

Airport2030 – AP4.1

Configuration for Scenario 2015 (Possible A320 Successor)

Andreas Johanning
Dieter Scholz

Hamburg University of Applied Sciences
Hamburg University of Applied Sciences

Final Presentation, Airbus Hamburg 05.06.2014

Content

- Ground Handling
- Proposals for a new A320
 - Standard Jet Configuration
 - Box Wing Aircraft
 - Smart Turboprop
- Summary
- Outlook

Ground Handling

- Analysis of 168 turnarounds at 4 German airports
- Statistical Evaluation:
 Often low regression, dependence on many unknown parameters
- Example: Disembarking

One Door Disembarking

Two Door Disembarking

Ground Handling

- Compilation of Gantt charts
- Evaluation of possible ground handling improvements

HAMBURG AVIATION

Ground Handling

- Example: Continuous Cargo Compartment
 - Time saving: No repositioning of loader
 - Cargo handling is not on critical path for gate positions
 - Slight time advantage only in few cases (e.g. two door oper. on apron)
 - Same costs

Ground Handling

- Example: Continuous Cargo Compartment
 - Time saving: No repositioning of loader
 - Cargo handling is not on critical path for gate positions
 - Slight time advantage only in few cases (e.g. two door oper. on apron)
 - Same costs

- Most evaluated technologies with advantages on the ground impair the DOC of the aircraft
 - Twin-aisle
 - Increase of aisle width
 - Foldable seat (if seat is heavier)
- Ground handling processes need to be robust to avoid delays!

Aircraft need to be optimized for cruise!

Proposals for a new A320 - Overview

• Standard Jet Configuration

• Non-Standard Jet Configuration

• Standard Prop Configuration

Proposals for a new A320

Standard Jet Configuration

- Requirements at Airports are Driving Todays Aircraft Design!
 - → Questioning established requirements (span limitation, take-off and landing distance, cruise Mach number, ...)

Code element 1		Code element 2		
Code number (1)	Aeroplane reference field length (2)	Code letter (3)	Wingspan (4)	Outer main gear wheel span ^a (5)
1	Less than 800 m	A	Up to but not including 15 m	Up to but not including 4.5 m
2	800 m up to but not including 1 200 m	В	15 m up to but not including 24 m	4.5 m up to but not including 6 m
3	1 200 m up to but not including 1 800 m	С	24 m up to but not including 36 m	6 m up to but not including 9 m
4	1 800 m and over	D	36 m up to but not including 52 m	9 m up to but not including 14 m

ICAO: Aerodromes, Volume I – Aerodrome Design and Operations, Annex 14 to the Convention on International Civil Aviation, 5th edition, 2009

- Considering alternative objective function
 - DOC (standard), DOC + Added Values
 - Minimum fuel

Standard Jet Configuration: A320 "optimized"

Parameter	Value	Deviation from A320*
Requirements		
m_{MPL}	19256 kg	0 %
R_{MPL}	1510 NM	0 %
M _{CR}	0.55	- 28 %
$\max(s_{\text{TOFL}}, s_{\text{LFL}})$	2700 m	+ 53 %
n _{PAX} (1-cl HD)	180	0 %
$m_{\scriptscriptstyle PAX}$	93 kg	0 %
SP	28 in	- 3 %

• early conceptual design

0.6

Parameter	Value	Deviation from A320*
Main aircraft para	meters	
$m_{ ext{MTO}}$	66000 kg	- 10 %
$m_{ m OE}$	39200 kg	- 5 %
$m_{\scriptscriptstyle F}$	7500 kg	- 42 %
S _w	68 m²	- 45 %
$b_{W,geo}$	48.5 m	+ 42 %
$A_{W,eff}$	34.8	+ 266 %
E _{max}	26.1	+ 48 %
T_{TO}	89100 N	- 20 %
BPR	15.5	+ 158 %
SFC	1.03E-5 kg/N/s	- 37 %
h_{ICA}	30000 ft	- 23 %
S _{TOFL}	2490 m	+ 41 %
S_{LFL}	2110 m	+ 45 %
t_{TA}	32 min	0 %

Standard Jet Configuration: A320 "optimized"

