Promising Aircraft Modifications for Low Handling Costs

Francisco Gómez Carrasco
Hamburg University of Applied Sciences

Dieter Scholz
Hamburg University of Applied Sciences
Overview

Review of ground handling services
Reference Data

- DOC Methods
- Ground Handling Charges
- Ground Handling Procedures

Detailed Cost Prediction
Optimal Procedure Identification

New Aircraft Proposals
Modifications evaluation
Overview

Review of ground handling services

Reference Data

DOC
Methods

Ground Handling Charges

Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

New Aircraft Proposals

Modifications evaluation
Ground Handling Activities - Classification

- Cabin service
- Ramp services
- Passenger services
- Field Operation Services
Ground Handling Activities - Classification

- Cabin services

- Ramp services

- Passenger services

- Field Operation Services
Ground Handling Activities – Ramp Services

- Cargo and Luggage Handling
- Catering
- GPU
- Refuelling
- Transport Passengers
- Pushback
Ground Handling Activities – GSE

Ground Support Equipment: Equipment that involve ground power operations, aircraft mobility, and loading operations.

- Refuelers
- Tractors
- Ground power units
- Buses
- Container loader
- Transporters
- Potable water trucks
- Belt loader
- Passenger stairs
- Pushback tugs
- Container loader
- De-icing vehicles
- Air starter
Overview

Review of ground handling services

Reference Data

DOC
Methods

Ground Handling Charges

Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

New Aircraft Proposals

Modifications evaluation
Reference Data: Aircraft

- The Airbus A320 has been chosen, as it is the most commonly used Airbus aircraft at Low Cost Carriers.
Reference Data: Mission

- A research have been carried out in order to find the low cost airline’s average route length.

Average Length Distance of Low Cost Airlines (km)
Reference Data: Mission

- Low cost airline’s average route length.

<table>
<thead>
<tr>
<th>Category</th>
<th>Average Route length (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regional</td>
<td>560.08</td>
</tr>
<tr>
<td>Charter</td>
<td>1835.89</td>
</tr>
<tr>
<td>Original</td>
<td>911.05</td>
</tr>
<tr>
<td>Full Service</td>
<td>1034</td>
</tr>
<tr>
<td>All Airlines</td>
<td>1028.53</td>
</tr>
<tr>
<td>3 Main Airlines</td>
<td>1066.33</td>
</tr>
</tbody>
</table>

Average Length Distance of Low Cost Airlines

1028 km
Reference Data: Ground Handling Procedure

A320 manual
Overview

Review of ground handling services
Reference Data

DOC Methods
Ground Handling Charges
Ground Handling Procedures

Detailed Cost Prediction
Optimal Procedure Identification

New Aircraft Proposals
Modifications evaluation
DOC Methods

Available DOC methods:

- AEA - \(C_{FEE,GND} = K_1 \cdot m_{PL} \)
- Boeing - \(C_{FEE,GND} = (K_1 + K_2 \cdot K_3 \cdot \text{Seats}) \cdot 5.05 + FHC \)
- AEA-Boeing - \(C_{FEE,GND} = (K_3 + \text{Total Seats} \cdot K_4 \cdot K_5) \cdot K_6 + K_7 \cdot \frac{\text{Block Fuel}}{6.75} \)
- Airbus - No Method
- American Airlines - No Method
- Lufthansa - Tables
- Fokker - \(C_{FEE,GND} = K_1 + K_2 \cdot \text{seats} \)

Those constants depend on number of seats, range, type of airline and country.
DOC Methods

In general:

\[C_{GH} = K \cdot m_{PL} \]
\[C_{GH} = K \cdot n_{Pax} \]

- DOC methods for handling cost do not take into account detailed aircraft parameters
- Available DOC method cannot accurately predict the handling cost for all scenarios
- Influence of the A/C configuration on the GH costs cannot be studied with DOC methods
Overview

Review of ground handling services
Reference Data

DOC
Methods

Ground Handling Charges

Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

New Aircraft Proposals

Modifications evaluation
Ground Handling Charges

- Airport schedules of charges have been investigated.
- The charges can be divided in three categories:
 - Airport Infrastructure Charges
 - Baseline service
 - Additional services

$$C_{HC} = \sum C_{AI}(\text{operation}) + C_{BL}(MTOW, n_{pax}) + \sum C_{AD}(\text{operation})$$
Ground Handling Costs: Airport Charges

These costs have been listed and a ground handling cost breakdown tool has been produced.

