>
<tr>
<td>Airborne Allergens</td>
<td>Exposure frequency is not known. Irritated eye and nose; sinusitis; acute increases of asthma; possible anaphylaxis.</td>
</tr>
<tr>
<td>Nuisance Odors</td>
<td>Can be present on any flight.</td>
</tr>
</tbody>
</table>

Adapted from (NRC 2002)
Possible Sources Affecting Cabin Air Quality

- Engine or APU Ingestion of
 - De-icing fluid into inlet (See precautions in FCOM 2.02.13 (A300-600/A310) or PRO-SUP-91-30 (A320 and A330/A340 family) or PROC/SUPP PROC/COLDWEATHERPROC (A380)
 - Exhaust fumes from other aircraft, GPU etc
 - Pollution (e.g., smoke from fires)
 - Hydraulic fluid leaks
 - Birds
 - Compressor wash procedure residues
 - Pollens
- Galley Equipment, ovens, coffee makers etc (Rcf MPD tasks for galley and toilet air extraction systems)
- Damaged electrical wiring or components
- Inappropriate or excessive use of CO₂ (dry ice) by caterers or excessive quantities being transported (see EngOps-16326)
- Toilet fluid spillage, leakage and also unapproved mixing of different disinfectant fluids within the toilet.
- Leakage of the rain repellent system or rain repellent contamination within the cabin or flightdeck.
- Spillage’s within cargo compartments
- Items stowed in overhead bins
- APU oil leaks into the bleed system
- Engine oil leaks into the bleed system
- Contamination of the ECS

(Airbus 2017)
Health Effects: Occupational Health & Flight Safety

may be experienced soon after exposure or, possibly, years later:

• **Long-term health effects:**
 - to passengers
 - to crew => **occupational health** (OH)
 usually related to
 Time-Weighted Average (TWA)
 Permissible Exposure Limits (PEL) => CS 25.831

• **Immediate health effects:**
 - to passengers
 - to cabin crew
 - to cockpit crew => **flight safety implications** can lead to:
 injury or **death** of
 • passenger
 • crew => CS 25.1309

(Eurofins 2017, EASA CS-25)
Cabin Comfort and Cabin Air Quality – Health and Flight Safety Implications

Occupational Health – Long Term Health Effects

EASA CS-25: CS 25.831 Ventilation
(a) Each passenger and crew compartment must be ventilated ... to enable crewmembers to perform their duties without undue discomfort or fatigue.
(b) Crew and passenger compartment air must be free from harmful or hazardous concentrations of gases or vapours. In meeting this requirement, the following apply: (1) Carbon monoxide concentrations in excess of one part in 20000 parts of air [50 ppm] are considered hazardous. For test purposes, any acceptable carbon monoxide detection method may be used. (2) Carbon dioxide concentration ...

"**EASA** is of the opinion ... only applicable for ... CO and CO2"

Remark: EASA's interpretation of certification rules: The **cabin is allowed to be contaminated with other substances!**

"**The BFU** is of the opinion that 'harmful concentration' should be interpreted ... to mean that health impairments (including long-term) through contaminated cabin air should be eliminated."

"**The BFU** is of the opinion that a product [aircraft] which has received a type certificate by EASA should be designed in a way that neither crew nor passengers are harmed or become chronically ill."

(BFU 2014)
Health and Flight Safety Implications – Certification Requirements

Interpretation of CS-25.1309 with respect to Bleed Air from Jet Engines

CS-25:
The aeroplane systems and associated components, must be designed so that
(1) Any catastrophic failure condition
(2) (ii) does not result from a single failure

Attention: A single seal failure has the potential to cause a catastrophic failure due to pilot incapacitation. This is in contradiction to CS-25.

CS-25:
The CS-25 airworthiness standards are based on ... the fail-safe design concept ...

The failure probability of a system is calculated based on the Mean Time Between Failure (MTBF) of its components. The components are normally functional, but may fail randomly. 100% reliability of components does not exist. This is much in contrast to the situation of bleed air taken from the engine which is systematically contaminated (to some extend) with engine oil. This is not a failure (for which a probability could be calculated), but a design error (violating existing SAE design conventions).

CS-25:
The fail-safe design concept uses the following design principles:
(i) Designed Integrity and Quality
(v) Failure Warning or Indication to provide detection.
(xi) Error-Tolerance that considers adverse effects of foreseeable errors during the aeroplane's design, test, manufacture, operation, and maintenance.

But with bleed air from jet engines:
(i) Design integrity is not given!
(v) Failure Warning in case of cabin air contamination is not provided!