Parameter	Value	Deviation from A320*			
DOC mission re	DOC mission requirements				
R _{DOC}	750 NM	0 %			
$m_{ ext{PL,DOC}}$	19256 kg	0 %			
EIS	2030				
C _{fuel}	1.44 USD/kg	0 %			
Results					
$m_{ extsf{F,trip}}$	3700	- 36 %			
$U_{a,f}$	3070	+ 6 %			
DOC (AEA)	93 %	- 7 %			

Proposal: Horizontal Wing Tip Extension on A320 as Option

Results from an additional study in Airport2030: "Airport Compatibility of Medium Range Aircraft with Large Wing Span"

- Wingtip devices: Very limited efficiency compared to the same length of material used to horizontally extend the wing (based on Nita 2012)
- From aerodynamics: Wings should be extended horizontally (not vertically)
- Consider: Extend the wing span and deal with consequences at airports
- Airbus should also offer a horizontal wing tip extension as option

Proposal: Horizontal Wing Tip Extension on A320 as Option

- Optional horizontal wing tip extension limits risk and costs compared to a new wing
- A slow introduction of aircraft with larger wing span (Class C => Class D) will force airports to accept this
- Landing fees are based on MTOW and are hence unchanged
- Study showed: Many airports still have some capacity for a limited number of former Class C aircraft now with larger span
- Airports will start to rearrange gate layout with additional markings

Proposals for a new A320

- Non-Standard Jet Configuration
 - Reduction of Induced Drag
 - Box Wing Aircraft (BWA)
 - Diamond BWA
 - Double Decker BWA

Box Wing Aircraft

Hand Sketches

- Creative Methods
 - Brainstorming
 - Gallery Method

VERHEIRE, E.: Systematic Evaluation of Alternative Box Wing Aircraft Configurations. Bachelor Thesis, HAW Hamburg, 2013

• Modified Morphological Analysis

Morphological Analysis Matrix created after down selection

Stagger	Sweep	Box Wing Vertical	Horizontal	Vertical Stabilizer	Engine Position
		Position	Stabilizer Position	Position	Position
=	<u><<</u>	L-H	Can	Aft	Fuse – aft
	>>	L – SH	No		Fuse – mid
	< >		Aft		Wing

Number of Combinations: $3 \cdot 3 \cdot 2 \cdot 3 \cdot 1 \cdot 3 = 162$

BARUA, P; SCHOLZ, D.: Systematic Approach to Analyze, Evaluate and Select Box Wing Aircraft Configurations from Modified Morphological Matrices. TN, HAW Hamburg, 2013

Modified Morphological Analysis:

Successive combination (in "best" order) followed by immediate down selection => 18

Box Wing Aircraft

	Box wing with differer	n wing vertical position		
	Low – High	Low - Super High	Super Low - High	Super Low – Super
	Position	Position	Position	High Position
OpenVSP front view figure				

Horizontal tail surface position along the fuselage length

	Canard	No Horizontal tail	Horizontal surface
OpenVSP 3-D figure			

Engine positions for box wing aircraft

	Fuselage Aft	Fuselage Middle	On the wing
OpenVSP 3-D figure			

All possible variations together would lead to 31104000 combinations (from Bachelor thesis)

Box Wing Aircraft

HAMBURG AVIATION

Box Wing Aircraft

Box Wing Aircraft: General Morphological Analysis

German: "Nutzwertanalyse" (ZANGEMEISTER): Weighted Sum of Evaluation Points

- Configuration
 - Force Fighting
 - Family Concept
- Drag
 - Zero Lift Drag
 - Induced Drag
- Weight
 - Empty Weight
- Flight Mechanics
 - Longitudinal Static Stability and CG Range
- Operation
 - Ground Handling
- Development
 - Time and Cost
 - Risk

Box Wing Aircraft: General Morphological Analysis: Results

1.

2.

3.