<table>
<thead>
<tr>
<th>Service</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Use of AI charge</td>
<td>100.3225</td>
</tr>
<tr>
<td>Baseline</td>
<td>1612.41</td>
</tr>
<tr>
<td>Fuel AI charge</td>
<td>42.97797</td>
</tr>
<tr>
<td>Airbridge</td>
<td>116.19</td>
</tr>
<tr>
<td>GPU</td>
<td>42.51</td>
</tr>
<tr>
<td>Pushback</td>
<td>114.43</td>
</tr>
<tr>
<td>Transport at ramp</td>
<td>86.235</td>
</tr>
<tr>
<td>Stairs</td>
<td>17.18</td>
</tr>
</tbody>
</table>

Ramp standard Service Cost for an A320

<table>
<thead>
<tr>
<th>Airport</th>
<th>Ramp standard Service Cost (euros)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Madrid MAD (AENA 2008)</td>
<td>1756.27</td>
</tr>
<tr>
<td>Salzburg SZG (Salzburg 2007)</td>
<td>1280.00</td>
</tr>
<tr>
<td>Aarhus AAR (Aarhus 2007)</td>
<td>1620.86</td>
</tr>
</tbody>
</table>
Ground Handling Costs: Airport Charges

• These costs only depend on operational aspects (services and time)

• Aircraft parameters are also not taken into account.

<table>
<thead>
<tr>
<th>Aircraft class</th>
<th>Airplane type</th>
<th>Aircraft class</th>
<th>Airplane type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4A</td>
<td>AEROSPATIALE A5300 Ecourel CESSNA TWIN PISTON</td>
<td>71</td>
<td>AIRBUS 320</td>
</tr>
<tr>
<td>4B</td>
<td>AEROSPATIALE SN385 Dauphin AVIOCAR CN212-200</td>
<td>72</td>
<td>BOEING 727-200</td>
</tr>
<tr>
<td>4C</td>
<td>EMBRAER 120 BRASILIA AVIOCAR CN235</td>
<td>81</td>
<td>BOEING 757-300 AIRBUS A310</td>
</tr>
<tr>
<td>31</td>
<td>AEROSPATIALE ATR 42 DE HAVILLAND DHC-6</td>
<td>82</td>
<td>AIRBUS A300 B4/C4/F4 BOEING 767-300</td>
</tr>
<tr>
<td>41</td>
<td>AEROSPATIALE ATR 72 CANADAIR REGIONAL JET 9000</td>
<td>83</td>
<td>AIRBUS 340-200 BOEING 777-200</td>
</tr>
<tr>
<td>51</td>
<td>BRITISH AEROSPACE 146-300 McDONNELL DOUGLAS DC-9</td>
<td>91</td>
<td>McDONNELL DOUGLAS MD-11 BOEING 777-300</td>
</tr>
<tr>
<td>61</td>
<td>BOEING 737 McDONNELL DOUGLAS MD 83</td>
<td>93</td>
<td>BOEING 747-200/400 AIRBUS A340-600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MTOW</th>
<th>Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft between 0 and less than 16 Tons</td>
<td>13.16%</td>
</tr>
<tr>
<td>Aircraft between 16 and less than 22 Tons</td>
<td>17.51%</td>
</tr>
<tr>
<td>Aircraft between 22 and less than 38 Tons</td>
<td>28.04%</td>
</tr>
<tr>
<td>Aircraft between 38 and less than 56 Tons</td>
<td>77.88%</td>
</tr>
<tr>
<td>Aircraft between 56 and less than 72 Tons</td>
<td>100.00%</td>
</tr>
<tr>
<td>Aircraft between 72 and less than 86 Tons</td>
<td>120.33%</td>
</tr>
<tr>
<td>Aircraft between 86 and less than 121 Tons</td>
<td>135.30%</td>
</tr>
<tr>
<td>Aircraft between 121 and less than 164 Tons</td>
<td>150.28%</td>
</tr>
<tr>
<td>Aircraft between 164 and less than 191 Tons</td>
<td>179.37%</td>
</tr>
<tr>
<td>Aircraft between 191 and less than 231 Tons</td>
<td>202.50%</td>
</tr>
<tr>
<td>Aircraft between 231 and less than 300 Tons</td>
<td>264.81%</td>
</tr>
<tr>
<td>Aircraft over 300 Tons</td>
<td>314.64%</td>
</tr>
</tbody>
</table>
Ground Handling Costs: Airport Charges

However, different handling procedures can be compared with this tool.

<table>
<thead>
<tr>
<th>Procedure</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A - Standard</td>
<td>Standard procedure</td>
</tr>
<tr>
<td>B - External Apron</td>
<td>External Apron, transport, stairs, pushback.</td>
</tr>
<tr>
<td>C - External ramp</td>
<td>External ramp, transport of passengers, pushback</td>
</tr>
<tr>
<td>D - Terminal</td>
<td>Terminal ramp, airbridge</td>
</tr>
<tr>
<td>E - External ramp</td>
<td>External ramp, transport of passengers, stairs</td>
</tr>
<tr>
<td>F - External ramp</td>
<td>External ramp, transport of passengers</td>
</tr>
<tr>
<td>G - Terminal</td>
<td>Terminal ramp, no airbridge, pushback</td>
</tr>
<tr>
<td>H - Terminal</td>
<td>Terminal ramp, no airbridge</td>
</tr>
</tbody>
</table>
Ground Handling: Optimal GH procedure

- Handling is carried out at a terminal ramp without need of pushback or transporting passengers.
- This cost-efficient procedure is the most used by the LCA.
- Examples:
Ground Handling : Conclusions

• To decrease the ground handling costs, LCA avoid as much ground handling services as possible.

