

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

Aircraft Systems Overview

Greening of Secondary Power Systems

Dieter Scholz Hamburg University of Applied Sciences

SWAFEA – Sustainable Way for Alternative Fuels and Energy for Aviation

1st European Stakeholder Meeting

Brussels, Belgium, 23. - 24.04.2009

- Secondary Power Systems
- Fuel Cells in Aviation (example: Airbus)
- Greening of Secondary Power Systems

- 1.) **Propulsive power**: aircraft engines
- 2.) Secondary power: onboard power
 - for technical loads

consumed by equipment required to operate the aircraft safely

for commercial loads

consumed by equipment required to increase passenger comfort and satisfaction

Consumption of secondary power systems: about 5 % of fuel consumed for the total flight

Energy types of secondary power systems:

- electric
- hydraulic (special hydraulic fluid under pressure)

 3000 psi = 206 hPa
 5000 psi = 343 hPa
- pneumatic (air under pressure)
 o at about 4 hPa and 200 °C

Secondary Power Systems

Onboard systems and their type of secondary power

identifier	name of system	secondary power
21	air conditioning	pneumatic => future: electric
22	auto flight	electric
23	communications	electric
24	electrical power	generation: electric
25	equipment / furnishings	electric
26	fire protection	_
27	flight controls	hydraulic => future: electric
28	fuel	electric
29	hydraulic power	generation: hydraulic
30	ice & rain protection	pneumatic / electric
	-	=> future: electric / electric
31	indicating / recording systems	electric
32	landing gear	hydraulic => future: electric
33	lights	electric
34	navigation	electric
35	oxygen	_
36	pneumatic	generation: pneumatic
38	water / waste	pneumatic => future: electric
49	airborne auxiliary power	generation: electric / pneumatic

Original sources of aircraft secondary power:

- Aircraft engines normally (e. i. during taxiing and in flight) provide all energy needs onboard
- Other power sources needed only
 - a) on the ground
 - (to make the aircraft self sufficient)
 - b) for additional redundancy

Aircraft engines deliver ...

- mechanical energy (shaft power) for:
 o electric (generator)
 o hydraulic (engine driven pump)
- pneumatic (bleed air)

Other power sources are ...

- Auxiliary Power Unit (APU)
- Ram Air Turbine (RAT)
- Batteries (BAT)
- Future => Fuel Cell (FC)
- Airport equipment. Delivery of:
 - \circ electrical power
 - o hydraulic power
 - \circ pressurized air
 - $_{\rm O}$ air for air conditioning

Other power sources and their application ...

- Auxiliary Power Unit (APU)
 - o on ground
 - o in flight for added redundancy
 - additional redundancy (non essential APU)
 - necessary redundancy (essential APU, e.g. ETOPS flights)
- Ram Air Turbine (RAT)
 - electrical RAT: electric power => also converted into hydraulic power
 - hydraulic RAT: hydraulic power => also converted into electrical power
- Batteries (BAT)
 - DC => also converted into AC
- Fuel Cell (FC)
 - DC => also converted into AC
- Airport Equipment
 - o Electricity
 - o Hydraulic Power
 - o Pressurized Air
 - o Air for Air Conditioning

Energy conversion on board (1/2):

- electric => hydraulic: electric motor driven hydraulic pump (electric motor driven pump, EMDP)
- electric => pneumatic: electric motor driven compressor
- hydraulic => electric: hydraulic motor driven generator (constant speed motor / generator – CSM/G)
- hydraulic => pneumatic: hydraulic motor driven compressor

Energy conversion on board (2/2):