Best <u>un</u>conventional configuration

HAMBURG AVIATION

Box Wing Aircraft: Aerodynamics

Measurements of induced drag of different box wings in the wind tunnel of HAW Hamburg

The reference wing

DORENDORF, G.: Vergleich einer Boxwing-Konfiguration mit einem einfachen Tragflügel. Project, HAW Hamburg, 2012

Box Wing Aircraft: Aerodynamics

$$\frac{D_{i,box}}{D_{i,ref}} = \frac{e_{ref}}{e_{box}} = k$$

NITA, M.; SCHOLZ, D.: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. Berlin, DLRK 2012

Box Wing Aircraft: Glide Ratio

For E_{max} : $C_{D0} = C_{Di}$??? for Box Wing Aircraft ???

Considering a ratio h/b = 1, it yields to $C_{Di,BW}/C_{Di,ref} \approx 0.5$:

• Box Wing flies at reference Aircraft Altitude

$$\frac{E_{\text{max},BW}}{E_{\text{max},ref}} = \frac{4}{3} = 1.33$$

• Reference Aircraft flies at Box Wing Altitude

$$\frac{E_{\text{max},BW}}{E_{\text{max},ref}} = \frac{3}{2} = 1.5$$

• "Fair" comparison:

$$\frac{E_{\text{max},BW}}{E_{\text{max},ref}} = \sqrt{2} = 1.41$$

Considering a realistic ratio h/b = 0.25, it yields to $C_{Di,BW}/C_{Di,ref} \approx 0.75$:

$$\frac{E_{\text{max},BW}}{E_{\text{max},ref}} = 1.15$$

Glide ratio of a Box Wing Aircraft is 15 % higher than that of the reference aircraft

SCHIKTANZ, D.; SCHOLZ, D.: The Conflict of Aerodynamic Efficiency and Static Longitudinal

Stability of Box Wing Aircraft. Venice, CEAS 2011

Control Limit

 $\mathbf{C}_{\mathrm{L},2}$ needs to be low. Thus for a given \mathbf{C}_{L}

 $C_{\scriptscriptstyle L,1}$ needs to be increased

Trim Condition

C_{L,2} needs to be lower than C_{L,1}

$$_{1} = C_{L,1} / C_{L,2} > 1$$

Forward wing needs higher lift coefficient than aft wing

Munk: drag independant of stagger

Box Wing Aircraft: Aerodynamics

Prandtl (for h/b = infinity):

$$\frac{C_{D,i}}{C_{D,i,min}} = \frac{2(x^2 + 1)}{(x + 1)^2} \quad with \quad x = \frac{C_{L,1}}{C_{L,2}}$$

LOCKHEED: Transonic Biplane Concepts. NACA CR 132462, 1974

Induced drag increases if lift coefficients are different

Box Wing Aircraft: Aerodynamics

Stagger = 0

Stagger = -0.5b

Sensitivity of induced drag to non-optimum lift distributions (Tornado)

If forward wing is in front of aft wing: No induced drag increase!

Box Wing Aircraft: Cabin and Fuselage Layout (Configuration A)

Fuselage cross section for economy class and business class (modelled with PreSTo Cabin)

SCHIKTANZ, D.; SCHOLZ, D.: Box Wing Fundamentals – An Aircraft Design Perspective. Bremen, DLRK 2011

SCHIKTANZ, D.: Conceptual Design of a Medium Range Box Wing Aircraft. Master Thesis, 2011

Cabin floor plan of the box wing aircraft (modelled with PreSTo Cabin)

Box Wing Aircraft: Design evolution (Wide Body)

Hochschule für Angewandte Wissenschaften Hamburg

Box Wing Aircraft: Results (Wide Body)

Parameter	Value	Deviation from A320*
Requirements		
$m_{ ext{MPL}}$	19256 kg	0 %
$R_{ ext{MPL}}$	1510 NM	0 %
M _{CR}	0.76	0 %
$\max(s_{\text{TOFL}}, s_{\text{LFL}})$	1770 m	0 %
n _{PAX} (1-cl HD)	180	0 %
$m_{\scriptscriptstyle{PAX}}$	93 kg	0 %
SP	29 in	0 %