• In order to achieve this, a more autonomous aircraft are required.

• For example
 • Pushback can be avoided by Autonomous Pushback Systems
 • Airbridge use can be switched by stairs.
Overview

Review of ground handling services
Reference Data

New Aircraft Proposals

- DOC Methods
- Ground Handling Charges
- Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

Modifications evaluation
New aircraft proposals

<table>
<thead>
<tr>
<th>Model</th>
<th>Developer</th>
<th>Criteria</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>A2007</td>
<td>Delt University</td>
<td>Minimize turnaround</td>
<td>High wing, APS, Integrated stairs</td>
</tr>
<tr>
<td>StartXpress</td>
<td>Stuttgart University</td>
<td>More Electrical A/C.</td>
<td>High wing, New Engine</td>
</tr>
<tr>
<td>Orca</td>
<td>Stuttgart University</td>
<td>Minimize turnaround</td>
<td>New configuration. Double stairs at tail.</td>
</tr>
<tr>
<td>Larus</td>
<td>Stuttgart University</td>
<td>GH optimization</td>
<td>New configuration.</td>
</tr>
<tr>
<td>Globalspirit</td>
<td>Stuttgart University</td>
<td>DOC</td>
<td>High wing</td>
</tr>
<tr>
<td>Gastomis</td>
<td>Stuttgart University</td>
<td>GH and turnaround</td>
<td>New systems. Fuel cell APU</td>
</tr>
</tbody>
</table>

There is no studies about Ground Handling Costs
Overview

Review of ground handling services
Reference Data

DOC
Methods

Ground Handling Charges

Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

New Aircraft Proposals

Modifications evaluation
Integrated Stairs

- Weight Penalty of about 65kg.
- Increase of DOC 0.06% (8 USD/Trip)

- Avoid Delays and Utilization of Airport Equipment.
- Stairs -> 20 USD
- Airbridge -> 110 USD

- Possibility of boarding using two doors

- Compatibility with airbridges.

- A clear decrease on costs
Autonomous Pushback System

Weight Penalty of about 100kg.
Increase of DOC 0.1% (15USD/Trip)

Small maintenance and depreciation cost (5USD/trip)

Avoid Delays and Utilization of Airport Equipment.
Pushback -> 172USD/trip

It saves around 2 minutes in the turnaround time.

Potential to use fuel cells.

A clear decrease on costs
Kneeling system

- Lower sill height leads to lower loading costs.
- Very high weight penalty.
- Difficult to assess loading activity improvement
 - Belt and container loaders can be adapted to different geometries already.
 - Containers and pallets have standard sizes.

- Do not save costs.
Overview

Review of ground handling services
Reference Data

DOC
Methods

Ground Handling Charges

Ground Handling Procedures

Detailed Cost Prediction

Optimal Procedure Identification

New Aircraft Proposals

Modifications evaluation
Summary and future steps

- Despite these findings, aircraft configuration and geometry cannot be evaluated regarding GH costs yet.
- A new tool has to be developed for this purpose.
 - Ground Handling studies in detail.
 - Identification of Ground Handling parameters. P_i
 - Assign cost values to each element. $C_i = C(P_1, P_2, ..., P_i)$
 - Connection between GH costs and Aircraft parameters
 - Evaluation of different configurations
Summary and future steps

• A modelization of the ground handling costs is being carried out.
• Delays, geometrical compatibilities, staff, service precision parameters are taken into account.

\[C_{GH} = C_1 \cdot C_2 \cdot C_3 \ldots C_i \]
Summary and future steps

• Software Simba 2D from ARC is able to perform ground handling simulations and calculate costs.

• Once the ground handling cost breakdown is totally defined, it is possible to calculate turn-around times and costs in parallel.

<table>
<thead>
<tr>
<th>Service</th>
<th>Time (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boarding</td>
<td>6 / 10</td>
</tr>
<tr>
<td>Cleaning</td>
<td>5</td>
</tr>
<tr>
<td>Lavatory</td>
<td>6</td>
</tr>
<tr>
<td>Refuel</td>
<td>2</td>
</tr>
<tr>
<td>Total Servicing Time</td>
<td>< 12 min</td>
</tr>
</tbody>
</table>

Notes:
- Door L1: 150 Passengers at a rate of 150 passengers.
- Door L2: 150 Passengers at a rate of 100 passengers.
- Refuel: 2000 l fuel at a rate of 100 l/min.
- Lavatory: 2000 l water at a rate of 200 l/min.
Thank you for your attention

Further information can be found on:

- http://ALOHA.ProfScholz.de
- http://Aero.ProfScholz.de