A380 Flight Controls overview
A380 Flight Control and Guidance Systems
main novelties

• Aircraft configuration and control surfaces

• Actuator technology

• Power sources for Flight Controls

• Flight Control Architecture and Computers

• Back-up controls

• Flight Control Laws

• Conclusion : Flight Tests Findings
Flight Control Surfaces

- Slats (6x2)
- Droop Nose (2x2)
- Flaps (3x2)
- Ailerons (3x2)
- spoilers (8x2)
- Elevators (2x2)
- Rudders (x2)
- Trimmable Horizontal Stabilizer
- Elevators (2x2)
Flight Controls: actuator characteristics

<table>
<thead>
<tr>
<th></th>
<th>stall load</th>
<th>weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ailerons</td>
<td>13,5 T</td>
<td>35/65 kg</td>
</tr>
<tr>
<td>Spoilers</td>
<td>21/14,5 T</td>
<td>25/65 kg</td>
</tr>
<tr>
<td>Elevators</td>
<td>18 T</td>
<td>40/80 kg</td>
</tr>
<tr>
<td>Rudders</td>
<td>22,5 T</td>
<td>100 kg</td>
</tr>
<tr>
<td>THSa*</td>
<td>85 T</td>
<td>380 kg</td>
</tr>
</tbody>
</table>

*: loads on trim screw
A380 Flight Control and Guidance System: main novelties

- Aircraft configuration and control surfaces
- Actuator technology
- Power sources for Flight Controls
- Flight Control Architecture and Computers
- Back-up controls
- Control Laws
Primary Flight Control System Actuators: E(B)HA

Conventional Servocontrol

- Accumulator
- Servovalve
- Mode selector device
- Hydraulic block
- Hyd. system (power)
- Ram

Servocontrol in normal operation

Electro-Hydrostatic Actuator (EHA)

- Servovalve replaced by an electric motor pump
- Accumulator
- Pump
- Mode selector device
- Hydraulic block
- Hyd. system (power)
- Motor

Electrical Back-up Hydraulic Actuator (EBHA)

- Electrical system (power)
- Motor
- Hydraulic block
- Ram
Primary Flight Controls

equipment status - overview

EHA experience

• 1989: first prototypes EHA/EMA

• 1992: EBHA aileron first flight on A320 test aircraft (more than 100 fh)

• 1993/2000: full qualification process, development of large EHA

• 2000/2002: One EHA (inboard aileron) constantly flight tested on A340 MSN 1 (200 FH, 61 flights), in active and standby modes, start phases, thermal behaviour...
Example: A380 EHA aileron

Hydraulic pump + elec. motor

Electronic module
Electro-Hydrostatic Actuator features

- EHA hydraulically autonomous in flight:
- EHA includes a fluid reservoir in order to compensate thermal dilatation and small external seepage
- EHA fluid reservoir refilling rare, but possible through a connection between each EHA and one centralised circuit
 (Filing operation only possible on ground)
THSA DESIGN MAIN FEATURES

- End stop
- Primary Nut
- Secondary Nut
- Electric Controller
- Gearbox
- Hydraulic Valve Block
- Hydraulic Motor
- Upper Attachment
- Lower Attachment
- Ballscrew

Total length: 2.9 m
THSA DESIGN MAIN FEATURES
A380 Flight Controls: High Lift system

A380 High Lift movables and system mechanical components (similar concept as A340 Long Range)
A380 Flight Controls: High Lift system

- 2 Drooped Nose Devices per wing (INBD wing) to improve aerodynamic performance (lift to drag ratio)
- 6 Leading Edge Slats per wing (MIDBD & OUTBD wing)

DROOPED NOSE DEVICES:
Supported by hinged arms; driven by rotary actuators via link & lever

SLATS:
supported by curved tracks; driven by rotary actuators via rack & pinion
High Lift main novelties

• Electric motor for SLAT PCU: due to 2H/2E concept

• Hydraulic Variable Displacement motors: flow consumption

• Fail-Safe Control Lever & Sensor: to improve S/F availability
 (no Clean Wing Landing design objective)
A380 Flight Control and Guidance System: main novelties

- Aircraft configuration and control surfaces
- Actuator technology
- Power sources for Flight Controls
- Flight Control Architecture and Computers
- Back-up controls
- Control Laws
A380 Hydraulic and electrical power sources