Parameter	Value	Deviation from A320*			
Main aircraft para	Main aircraft parameters				
$m_{ ext{MTO}}$	89600 kg	+ 22 %			
m_{OE}	55800 kg	+ 35 %			
$m_{\scriptscriptstyle F}$	14500 kg	+ 12 %			
S_{W}	155 m²	+ 27 %			
$b_{ m W,geo}$	35.9 m	+ 5 %			
$A_{\mathrm{W,eff}}$	18.9	+ 99 %			
E_{max}	19.5	≈ + 11 %			
T_{TO}	134 kN	+ 21 %			
BPR	6	+ 0 %			
SFC	1.62E-5 kg/N/s	- 2 %			
h_{ICA}	40700 ft	+ 5 %			
S_{TOFL}	1770 m	0 %			
S_{LFL}	1450 m	0 %			
t_{TA}	25 min	0 %			

Box Wing Aircraft: Results (Wide Body)

Parameter	Value	Deviation from A320*			
DOC mission re	DOC mission requirements				
R _{DOC}	755 NM	0 %			
$m_{ extsf{PL}, extsf{DOC}}$	19256 kg	0 %			
EIS	2030				
C _{fuel}	1.44 USD/kg	0 %			
Results					
$m_{ extsf{F,trip}}$	6425 kg	+ 10 %			
$U_{a,f}$	2617 h	- 10 %			
DOC (AEA)	119 %	+ 19 %			

Box Wing Aircraft: Results (Slender Body)

Parameter	Value	Deviation from A320*
Requirements		
m_{MPL}	19256 kg	0 %
R_{MPL}	1510 NM	0 %
M _{CR}	0.76	0 %
$\max(s_{\text{TOFL}}, s_{\text{LFL}})$	1770 m	0 %
n _{PAX} (1-cl HD)	180	0 %
$m_{\scriptscriptstyle{PAX}}$	93 kg	0 %
SP	29 in	0 %

25		Continger	
20		Alternate:	
15		Add. tank	14 m³
10		Ref. aircra	art: A32
<u>5</u>		1	
0 —	-		
0	2000	4000	6C

Parameter	Value	Deviation from A320*			
Main aircraft parameters					
$m_{ ext{MTO}}$	90900 kg	+ 24 %			
m_{OE}	57700 kg	+ 40 %			
$m_{\scriptscriptstyle F}$	14000 kg	+ 7 %			
S _w	153 m²	+ 26 %			
$b_{ m W,geo}$	36.0 m	+ 5 %			
$A_{ m W,eff}$	17.0	+ 79 %			
E _{max}	21.4	≈ + 21 %			
T _{TO}	136 kN	+ 22 %			
BPR	6	+ 0 %			
SFC	1.62E-5 kg/N/s	- 2 %			
h _{ICA}	41900 ft	+ 8 %			
S _{TOFL}	1770 m	0 %			
S _{LFL}	1450 m	0 %			
t_{TA}	32 min	0 %			

Box Wing Aircraft: Results (Slender Body)

Parameter	Value	Deviation from A320*		
DOC mission requirements				
R _{DOC}	755 NM	0 %		
$m_{ ext{PL,DOC}}$	19256 kg	0 %		
EIS	2030			
C _{fuel}	1.44 USD/kg	0 %		
Results				
$m_{ extsf{F,trip}}$	6242 kg	+ 7 %		
$U_{a,f}$	2617 h	- 10 %		
DOC (AEA)	120 %	+ 20 %		

Box Wing Aircraft: Family Concept (Configuration A)

Box Wing General Familiarization

Twin Aisle Family Highlights

	base	V100	V200
Fuselage Length	33.1 m	37.21 m	41.28 m
Underfloor Volume	34.17 m³	38.42 m³	42.62 m³
Longitudinal distance from AC1 to AC2 (I')	12.50 m	15.50 m	19.57 m
Winglets Sweep (at 25% chord)	28.67°	43.44°	56.12°

AHMED, S.: Family Concepts of Box Wing Aircraft. Memo, 2012

Box Wing Aircraft: Family Concept (Configuration B)

Box Wing General Familiarization

Single Aisle Family Highlights

	base	S100	S200
Fuselage Length	37.44 m	34.09 m	41.51 m
Underfloor Volume	38.6 6m³	35.20 m³	42.86 m³
Longitudinal distance from AC1 to AC2 (I')	14 m	12.9 m	16 m
Winglets Sweep (at 25% chord)	36.76°	30.97°	45.39°