Furthermore:
(xi) Known deficiencies are not allowed. The system has to be error-tolerant to yet UNKNOWN design errors that have to be envisaged because it is a known fact in life that errors do occur (and as such they are foreseeable). The system's error-tolerance is compromised, if it has to cope with already known design errors that are not rectified out of negligence relying on the systems error-tolerance.
Jet Engine Oil
Jet Engine Oil

warning:

contains TCP tricresylphosphate.
Swallowing this product can cause nervous system disorders, including paralysis.
Prolonged breathing of oil mist, or prolonged or repeated skin contact can cause nervous system effects.

(Cannon 2016)

Judging Jet Engine Oil Based on Warnings Given by Manufacturer

Material Safety Data Sheet (MSDS)

FIRST AID MEASURES, INHALATION
Remove from further exposure [in a fume event?]... Use adequate respiratory protection [not available for passengers!]. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance. If breathing has stopped, assist ventilation with a mechanical device or use mouth-to-mouth resuscitation. (Exxon 2016c)

This warning was changed in 2004 (Michaelis 2012) to:

"This product is not expected to produce adverse health effects under normal conditions of use ... Product may decompose at elevated temperatures ... and give off irritating and/or harmful ... gases/vapours/fumes. Symptoms from acute exposure to these decomposition products in confined spaces [aircraft cabin] may include headache, nausea, eye, nose, and throat irritation."

(Exxon 2016c)
Tricresyl Phosphate (TCP)

 ortho-cresyl group
 meta-cresyl group
 para-cresyl group

 ortho-cresyl group containing molecules are highlighted in **bold**, they are the _toxic_ isomers.

\[
\begin{align*}
\text{TOCP:} & \\
\end{align*}
\]

(Winder 2001)
Jet Engine Oil

Actual OCP Content of the TCP --- Isomerization

Ramsden 2013a:
OC content in the TCP:
- TCP Class 1: 30% (about 1930)
- TCP Class 2: ?
- TCP Class 3: 3% (about 1958, "modern TCP")
- TCP Class 4: 0.3 % (since 1992, "conventional TCP")
- TCP Class 5: ≈ 0.03 % (since 1997, "low-toxicity TCP")

TCP Class 6: 0 % (since 2017, "zero-OCP TCP") Remark / Introduction: Proposal for a new class definition

Ramsden 2013 / Imbert 1997:
Another possibility is that isomerization of the TCP takes place within the engine during operation.

Megson 2016:
... temperatures of 400 °C. These temperatures have the potential to alter the composition of the original oil and create other toxic compounds.

There is currently a large degree of uncertainty as to what compounds are produced and how toxic they are through inhalation in the vapour phase at high altitudes.
How much Oil Gets into the Cabin?

EASA Study 2017: AVOIL (EASA 2017b)

AVOIL – Characterisation of the toxicity of aviation turbine engine oils after pyrolysis

"a ... list of 127 compounds [VOC] was ... identified ... ". The hazard profile is given in Appendix 6:

<table>
<thead>
<tr>
<th>Compound #</th>
<th>Name</th>
<th>CAS</th>
<th>Harmonized classification</th>
<th>Self-classification*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Diethyl Phthalate</td>
<td>84-66-2</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>2</td>
<td>1-Nonene, 4,6,8-trimethyl-</td>
<td>54410-98-9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2-Ethylhexyl salicylate</td>
<td>118-60-5</td>
<td></td>
<td>Skin Irrit. 2</td>
</tr>
<tr>
<td>4</td>
<td>Acetophenone</td>
<td>98-86-2</td>
<td>Acute Tox. 4</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Benzaldehyde</td>
<td>100-52-7</td>
<td>Eye Irrit. 2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Benzene, 1,3-bis(1,1-dimethylethyl)-</td>
<td>1014-60-4</td>
<td>Acute Tox. 4</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Heptane, 4-methyl-</td>
<td>589-53-7</td>
<td>Asp. Tox. 1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Nonanal</td>
<td>124-19-6</td>
<td>Skin Irrit. 2</td>
<td>STOT SE 3</td>
</tr>
<tr>
<td>9</td>
<td>2,4-Dimethyl-1-heptene</td>
<td>19549-87-2</td>
<td>Asp. Tox. 1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Bencene</td>
<td>116-28-3</td>
<td>Eye Irrit. 2</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>Isopropyl myristate</td>
<td>110-27-0</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>125</td>
<td>Tetradecanoic acid</td>
<td>544-63-8</td>
<td></td>
<td>NC</td>
</tr>
<tr>
<td>126</td>
<td>1-Pentene, 4-methyl-</td>
<td>691-37-2</td>
<td></td>
<td>Asp. Tox. 1 OrSkin Irrit. 2 Eye Irrit. 2 STOT SE 3</td>
</tr>
<tr>
<td>127</td>
<td>2-Cyclopenten-1-one</td>
<td>930-30-3</td>
<td></td>
<td>NC</td>
</tr>
</tbody>
</table>