Green System
- Reservoir and main generation components (within pylon)
- 2 Engine Driven Pumps
- 1 Ground Electric Motor Pump (within pylon)
- 2 Engine Driven Pumps

Yellow System
- Reservoir and main generation components (within pylon)
- 2 Engine Driven Pumps
- 1 Ground Electric Motor Pump (within pylon)
- 2 Engine Driven Pumps

Electrical System 1
- Power center
- Generator 2
- Generator 1

Electrical System 2
- Power center
- Generator 4
- Generator 3

Emergency System
- Power center
- E.RAT (Flap Track Fairing)
• Survivability/robustness improvement:
 ‣ good fuse function
 ‣ recovery facility in case of power generation failure
 ‣ good segregation of distribution
 ‣ dissimilarity on surface actuators power supplying
Redundancy improvement (2 electrical systems replace 1 hydraulic system)

• Reduction of both hydraulic and electrical power consumption

From Blue Hydraulic system to electro-hydraulic actuators
Electro-hydraulic actuators use

• Performances
 ‣ EHA: same performances as adjacent servocontrol,
 ‣ EBHA: same performances in hydraulic mode, reduced deflection rate in electrical mode.

• Electrical mode Activation logics:
 ‣ In Normal flight:
 ‣ No EHA or EBHA operation (damping & hydraulic mode)
 ‣ in case of High surface deflection or deflection rate:
 ‣ double pressurisation of hydraulic actuators or E(B)HAs
 ‣ Failure cases with possible use of EHA and/or EBHA:
 ‣ Single or double hydraulic failure,
 ‣ One engine inoperative,
 ‣ Total engine flame-out (with electrical RAT),
 ‣ Engine burst
 ‣ ...
A380 Flight Control and Hydraulic System: main novelties

• Aircraft configuration and control surfaces

• Actuator technology

• Power sources for Flight Controls

• Flight Control Architecture and Computers

• Back-up controls

• Control Laws
A380 Flight Control System Architecture

• 2H/2E architecture
 ‣ 4 dissimilar power systems to actuate the moving surfaces
 ‣ Aircraft controllable from one power system
 ‣ robust architecture (engine rotor burst, structural damages …)

• Electrical RAT supplying EHA and EBHA in case of total engine flame-out.

• No Mechanical Control (Trim Hand Wheel replaced by Switches)

• Improvement of Auto-Pilot availability (computers + Control Unit)
A380 Flight Controls architecture

AILERONS
- O/B
- Med
- I/B

SPOILERS
- G
- Y
- S3
- S2
- P3
- P2
- P1
- S1
- S2
- S3

Speed brakes, Ground spoilers

Roll surfaces

ailerons O/B Med I/B

ELEVATORS
- O/B
- I/B

E1
- GREEN hydraulic system

E2
- YELLOW hydraulic system

E3
- 28VDC

Flight Controls architecture

Conventional hydraulic servocontrol.

EHA, Electro Hydrostatic Actuator.

EBHA, Electrical Backup Hydraulic Actuator.

Pedals, Feel and Trim Unit

Vertical Stabilizer

Upper Rudder

Lower Rudder

S2 P1 S3 P2

B BCM ultimate backup control

Reconfiguration arrow

(Colors on E1, E2 and E3 for representation purposes only, no engineering).

E1 AC power (AC1ess side 1)

E2 AC power (AC2ess side 2)

E3 AC power (AC1 side 1)
Primary Flight Controls: Computers

- 3 PRIMary Flight Control and Guidance Computers
 - integration of Auto Flight (ex FGEC) and Flight Control (ex FCPC)
 => 3 Auto-Pilots
- 3 SECondary Flight Control Computers
 - dissimilar Software and Hardware, simpler Control Laws
- 2 Slats & Flaps Control Computers (SFCC)

- Implementation with IMA:
 - Flight Controls Data Concentrator
 - Weight & Balance monitoring
 - Flight Control Unit back-up
 - Interface through AFDX:
 - Software dataloading,
 - Maintenance and warning data,
 - Partial inter-system communication
A380 Flight Control and Hydraulic System: main novelties