Box Wing Aircraft: Ground handling

Box Wing Aircraft: Flying Qualities Calculation, Flight Simulation

Simulator X-Plane with Aircraft Generator PlaneMaker

Dutch Roll Mode:

Damping versus Frequency

h = 0 km ... 13 km, V = 100 m/s ... 240 m/s

Simulator Flight Gear / Flight Dynamics Model / JSBSim

CAJA CALLEJA, R.; SCHOLZ, D.: Box Wing Flight Dynamics in the Stage of Conceptual Aircraft Design. Berlin, DLRK 2012

CAJA CALLEJA, R.: Flight Dynamics Analysis of a Medium Range Box Wing Aircraft. Master Thesis, 2012

Proposals for a new A320

- Standard Prop Configuration
 - Turboprop engines are more fuel efficient than turbofan engines

- Low flying → higher speed of sound → same speed at lower Mach number
- Additional future technologies:
 - Natural laminar flow
 - Strut braced wing

Smart Turboprop: Results

Choosing the optimum aircraft configuration:

Smart Turboprop optimized for low DOC compared to A320

	Turboprop	T-tail		Convent	ional tail
(w/o NLF/SBW	2 engines	4 engines	2 engines	4 engines
Best	High wing	-13,6%	-11,4%	-13,3%	-11,1%
configurati	ion Low wing	-12,4%	-11,5%	-12,9%	-11,1%

- Wisdom from this Optimization Study:
 - 2 engines better than 4 engines
 - For 2 engines: High wing better than low wing (0,4 ... 1,2 % PT)
 - For 4 engines: Low wing as good as high wing
 - NLF improves results by about 2,8 % PT
 - Struts improve results by about 0,5 % PT
 - NLF and Struts improve results by about 3 % PT

HAMBURG AVIATION

Smart Turboprop: Results

Parameter	Value	Deviation from A320*
Requirements		
$m_{ ext{\tiny MPL}}$	19256 kg	0 %
R_{MPL}	1510 NM	0 %
M _{CR}	0.51	- 33 %
$\max(s_{\text{TOFL}}, s_{\text{LFL}})$	1770 m	0 %
n _{PAX} (1-cl HD)	180	0 %
$m_{\scriptscriptstyle{PAX}}$	93 kg	0 %
SP	29 in	0 %

Parameter	Value	Deviation from A320*			
Main aircraft para	Main aircraft parameters				
$m_{ ext{MTO}}$	56000 kg	- 24 %			
$m_{\scriptscriptstyle m OE}$	28400 kg	- 31 %			
$m_{\scriptscriptstyle F}$	8400 kg	- 36 %			
S _w	95 m²	- 23 %			
$b_{ m W,geo}$	36.0 m	+ 6 %			
$A_{ m W,eff}$	14.9	+ 57 %			
E _{max}	18.8	≈ + 7 %			
$P_{ m eq,ssl}$	5000 kW				
d _{prop}	7.0 m				
$\eta_{ extsf{prop}}$	89 %				
PSFC	5.86E-8 kg/W/s				
h _{ICA}	23000 ft	- 40 %			
s_{TOFL}	1770 m	0 %			
S_{LFL}	1300 m	- 10 %			
t_{TA}	32 min	0 %			

HAMBURG AVIATION

Smart Turboprop: Results

Parameter	Value	Deviation from A320*
DOC mission re	equirements	
R _{DOC}	755 NM	0 %
$m_{ extsf{PL}, extsf{DOC}}$	19256 kg	0 %
EIS	2030	
C _{fuel}	1.44 USD/kg	0 %
Results		
$m_{ extsf{F,trip}}$	3700 kg	- 36 %
$U_{a,f}$	3600 h	+ 5 %
DOC (AEA)	83 %	- 17 %

In 1988, we would have preferred a turbofan aircraft as well

Today, fuel price is <u>four</u> times as high as in 1988 (inflation-adjusted)!

For an A320 successor, a next generation turboprop engine could be used

HAMBURG AVIATION

Smart Turboprop: Analysis of the results

Strut-braced wing slightly improves DOC

HAMBURG AVIATION

Smart Turboprop: Analysis of the results

Natural laminar flow slightly improves DOC

The average stage length of an A320 is quite short (approx. 600 NM)!