* according to the largest number of notifiers
NC = not classified for human health effects
NR = not registered under REACH
Air Conditioning Technology
A320
Temperature Control, Pressure Control, Ventilation

Air Conditioning Technology

bleed air from engine compressor

Adapted from (A320 FCOM)
Jet Engine Technology
Jet Engine Technology

Engine Overview

Engine Alliance GP7000

(Assuntos Militares 2013)
Jet Engine Technology

Engine Air and Oil System

Normal operation of engine seals:
1. The "drain" discharges oil.
2. The "dry cavity" contains oil.
3. Air and oil leak from bearings into the bleed air.

=> Engines leak small amounts of oil by design!

based on (Exxon 2016b)
Jet Engine Technology

Engines Longer on Wing
Labyrinth-Seal Clearances Increase as Engines Age

"Labyrinth-seal clearances naturally increase as an engine ages. As this occurs – due to rubbing under vibration, gyroscopic torque, rough landings or any g-load factor, the engine air flow increases, resulting in even higher oil consumption" (Exxon 2016a) and hence leakage into the bleed air.

The figure shows increasing time to first shop visit of CFM56-7B engines. It follows:

During a period of 10 years (2004 to 2014) maintenance practice changed such that engines stay on the wing almost twice as long without shop visit and seal replacement.

(AviationWeek 2016)
How much Oil Gets into the Cabin?
How much Oil Gets into the Cabin?

Think: System Boundaries
How much Oil Gets into the Cabin?

- Determine engine oil consumption per flight hour (airline maintenance records): \dot{V}_{oil}
- **Estimate** ratio of oil out of all seals versus the total oil out (including that oil leaving the deaerator): x_{seal}
- Determine number of all bearings or seals: n_{bear}
- Determine number of bearings or seals upstream of first bleed port: $n_{bear,up}$
- Calculate „upstream“ bearing ratio: $x_{bear,up} = n_{bear,up} / n_{bear}$
- Consider the number of engines: n_{eng}
- Get the Bypass Ratio (BPR) of the engine: μ
- Get engine frontal area from engine inlet diameter: $S_{eng} = D_{eng}^2 \pi / 4$
- Get aircraft cruise Mach number: M_{CR}
- Get aircraft cruise altitude: h_{CR}
- Get speed of sound in cruise altitude (from ISA Table or calculated): $a(h_{CR})$
- The steady state oil concentration in the cabin is equal to the oil concentration of the inflow. Finally: **Calculation of the Oil Concentration in the Cabin**:

$$\frac{m_{oil,cab}}{V_{cab}} = \frac{\dot{m}_{oil}}{S_{eng}} \frac{x_{bear,up}}{n_{eng}} \frac{x_{seal}}{M_{CR}} \frac{a(h_{CR})}{\rho_{CR}} \frac{\rho_{cab}}{(\mu + 1)}$$
How much Oil Gets into the Cabin?

Example Calculation

\[\dot{V}_{oil} = 0.6 \, \text{L/h} \quad \text{both engines, } n_{eng} = 2 \]
\[\dot{m}_{oil} = 0.1673 \, \text{g/s} \]
\[x_{seal} = 1 \% \text{ (conservative estimate!)} \]
\[h_{bear} = 5 \quad \text{CFM - 56} \]
\[h_{bear, up} = 3 \]

\[\frac{m_{oil,cab}}{V_{cab}} = \frac{\dot{m}_{oil} x_{bear, up} x_{seal}}{S_{eng} n_{eng} M_{CR} a(h_{CR})} \frac{\rho_{cab}}{\rho_{CR}} (\mu + 1) \]

\[\frac{m_{oil,cab}}{V_{cab}} = 17 \, \text{mg/m}^3 \]
How much Oil Gets into the Cabin?