• Aircraft configuration and control surfaces

• Actuator technology

• Power sources for Flight Controls

• Flight Control Architecture and Computers

• Back-up controls

• Control Laws
Primary Flight controls: Back-up Control

Logical evolution of A320 / A340 / A340-600 family:

Full Fly-By-Wire, with a “Back-up” as an additional precaution to keep control of the aircraft during temporary loss of:

- all Primary Flight Control computers
- all Electrical power supply

- A320: full FBW controls, mechanical Back-up (Pitch Trim & Rudder)
- A340/A330: like A320, additional Yaw Damper to improve Dutch Roll damping even in Back-up mode (BYDU with hydraulic micro generator)
- A340-600: like A340 for pitch, Rudder becomes fully Electrical (BPS + BCM: Back-up Power Supply + Control Module)
- A380: like A340-600 for Yaw control + BPS+BCM also power
 - Electrical Pitch Back-Up (elevators) linked to side-stick
 - Electrical Roll Back-Up (ailerons) linked to side-stick
 - Pitch Trim (Wheel is replaced by Switches).
Electrical Back-up control

- Side stick
- Pitch trim switches
- BPS Yellow
 - BCM Gyro
 - Outboard Elevators
 - Ailerons
 - SPOILERS
 - SPOILERS
- BPS Green
 - Outboard Elevators
 - Inboard Elevators
 - Rudder
 - Upper
 - Lower

© AIRBUS S.A.S. All rights reserved. Confidential and proprietary document.
Electrical Back-up: BPS / BCM

Back-up Power Supply / Back-up Control Module

BPS contains:
- A hydraulic motor
- An electrical power generator

The BCM consists of:
- 2 rate gyrometers,
- Analog electronics performing:
 - acquisition of pilot controls
 - pitch, yaw and roll control law
 - actuator control
A380 Flight Control and Hydraulic System: overview

- Aircraft configuration and control surfaces
- Actuator technology
- Power sources for Flight Controls
- Flight Control Architecture and Computers
- Back-up controls
- Control Laws
Flight Controls Laws : main features

Same design philosophy as Airbus FBW:

• Normal Law with auto-trim, Flight Envelope protection
• Alternate Laws with ‘Prot Lost’, but still with auto-trim
• “Direct” law

Active Stability Control functions:

• All levels of control laws (Normal, Alternate, “Direct” and even Back-up) include a Yaw and Pitch damping function
Flight Controls Laws : main features

A380 is the continuation of FBW developed since A320:
- normal load factor demand in pitch
- roll rate demand in roll, with automatic turn coordination & yaw damping
- with flight envelope protections (Stall, attitudes, over-speed)

Main A380 novelties compared to A340 family:
- Y* law as lateral normal law: use of Side-Slip probes
- Load Alleviation functions specific to A380
- Use of voters instead of “switches” for protections (AoA, High Speed, attitudes, …)
- Closer integration with Auto-Pilot (same computers)
Conclusion: Flight Test findings

• Generally the aircraft aerodynamics in the flight domain explored (VD & MD, aft & forward CG, light/heavy) are close to predictions

• Use of E(B)HA:
 ‣ Checked gradually via Flight Test Instrumentation
 ‣ “All Electrical Flight” performed (Hydraulic pumps depressurised)

These achievements were enabled by early use of simulators (Aircraft –1, Aircraft 0) and continuous R&D.

A400M, A350 XWB and future Programmes will benefit from these achievements, plus R&T activities
Conclusion: Future R&T activities

- More Electrical Aircraft:
 - use of EMA (Electro-Mechanical Actuators)
 - Use of High Voltage DC network

- Guidance Navigation & Control:
 - Ground Automation: Brake-to-Vacate, Airport Navigation & Auto-Pilot...
 - Multi-Objective design (handling qualities, comfort, loads, fatigue, …)
 - ATM 4D including specific approach patterns
Thank you for your attention
This document and all information contained herein is the sole property of AIRBUS S.A.S. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be reproduced or disclosed to a third party without the express written consent of AIRBUS S.A.S. This document and its content shall not be used for any purpose other than that for which it is supplied.

The statements made herein do not constitute an offer. They are based on the mentioned assumptions and are expressed in good faith. Where the supporting grounds for these statements are not shown, AIRBUS S.A.S. will be pleased to explain the basis thereof.