Smart Turboprop: DLR/Airbus Design Challenge

Design Requireme	Smart Turboprop	
PAX	190 all economy @ 30" pitch 135 kg/pax payload capacity for high density layout @ 28" pitch	- 5 % / - 3 % - 25 %
Range	2000 NM (90% of flights within Europe and USA < 500 NM range). Technical means to enable up to 2900 NM range	- 25 %
TOFL	2000 m, SL, MTOW, ISA +15°C	- 12 %
LDGFL	1500 m, SL, MLW, ISA +15°C	- 13 %
Mach	0,79	- 35 %
Initial Climb/ Max. Altitude	FL 350 / FL 410	
Span	Max. 36m or technical means to achieve ICAO class C	0 %
Noise	-5 dB cum. vs. Chapter 4	Achieved:
Fuelburn	-25% versus A320 (CFM) 2009	- 36 %
Emissions	Near zero emissions at gate and during taxi	
CoC	-35% versus A320 (CFM) 2009	≈ - 16 %

Summary

- Ground handling needs to be robust it is NOT a financial game changer
- 36 m requirement drives the design!
- Standard Jet Configuration:
 - Challenge requirements (take-off distance, cruise Mach number, ...)
- Box Wing Aircraft:
 - This may be the best Box Wing configuration:
 - But: DOC are not competitive

- Smart Turboprop:
 - Offers DOC improvements
 - Especially combined with braced wing and natural laminar flow on wing

Outlook

Integration of Life Cycle Assessment into Conceptual Aircraft Design

→ Optimization for minimum environmental impact

Contribution of different in- and outputs to the environmental impact of an Airbus A320-200

Contribution of the endpoint categories to the environmental impact of an Airbus A320-200

Cooperative PhD Thesis in progress: Life-cycle based Multidisciplinary Aircraft Design Optimization for Future Scenarios Technische Universität München

JOHANNING, A.; SCHOLZ, D.: A first step towards the integration of life cycle assessment into conceptual aircraft design. Stuttgart, DLRK 2013

If you want to learn more about the presented aircraft designs, please contact info@ProfScholz.de

Verein Deutscher Ingenieure Hamburger Bezirksverein e.V. Arbeitskreis Luft- und Raumfahrt

Invitation to an RAeS/HAW lecture in cooperation with the DGLR and VDI

Mitigating the Climate Impact of Aviation – Is Technology Enough?

Dr Antony Evans

University College London (UCL) Energy Institute

Lecture followed by discussion

Entry free! No registration required

Thursday, 12th June 2014, 18:00 Date:

Location: HAW Hamburg

Berliner Tor 5, (Neubau), Hörsaal 01.12

2005 Average number of daily flights ■ 1-2 ■ 2-5 ■ 5-10 ■ >10

Appendix

Parameter	Explanation	Comments
Requirements		
m_{MPL}	Maximum payload mass [kg]	
$R_{ ext{MPL}}$	Maximum range [kg] (with maximum payload)	
M _{CR}	Cruise Mach number	
$\max(s_{\text{TOFL}}, s_{\text{LFL}})$	Maximum take-off and landing field length [m]	Requirement for the maximum allowable take-off and landing field length
n _{PAX} (1-cl HD)	Number of passengers	one class, high density layout
$m_{\scriptscriptstyle PAX}$	Passenger mass [kg]	
SP	Seat pitch [in]	Seat pitch for the one class high-density layout

- most of the given values are rounded
- the given deviation refers to the real values and not to the rounded values

Appendix

Parameter	Explanation	Comments
Main aircraft parameters		
$m_{ ext{MTO}}$	Maximum take-off mass [kg]	
m_{OE}	Operating empty mass [kg]	
$m_{\scriptscriptstyle F}$	Fuel mass [kg]	
S _w	Wing area [m²]	
$b_{ m W,geo}$	Geometrical span [m]	
$A_{W,eff}$	Effective aspect ratio [-]	
E _{max}	Maximum glide ratio [-]	
T_{TO}	Take-off thrust [N]	
$P_{ m eq,ssl}$	Equivalent take-off power at static sea level [kW]	
BPR	Bypass-Ratio [-]	
d_{prop}	Propeller diameter [m]	
η_{prop}	Propeller efficiency [%]	
SFC	Thrust specific fuel consumption [kg/N/s]	
PSFC	Power specific fuel consumption [kg/W/s]	
h _{ICA}	Initial cruise altitude [m]	
S _{TOFL}	Take-off field length [m]	
S_{LFL}	Landing field length [m]	
t_{TA}	Turnaround time [min]	