Example Calculation Compared with Measurements

Σ aromatic hydrocarbons (median)

<table>
<thead>
<tr>
<th></th>
<th>μg/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spengler*</td>
<td></td>
</tr>
<tr>
<td>Guan</td>
<td></td>
</tr>
<tr>
<td>MHH A380</td>
<td></td>
</tr>
<tr>
<td>MHH A321</td>
<td></td>
</tr>
<tr>
<td>EASA Main Study</td>
<td></td>
</tr>
<tr>
<td>EASA B 787 Study</td>
<td></td>
</tr>
</tbody>
</table>

In-flight measurements

Calculated:

\[
\frac{m_{\text{oil, cab}}}{V_{\text{Cab}}} = 17 \ \mu g/m^3
\]

with conservative estimate:

\[
x_{\text{seal}} = 1 \%
\]

Σ aromatic hydrocarbons, comparison of different studies (median);
* highest values from three investigated airlines

(EASA 2017a)
Maintenance
The Case of Engine/APU Oil Contamination
Maintenance

Trouble Shooting and Cleaning

Aircraft Trouble Shooting

One possibility where the source of an oil leak/odour cannot be determined would be to operate the aircraft with each bleed supply OFF (in accordance with the MMEL requirements) in turn to identify a bleed configuration that confirms the odour. If this does not identify a bleed source of the odour, then operate using a single ECS pack to try and identify an ECS pack as a source of the odour. Note that a build-up of oil contamination within an ECS pack can occur over time and eventually cause the ECS pack itself to be the source of an odour. The reporting sheet at attachment 2 can be used to track the different ECS configurations and aid this process.

(Airbus 2017)

Aircraft Duct Cleaning

in order to simulate both heating and cooling conditions. This involves pack operation for approximately 15 minutes with cabin temperatures selected full cold and 15 minutes with temperatures selected full hot.

(Airbus 2013)
Maintenance

Cleaning

Pack Cleaning

The simplest method of removing the contamination is again using high temperature airflow (from the APU) although additional maintenance maybe necessary in the event of heavy contamination within the pack. In order to facilitate the pack decontamination whilst preventing further downstream contamination it is necessary to remove the pack outlet duct and blank the downstream ducting. This allows the contaminated air to exit the aircraft via the pack bay and facilitates inspection of the pack condenser to determine the extent of pack contamination. During initial inspection the presence of thick oily deposits inside the condenser (visible following outlet duct removal) would indicate heavy contamination within the pack and therefore necessitate off aircraft maintenance for certain components. (Airbus 2013)
Maintenance

Cleaning

Aircraft Duct Cleaning

In the case of heavy contamination, this being assumed when there are visible traces of oil on the internal surface of the ducts, it is necessary to manually clean the affected ducts using rags and an appropriate degreasing agent.

(Airbus 2013)

Aircraft released back into service over night after an (oil based) fume/smell event are most probably not cleaned as instructed by Airbus, because ducts can not be removed from behind the panels in this short time.
Engineering Design Principles for Air Conditioning from SAE
SAE AIR 1168-7: Aerospace Pressurization System Design
“Compressor bleed from turbine engines is attractive because of the mechanical simplicity of the system.” However, “oil contamination ... can occur in using compressor bleed air from the main engines.” “Popular opinion regarding the risk of obtaining contaminated air from the engine may preclude its use for transport aircraft, regardless of other reasons.”

SAE AIR 1116: Fluid Properties
“Until adequate toxicity data are available precautions must be observed in handling any unfamiliar fluid.”

This means:
It is not the task of passengers and crew to prove that engine oils and hydraulic fluids as used today are dangerous. Just on the contrary, industry has to prove that fluids and equipment are safe before they intend to use them, because standards have been agreed among engineers already long time ago, not to use bleed air on transport aircraft!
Solution: Sensors and Filters
Solution: Sensors and Filters

Get Informed => Personal CO Detector. Get Protected in the Cabin => Breathing Mask

Normal CO Situation

<table>
<thead>
<tr>
<th>ppm</th>
<th>Flight deck</th>
<th>Cabin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td></td>
<td></td>
</tr>
<tr>
<td>95-percentile</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Max (absolute)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EASA 2017b, p.74

- The Carbon Monoxide (CO) level in normal operation is much lower than the limit of 50 ppm (specified in CS 25.831). Failure cases did not occur during these measurements.
- We know much CO is present in the cabin during a Fume Event. The elevated CO concentration indicates the severity of the event. Therefore, crew should carry their personal CO detector, be informed and make decisions accordingly!
- If smoke is present, checklists tell pilots to put on their oxygen mask. In such a case, cabin crew should consider wearing a personal breathing mask protecting against nerve gas.