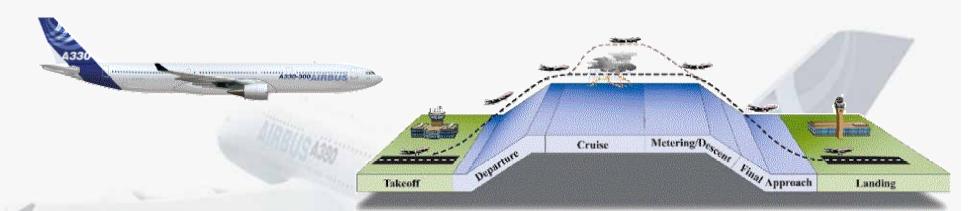
- pneumatic => electric: pneumatic motor driven generator
- pneumatic => hydraulic: pneumatic motor driven compressor
- hydraulic => hydraulic: hydraulic motor drives hydraulic pump (power transfer unit – PTU)

Energy conversion ...

chauld be avaided to cave anoral (conversion

Reasons for energy consumption due to onboard systems:

- direct consumption of shaft power from the engine
 - electric
 - hydraulic
- bleed air (air taken from different compressor stages in the engine)
- system mass => induced drag => increased thrust demand
- ram air => added drag => increased thrust demand
- additional drag


Greening of secondary power systems with Fuel Cells (FC)

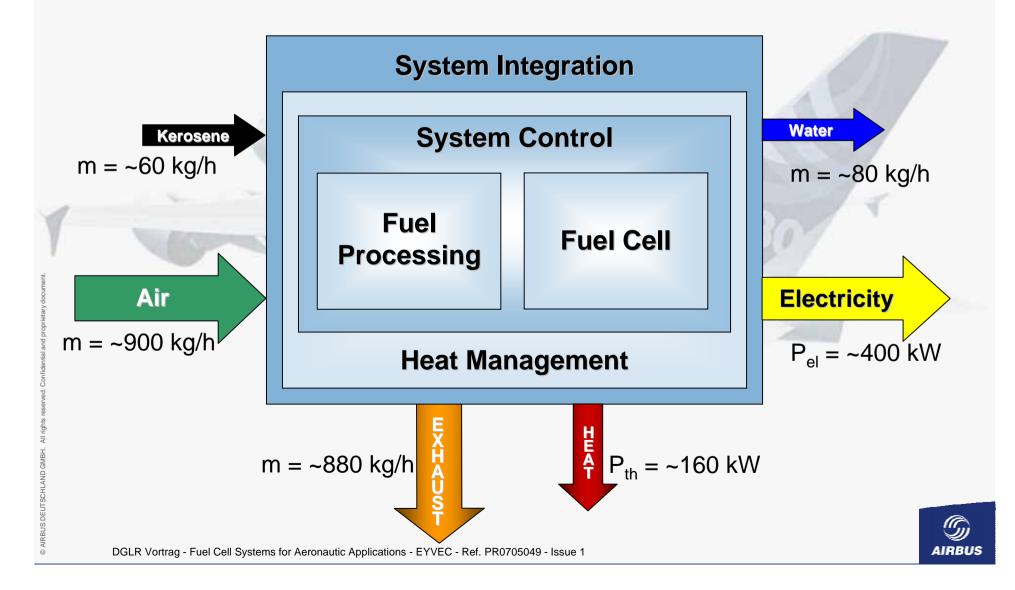
• See Airbus public presentation at HAW Hamburg:

http://www.fzt.haw-hamburg.de/pers/Scholz/dglr/hh/text_2007_05_10_Brennstoffzelle.pdf