Appendix

Parameter	Explanation	Comments
DOC mission requirements		
R _{DOC}	Range for the DOC calculation [NM]	
$m_{ extsf{PL,DOC}}$	Payload mass for the DOC calculation [kg]	
EIS	Entry into Service	
C _{fuel}	Fuel cost [USD/kg]	Fuel costs are estimated for the entry into service
Results		
$m_{F,trip}$	Fuel mass (for the DOC range) [kg]	
$U_{a,f}$	Utilization [h]	Product of the number of flights per year and the duration of the flight on the DOC-range
DOC (AEA)	Direct Operating Costs	DOC calculated using the method of the Association of European Airlines

Appendix Additional Parameters – A320 "optimized"

Parameter	Explanation	Value
Cabin		
W _{aisle}	Aisle width	8 in
W _{seat}	Seat width	17 in
W _{ammrest}	Armrest width	1.6 in
S _{clearence}	Sidewall clearence	0.5 in
Wing		
$arphi_{25}$	Wing sweep at 25 % chord	10°
λ	Wing taper ratio	0.25
Vertical tail		
S_{v}	Vertical tail area	15.8 m ²
$arphi_{25,V}$	Vertical tail sweep at 25 % chord	30°
λ_{V}	Vertical tail taper ratio	0.34
Horizontal tail		
S_{H}	Horizontal tail area	5.7 m ²
$arphi_{25,H}$	Horizontal tail sweep at 25 % chord	13°
λ_{H}	Horizontal tail taper ratio	0.32
DOC		
k _{delivery,OE}	Delivery price per kg m _{OE}	1602 USD/kg

Appendix Additional Parameters – A320 "optimized"

Parameter	Explanation	Value
Zero lift & wave drag		
C _{D,0}	Zero lift drag	221 drag counts
$C_{D,W}$	Wave drag	10 drag counts
Induced drag		
a_{e}		-0.00152
b_{e}		10.82
C_{e}		1
M_{comp}	Highest Mach number without compressibility effects	0.3
Q		1.08
P		0.0088
$A_{ m W,eff}$	Effective aspect ratio of the wing	34.8
cf _e	Correction factor for Oswald factor	1.17

$$e = \frac{k_{e,M}}{Q + P \cdot \pi \cdot A_{W,eff}} \qquad k_{e,M} = a_e \cdot \left(\frac{M}{M_{comp}} - 1\right)^{b_e} + c_e$$

NITA, M.; SCHOLZ, D.: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. Berlin, DLRK 2012

Appendix Additional Parameters – Box Wing Aircraft (Wide Body)

Parameter	Explanation	Value
Cabin		
W _{aisle}	Aisle width	20 in
W _{seat}	Seat width	20 in
W _{armrest}	Armrest width	2 in
S _{clearence}	Sidewall clearence	0.6 in
Wing		
$arphi_{ ext{25,FW}}$	Forward wing sweep at 25 % chord	29°
$\lambda_{\sf FW}$	Forward wing taper ratio	0.24
$arphi_{ ext{25,AW}}$	Aft wing sweep at 25 % chord	-28°
λ_{AW}	Aft wing taper ratio	0.80
V-tail		
S_{V}	V-tail area	25 m²
$arphi_{25,V}$	V-tail sweep at 25 % chord	-30°
λ_{V}	V-tail taper ratio	0.50
DOC		
k _{delivery,OE}	Delivery price per kg m _{OE}	1602 USD/kg

Appendix Additional Parameters – Box Wing Aircraft (Wide Body)