Failure Case: Fume Event

Get CO Detector and Breathing Mask

Cabin crew protection!
Solution: Sensors and Filters

KKmoon CO Meter: Test on Ground and Measurements on Aircraft

Test in car exhaust gas => up to 77 ppm CO (Video: https://youtu.be/iwqcgPdht-w)

Measurements on aircraft:
- Generally: 0 ppm
- One measurement: 5 ppm
 (measured at cabin outlet on A320, during take-off, HAM, RWY 33)

Cabin limit: 50 ppm
Solutions: Sensors and Filters

Filters to Remove TCP and VOC

Pall has several treatments solutions for cabin air on offer:
- Carbon Filter
- Photo Catalytic Oxidization (with UV light)
- Catalytic Converters (oxidization). Location is possible:
 - upstream of the pack,
 - downstream of pack,
 - at recirculation filter
 (reduced efficiency compared to a filter in line with the pack – see next page)

Pall offers **Odour/VOC Removal Filters**
- The carbon adsorbent is effective at adsorbing volatile organic compounds (VOC). Test results have shown a removal efficiency of 65% ... 73% when challenged with TCPs in the gaseous phase. Carbon adsorbents have some effectiveness with ozone but not with carbon monoxide (CO). Removal of these compounds from the cabin air is by adsorption on to carbon based filters. (Pall 2011)

Application of carbon filters:
- 33 HEPA-Carbon filters have been added (so far) to A321 aircraft at Lufthansa Group. (Lufthansa 2017)
- EasyJet started in 2016 to retrofit their fleet of A320 family aircraft with Pall Aerospace PUREair Advanced Cabin Air Filters (A-CAF) combining HEPA filters and carbon filters to remove Volatile Organic Compounds (VOC) from aircraft cabin air. (Pall 2016)
- Pall carbon filters are installed on the B757 cargo fleet of DHL. Carbon filters are installed in place of the air ducts leading to the cockpit. EASA issued an STC for the installation. (EASA 2010)
Solution: Sensors and Filters

Filter in the Recirculation Path

Example:
- The Pall carbon adsorbent is effective at adsorbing volatile organic compounds with a **removal efficiency of 65% ... 73%** when challenged with TCPs in the gaseous phase. (Pall 2011)
- The A320 has a recirculation rate of 50%.
- With a **filtration rate**, $x_{fil} = 0.7$ and a **recirculation rate**, $x_{re} = 0.5$
 the filter **reduces the incoming concentration down to 58.9%**.

Adapted from (NRC 2002)
Solution: Sensors and Filters

Full Filtration

Option: 3a

Filtration of cold air and of hot trim air. Filtration in recirculation.

\[
\begin{align*}
 f_{\text{recirc}} &= \frac{1 - x_{re}}{1 - (1 - x_{fil})x_{re}} \\
 x_{\text{cont, cab}} &= (1 - x_{fil}) f_{\text{recirc}} \\
 &\approx 0.3 \cdot 0.6 = 0.18
\end{align*}
\]

=> reduces incoming pollutant concentrations to \(\approx 18\%\)

VOC Filter

Combined HEPA & VOC Filter (HEPA-Carbon Filter)

![Diagram of aircraft cabin air system with labels and equations, showing the flow of air through various components including outflow valve, recirculation fan, cold air filters, and trim air valves.](image_url)
Solution: Sensors and Filters

Full *
Filtration
Option: 3b

* Filtration of cold air only. Hot trim air is not filtered. Filtration in recirculation.

Full * Filtration Option: 3b

50 % outflow valve
50 % recirculation

Diagram:
- Outflow valve
- Recirculation fan
- CPKT
- FWD
- AFT
- PACK 1
- PACK 2
- LP Ground Connection
- Hot Air Press Reg Valve
- Emer Ram Air
- Pack Flow Control Valve
- Cross bleed valve (normally closed)

Filters:
- VOC Filter
- Combined HEPA & VOC Filter (HEPA-Carbon Filter)

Engine 1
APU
Engine 2

Dieter Scholz: Contaminated Aircraft Cabin Air
AVSA Meeting 2019
Paris CDG Airport, 27.05.2019
27.05.2019, Slide 46
Aircraft Design and Systems Group (AERO)
Solution:
ECS Principles
Solution: ECS Principles

Cabin Pressurization Principles and Solutions – Overview

Overview

• **First Jet Aircraft** used a "blower" or "turbocompressor" (TC). The TC is the coupling of a turbine with a compressor. Bleed air from the engine compressor drives the TC turbine. The TCs compressor compresses outside air to meet the pressurization requirements of the cabin. The hot compressed air needs to be cooled. This can be done with a "vapor cycle system" (as known from the refrigerator).