Motivation for Fuel Cell System Application

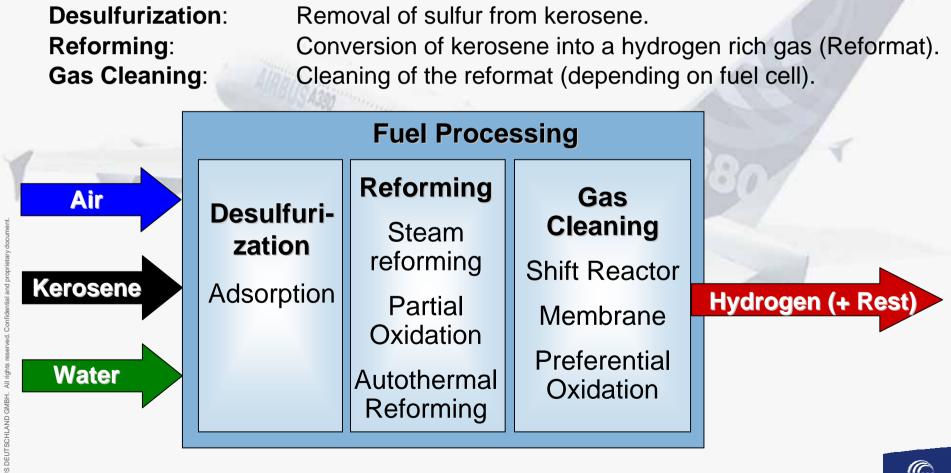
Aircraft Mission

Example: A330-300:

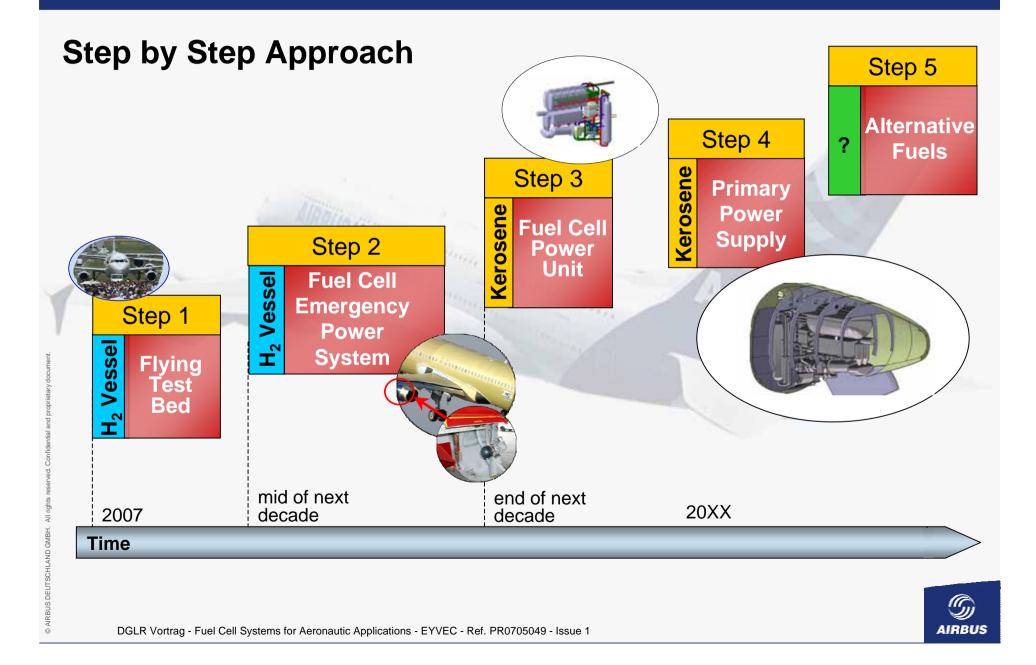

- ~100 000 L per flight of ~10 000 km (Average Fuel Consumption)
- ➢ Fuel Use: up to 5 %[∗] Aircraft Systems
 - 95 97% Propulsion

