
jPAD — A Java Toolchain of
Computer Programs for Aircraft
Design.
Software Engineering Best Practices
Applied to Aerospace Sciences

A. De Marco
Università degli Studi di Napoli Federico II, Dept. Industrial Engineering, Aerospace Div.

SCAD2015 — 5th Symposium on Collaboration in Aircraft Design
12-14 October, Naples, Italy

jPAD ― Java Programs for Aircraft Design

 A software toolchain for aircraft preliminary design and
MDO.

 A modern, user friendly, modular framework.
 Support for simultaneous management/analysis of

several aircraft and/or ‘varied’ configurations of the
same aircraft.

 Conceived for collaborative design activities.
 Interoperability with other tools/disciplines

(CAD/CFD/FEM analysis).
 Started in early 2014. Approx. 120k lines-of-code.
 Planning to go open source.

2

What you can do with jPAD

 Define parametric representations of wings, fuselages and nacelles
with XML configuration/input files (similar to OpenVSP).

 Generate CAD geometries of aircraft assembly and sub-
components (Open CASCADE, JNI Technology). Measure lengths,
areas, volumes. Export in CAD formats (Brep, STEP, IGES, STL,
Collada).

 Vary geometric parameters and regenerate internal representation
of geometries programmatically.

 Import CPACS aircraft configurations files (Tigl Native Interface) and
extract relevant properties. (Work in progress)

 Perform various types of analysis (L0, L0.5, L1): Aerodynamics,
Stability & Control, Performance, Weight, Costs. (Structural TBD)

 Exports analysis results in XML (native/CPACS) and Excel formats.

3

Competency spectrum
4

Computer Science,
Software Engineering

Aircraft Design
Disciplines

We are aerospace engineers ... Should we extend our capabilities?

Software engineering principles
5

 Software design patterns: formalized best practices that
the programmer can use to solve common problems
when designing an application or system.

 Design patterns speed up the development process by
providing tested, proven development paradigms.

 Examples of patterns:
 Builder, Factory, Dependency Injection,
 Strategy, Separation-of-Concerns,
 Observer (Publish/Subscribe)

 Micro patterns (design decisions in code): DRY (Don’t
Repeat Yourself), Sampler (Controlled Creation),

Example of Java code
6

Aircraft aircraft = new Aircraft("Baseline_AC_AGILE.xml");
OperatingPoint op = OperatingPointFactory.getPoint("OP_001.xml");
ACAnalysisManager analysis = new ACAnalysisManager(op, aircraft,
 AnalysisTypeEnum.AERODYNAMIC,
 AnalysisTypeEnum.BALANCE,
 AnalysisTypeEnum.WEIGHTS,
 AnalysisTypeEnum.PERFORMANCE,
 AnalysisTypeEnum.COSTS);
analysis.calculateGeometryAuxiliaryData();
analysis.runAnalysis(AnalysisTypeEnum.AERODYNAMIC,
 AnalysisTypeEnum.PERFORMANCE);

DataWriter dataWriter = new DataWriter(analysis);
dataWriter.exportToXML("Analysis_Baseline_AGILE_op_001.xml");
dataWriter.exportToXLS("Analysis_Baseline_AGILE_op_001.xlsx");

CADBuilder cadBuilder = new CADBuilder(aircraft);
cadBuilder.build().exportToSTEP("Baseline_AGILE_op_001.stp");

CPACSBuilder cpacsBuilder = new CPACSBuilder(aircraft); // TBD
cpacsBuilder.build().export("Baseline_AGILE_op_001.xml");

WriteUtils.serializeObject(aircraft, aircraft.getName());

Java. Why?

 “Compile once. Run it everywhere.” (well, almost)
 Widely supported, continuously updated and improved.
 Many open source libraries available, especially for I/O

tasks and for complex mathematical operations.
 Widely supported GUI frameworks (SWT/JFace and

JavaFX) and a GUI visual builders.
 Object-Oriented paradigm is naturally applied in the

abstraction of typical Aircraft Design problems.
 Promotes modularity: easier to work with in an ever

changing team.

7

8

Parametric Fuselage in jPAD

9

Parametric wing in jPAD

Output files

 XML
 Microsoft Excel
 Charts
 CAD model ready to be

meshed

10

11

Example of jPAD output

External fuselage shape
exported as STEP file

12

Example of jPAD output
Multiple aircraft analysis

result comparisons

ADOpT: a GUI for jPAD
13

The GUI – Eclipse SWT/Jface technology, JavaFX for the 3D
view Example of

project tree

ADOpT: a GUI for jPAD
14

Varying geometric parameters

ADOpT: a GUI for jPAD
15

CAD generated from parametric representation

ADOpT: a GUI for jPAD
16

Configuring the aerodynamic analysis

Interface with external CFD tools
17

Key Points

 Java programming language (JDK ≥1.8)
 Eclipse IDE
 Great effort to make code easily maintainable
 In-house solutions for:

 Importing/exporting data (including CPACS via Tigl interface)
 Array handling
 GUI design (SWT/JFace libraries, JavaFX)
 Building the CAD model (via Open CASCADE libraries/Java

Native Interface JNI)
 CAD 3D viewer (JavaFX)
 DATCOM-like database for Aerodynamics/Performances/Stability

& Control analysis modules (Hierarchical Data Format, HDF)

18

Conclusions
19

 Main features and general arrangement complete
 Work in progress:

 Loads
 Stability & Control module
 Collaborative features:
 CPACS
 United States Air Force Stability and Control Digital

DATCOM
 FlightGear simulator input XML file

	jPAD — A Java Toolchain of Computer Programs for Aircraft Design.�Software Engineering Best Practices Applied to Aerospace Sciences
	jPAD ― Java Programs for Aircraft Design
	What you can do with jPAD
	Competency spectrum
	Software engineering principles
	Example of Java code
	Java. Why?
	Parametric Fuselage in jPAD
	Parametric wing in jPAD
	Output files
	Example of jPAD output
	Example of jPAD output
	ADOpT: a GUI for jPAD
	ADOpT: a GUI for jPAD
	ADOpT: a GUI for jPAD
	ADOpT: a GUI for jPAD
	Interface with external CFD tools
	Key Points
	Conclusions