• **Current Aircraft** make use of bleed air directly. It is compressed so much that it contains enough energy to also drive the pack that cool the bleed air down to temperatures considerably less than 0°C.

• The **Boeing 787** uses electrical power to drive an electric motor to drive a compressor. The energy is extracted from the engine by means of shaft power driving a generator. No bleed air is used. The engine is "Bleed Free".

(Michaelis 2010)
The "Pack" of the B787's Environmental Control System (ECS) is powered by electric motors (M) to compress ambient air up to cabin pressure and to push the air through the heat exchangers (HX) for cooling. The power for the electric motors is produced by generators (SG) connected to the aircraft's engine and APU. After compression and cooling the air is delivered to the cabin.
Solution: ECS Principles

More Electric A320?

Electrical innovations
flightlab

Liebherr 2016
Summary

• There is sufficient evidence for a problem of contaminated cabin air: engines leak oil by design, oil can be traced on its way from the engine into the cabin, ...

• Short term partial technical solution: Carbon filter:
 a) in the duct to the cabin and
 b) attached to the recirculation filter suitable for retrofit

• Long term full technical solution: Bleed-free architecture with direct air intake and dedicated compressor suitable only for newly designed aircraft
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Contact

info@ProfScholz.de

http://www.ProfScholz.de

http://CabinAir.ProfScholz.de
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

References

A320 FCOM
Airbus: A320 – Flight Crew Operating Manual (FCOM)

A320 GENFAM
Airbus: A320 – General Familiarization (GENFAM)

Airbus 2013
Airbus: In-Service Information, Environmental Control System Decontamination, A319/A320/A321, 2013

Airbus 2017
Airbus: In-Service Information, Cabin Air Quality Troubleshooting Advice, All Aircraft, 2017

Assuntos Militares 2013

Aviation Week 2016
References

BFU 2014

Boeing 2007

Cannon 2016

EASA 2010

EASA 2017a
References

EASA 2017b

EASA CS-25

ECA 2017

Eurofins 2017
Eurofins Scientific (eurofins): What does VOC mean?. – URL: https://www.eurofins.com/consumer-product-testing/services/testing/voc-emission-testing/

Exxon 2016a

Exxon 2016b
References

Exxon 2016c

IATA 2017

Imbert 1997

ISO 9001

Liebherr 2016

Lufthansa 2017
Lufthansa, Cabin Air Quality Team: Cabin Air Quality Crew Info, No. 1 (February 2017), Lufthansa Group, 2017. – URL: http://www.anstageslicht.de/fileadmin/user_upload/Geschichten/Aerotoxisches_Syndrom/LH_Februar17_Cabin_Air_Quality_Crew_Info.pdf
References

Megson 2016

Michaelis 2010

Michaelis 2012

NRC 2002

Pall 2011

Pall 2016
References

Ramsden 2013

Ramsden 2013a

SAE AIR 1168-7
Standard SAE AIR 1168-7, *Aerospace Pressurization System Design*, 2011 (first edition 1991, A in 2011), https://doi.org/10.4271/AIR1168/7. – URL: https://saemobilus.sae.org/content/AIR1168/7, https://saemobilus.sae.org/content/AIR1168/7A

SAE AIR 1116
Standard SAE AIR 1116, *Fluid Properties*, 2013 (first edition 1969, A in 1999, B in 2013) (no DOI available). – URL: https://www.sae.org/standards/content/air1116, https://saemobilus.sae.org/content/AIR1116, https://saemobilus.sae.org/content/AIR1116A, https://saemobilus.sae.org/content/AIR1116B
References

Scholz 2017

Wikipedia 2018a

Wikipedia 2018b

Winder 2001

Wiktionary 2018
http://en.wiktionary.org/wiki/contamination

All online resources have been accessed on 2018-09-10 or later.
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Quote this document:
Scholz, Dieter: *Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective.* Meeting 2019, Association des Victimes du Syndrome Aérotoxique (AVSA), Paris CDG Airport, France, 27.05.2019. – Download from: http://CabinAir.ProfScholz.de

See also:
Scholz, Dieter: *Technical Solutions to the Problem of Contaminated Cabin Air.* German Aerospace Congress, Friedrichshafen, Germany, 04.-06.09.2018. – Presentation No. 0270, download from: http://CabinAir.ProfScholz.de