Parameter	Explanation	Value
Zero lift & wave drag		
C _{D,0}	Zero lift drag	179 drag counts
$C_{\scriptscriptstyle D,W}$	Wave drag	10 drag counts
Induced drag		
e_{ref}		0.85
k_1		1.04
k_2		0.57
k_3		1.04
k_4		2.13
h/b		0.22

$$e_{box} = e_{ref} \cdot \frac{e_{NP}}{e} \qquad \frac{e_{NP}}{e} = \frac{k_3 + k_4 \cdot \frac{h}{b}}{k_1 + k_2 \cdot \frac{h}{b}}$$

NITA, M.; SCHOLZ, D.: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. Berlin, DLRK 2012

Appendix Additional Parameters – Box Wing Aircraft (Slender Body)

Parameter	Explanation	Value
Cabin		
W_{aisle}	Aisle width	20 in
W _{seat}	Seat width	20 in
W _{armrest}	Armrest width	2 in
S _{clearence}	Sidewall clearence	0.6 in
Wing		
$arphi_{ ext{25,FW}}$	Forward wing sweep at 25 % chord	35°
$\lambda_{\sf FW}$	Forward wing taper ratio	0.9
$arphi_{ ext{25,AW}}$	Aft wing sweep at 25 % chord	-15°
λ_{AW}	Aft wing taper ratio	0.9
V-tail		
S_{V}	V-tail area	36 m²
$arphi_{25,V}$	V-tail sweep at 25 % chord	-37°
λ_{V}	V-tail taper ratio	0.41
DOC		
$k_{\text{delivery,OE}}$	Delivery price per kg m _{OE}	1602 USD/kg

Appendix Additional Parameters – Box Wing Aircraft (Slender Body)

Parameter	Explanation	Value
Zero lift & wave drag		
C _{D,0}	Zero lift drag	154 drag counts
$C_{\scriptscriptstyle D,W}$	Wave drag	10 drag counts
Induced drag		
e_{ref}		0.85
k_1		1.04
k_2		0.57
k_3		1.04
k_4		2.13
h/b		0.25

$$e_{box} = e_{ref} \cdot \frac{e_{NP}}{e} \qquad \qquad \frac{e_{NP}}{e} = \frac{k_3 + k_4 \cdot \frac{k_4}{k_1}}{k_1 + k_2 \cdot \frac{k_4}{k_1}}$$

NITA, M.; SCHOLZ, D.: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. Berlin, DLRK 2012

Appendix Additional Parameters – Smart Turboprop

Parameter	Explanation	Value
Cabin		
W _{aisle}	Aisle width	20 in
W _{seat}	Seat width	20 in
W _{armrest}	Armrest width	2 in
S _{clearence}	Sidewall clearence	0.6 in
Wing		
$arphi_{25}$	Wing sweep at 25 % chord	6°
λ	Wing taper ratio	0.20
Vertical tail		
S_{V}	Vertical tail area	19.3 m ²
$arphi_{25,V}$	Vertical tail sweep at 25 % chord	28°
λ_{V}	Vertical tail taper ratio	0.69
Horizontal tail		
S _H	Horizontal tail area	12.4 m²
$arphi_{25,H}$	Horizontal tail sweep at 25 % chord	9°
λ_{H}	Horizontal tail taper ratio	0.25
DOC		
k _{delivery,OE}	Delivery price per kg m _{OE}	1602 USD/kg

Appendix Additional Parameters – Smart Turboprop

Parameter	Explanation	Value
Zero lift & wave drag		
C _{D,0}	Zero lift drag	314 drag counts
$C_{D,W}$	Wave drag	0 drag counts
Induced drag		
a_{e}		-0.00152
b_{e}		10.82
C_{e}		1
M_{comp}	Highest Mach number without compressibility effects	0.3
Q		1.08
P		0.0119
$A_{ m W,eff}$	Effective aspect ratio of the wing	14.9
cf _e	Correction factor for Oswald factor	1.56

$$e = \frac{k_{e,M}}{Q + P \cdot \pi \cdot A_{W,eff}} \qquad k_{e,M} = a_e \cdot \left(\frac{M}{M_{comp}} - 1\right)^{b_e} + c_e$$

NITA, M.; SCHOLZ, D.: Estimating the Oswald Factor from Basic Aircraft Geometrical Parameters. Berlin, DLRK 2012