up to 5000 L per flight for Aircraft Systems operation

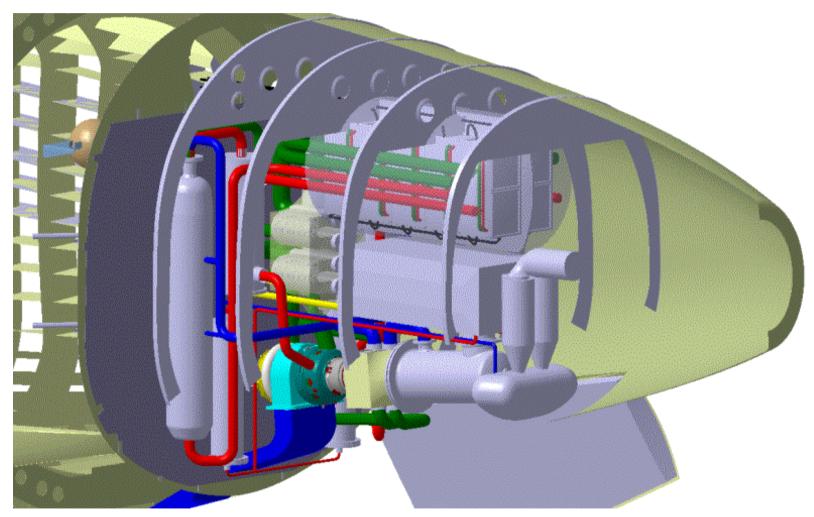
Fuel Cell Systems Architecture


System Architecture Overview

Fuel Cell Systems Architecture


Key Challenge Fuel Processing

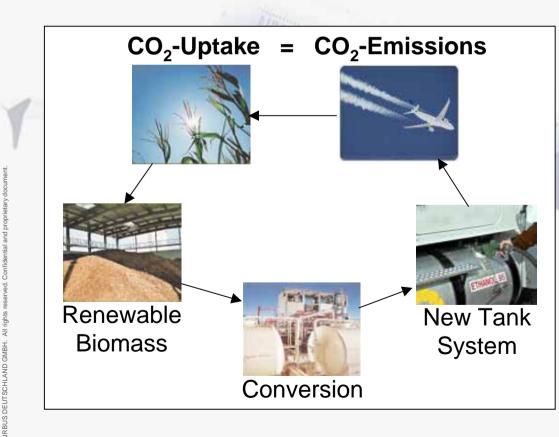
Fuel Processing is the Conversion of Kerosene into a hydrogen rich gas. Three Parts are normally necessary:



Airbus Fuel Cell System Strategy

Step 3: Fuel Cell Power Unit

Tail Cone Integration Concept


DGLR Vortrag - Fuel Cell Systems for Aeronautic Applications - EYVEC - Ref. PR0705049 - Issue 1

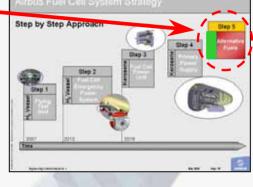
Alternative Fuels

Overview

Target (20XX)

Power Generation by Fuel Cell System with Alternative Fuels

Alternative Fuels:


- Desulfurized Kerosene
- > Hydrogen

STEP 5

- Ethanol/Methanol
- Biofuels

New Aircraft Generation

- Hydrogen Fuelled Aircraft
- New Tank System
- Fuel Cell System without Fuel Processing

Greening of secondary power systems (1/2) with todays technology we have these options:

- reduced direct consumption of shaft power (electric / hydraulic) due to:
 - better efficiency of consumers
 - fewer steps of energy conversions
 - **o better efficiency in power generation**
- improved / less / no bleed air usage
- reduced system mass
- reduced ram air
- reduced amount of added drag

Greening of secondary power systems (2/2) ...

... with tomorrows technology we have these options:

simple but important thought

- keep system technology principles as is, but change to a sustainable type of fuel (e.g. bio fuel or LH2 for engines and/or APU)
- 2. change system technology principles (e.g. fuel cell) but operate with conventional fuel (kerosene)
- 3. change both
- **=> consumption** of secondary power systems can be:
- 1. sustainable
- 2. about 20 % less (4 % instead of 5 % from total)

Hochschule für Angewandte Wissenschaften Hamburg Hamburg University of Applied Sciences

simple but important thought

- Since all power comes from the aircraft engines, onboard systems are "green" if the engines are "green" (e.g. with bio fuel).
- The fuel cell is a new secondary power generator:
 - with high efficiency
 - especially useful if LH2 is already on board for the aircraft engines
- "Greening" secondary power systems may involve:
 - evolution: being more efficient in every little detail (accepting related costs)
 - revolution: looking for optimized system configurations (less conversions, more electric, new secondary power generators, ...)