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jPAD ― Java Programs for Aircraft Design 

 A software toolchain for aircraft preliminary design and 
MDO. 

 A modern, user friendly, modular framework. 
 Support for simultaneous management/analysis of 

several aircraft and/or ‘varied’ configurations of the 
same aircraft. 

 Conceived for collaborative design activities. 
 Interoperability with other tools/disciplines 

(CAD/CFD/FEM analysis). 
 Started in early 2014. Approx. 120k lines-of-code. 
 Planning to go open source. 
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What you can do with jPAD 

 Define parametric representations of wings, fuselages and nacelles 
with XML configuration/input files (similar to OpenVSP). 

 Generate CAD geometries of aircraft assembly and sub-
components (Open CASCADE, JNI Technology). Measure lengths, 
areas, volumes. Export in CAD formats (Brep, STEP, IGES, STL, 
Collada). 

 Vary geometric parameters and regenerate internal representation 
of geometries programmatically. 

 Import CPACS aircraft configurations files (Tigl Native Interface) and 
extract relevant properties. (Work in progress) 

 Perform various types of analysis (L0, L0.5, L1): Aerodynamics, 
Stability & Control, Performance, Weight, Costs. (Structural TBD)  

 Exports analysis results in XML (native/CPACS) and Excel formats. 
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Competency spectrum 
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Computer Science, 
Software Engineering 

Aircraft Design 
Disciplines 

We are aerospace engineers ... Should we extend our capabilities? 



Software engineering principles 
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 Software design patterns: formalized best practices that 
the programmer can use to solve common problems 
when designing an application or system. 

 Design patterns speed up the development process by 
providing tested, proven development paradigms. 

 Examples of patterns:  
 Builder, Factory, Dependency Injection,  
 Strategy, Separation-of-Concerns, 
 Observer (Publish/Subscribe) 

 Micro patterns (design decisions in code): DRY (Don’t 
Repeat Yourself), Sampler (Controlled Creation),  

 



Example of Java code 
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Aircraft aircraft = new Aircraft("Baseline_AC_AGILE.xml"); 
OperatingPoint op = OperatingPointFactory.getPoint("OP_001.xml"); 
ACAnalysisManager analysis = new ACAnalysisManager(op, aircraft,  
     AnalysisTypeEnum.AERODYNAMIC, 
     AnalysisTypeEnum.BALANCE, 
     AnalysisTypeEnum.WEIGHTS, 
     AnalysisTypeEnum.PERFORMANCE, 
     AnalysisTypeEnum.COSTS); 
analysis.calculateGeometryAuxiliaryData(); 
analysis.runAnalysis(AnalysisTypeEnum.AERODYNAMIC,    
   AnalysisTypeEnum.PERFORMANCE); 
 
DataWriter dataWriter = new DataWriter(analysis); 
dataWriter.exportToXML("Analysis_Baseline_AGILE_op_001.xml"); 
dataWriter.exportToXLS("Analysis_Baseline_AGILE_op_001.xlsx"); 
 
CADBuilder cadBuilder = new CADBuilder(aircraft); 
cadBuilder.build().exportToSTEP("Baseline_AGILE_op_001.stp"); 
 
CPACSBuilder cpacsBuilder = new CPACSBuilder(aircraft); // TBD 
cpacsBuilder.build().export("Baseline_AGILE_op_001.xml"); 
 
WriteUtils.serializeObject(aircraft, aircraft.getName()); 



Java. Why? 

 “Compile once. Run it everywhere.” (well, almost) 
 Widely supported, continuously updated and improved. 
 Many open source libraries available, especially for I/O 

tasks and for complex mathematical operations. 
 Widely supported GUI frameworks (SWT/JFace and 

JavaFX) and a GUI visual builders. 
 Object-Oriented paradigm is naturally applied in the 

abstraction of typical Aircraft Design problems. 
 Promotes modularity: easier to work with in an ever 

changing team. 
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Parametric Fuselage in jPAD 
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Parametric wing in jPAD 



Output files 

 XML 
 Microsoft Excel 
 Charts 
 CAD model ready to be 

meshed 
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Example of jPAD output 

External fuselage shape 
exported as STEP file 
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Example of jPAD output 
Multiple aircraft analysis 

result comparisons 



ADOpT: a GUI for jPAD 
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The GUI – Eclipse SWT/Jface technology, JavaFX for the 3D 
view  Example of 

project tree 



ADOpT: a GUI for jPAD 
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Varying geometric parameters 



ADOpT: a GUI for jPAD 
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CAD generated from parametric representation 



ADOpT: a GUI for jPAD 
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Configuring the aerodynamic analysis 



Interface with external CFD tools 
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Key Points 

 Java programming language (JDK ≥1.8) 
 Eclipse IDE 
 Great effort to make code easily maintainable 
 In-house solutions for: 

 Importing/exporting data (including CPACS via Tigl interface) 
 Array handling 
 GUI design (SWT/JFace libraries, JavaFX) 
 Building the CAD model (via Open CASCADE libraries/Java 

Native Interface JNI) 
 CAD 3D viewer (JavaFX) 
 DATCOM-like database for Aerodynamics/Performances/Stability 

& Control analysis modules (Hierarchical Data Format, HDF) 
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Conclusions 
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 Main features and general arrangement complete 
 Work in progress: 

 Loads 
 Stability & Control module 
 Collaborative features: 
 CPACS 
 United States Air Force Stability and Control Digital 

DATCOM 
 FlightGear simulator input XML file 
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