Contaminated Aircraft Cabin Air –
An Aeronautical Engineering Perspective

Dieter Scholz
Hamburg University of Applied Sciences

Press Meeting
10 Years German Wings "Cabin Air Contamination Event" (CACE): 2010-12-19
Online, HAW Hamburg, 2020-12-18
http://purl.org/CabinAir/HAW2020
http://CabinAir.ProfScholz.de
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Contents

• Introduction
• Jet Engine Oil
• Air Conditioning Technology
• Jet Engine Technology
• Engineering Design Principles from SAE
• The Legal Problem
• Solution: Bleed Free Design; during transition: Filters
• Summary
• Contact
Introduction

Fume Event on US Airways Flight 432 Phoenix to Maui in 2010
Video on: https://youtu.be/AZqeA32Em2s

Note:
- Smell events (without fumes) are much more frequent than fume events.
- Health effects have been reported from smell events alone (where patients never encountered a fume event).
Definition: Cabin Air Contamination Event (CACE)

In a Cabin Air Contamination Event (CACE) the air in the cabin and/or cockpit of an aircraft is contaminated. Sensation of the contamination can be from vision (fume/smoke), olfaction (smell/odor), a combination of typical symptoms experienced by several passengers and/or or crew or by related measurements of CO, CO2, ozon or other "harmful or hazardous concentrations of gases or vapours" (CS-25.831).

<table>
<thead>
<tr>
<th>Headache</th>
<th>Drowsiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dizziness</td>
<td>Impaired vision</td>
</tr>
<tr>
<td>Nausea</td>
<td>Vomiting</td>
</tr>
<tr>
<td>Tingling (e.g. hands, feet, etc.)</td>
<td>Trembling</td>
</tr>
<tr>
<td>Numbness</td>
<td>Irritated eyes/throat/nose</td>
</tr>
<tr>
<td>Difficulty speaking and finding words</td>
<td>Memory problems</td>
</tr>
<tr>
<td>Muscle incoordination</td>
<td></td>
</tr>
<tr>
<td>Breathing difficulties</td>
<td>Coughing</td>
</tr>
</tbody>
</table>

Typical symptoms following a CACE (ECA 2017)

Detach the definition from merely human sensation.

Allow also drastic health degradation to define the event.

Objective measurements would certainly be best, but are usually not available.
Jet Engine Oil - Ingredients

warning:
contains TCP
tricresylphosphate.
Swallowing this product can cause nervous system disorders, including paralysis. Prolonged breathing of oil mist, or prolonged or repeated skin contact can cause nervous system effects.

(Mobil Jet Oil II)

This warning was changed in 2004 (Michaelis 2012) to:

"This product is not expected to produce adverse health effects under normal conditions of use ... Product may decompose at elevated temperatures ... and give off irritating and/or harmful ... gases/vapours/fumes. Symptoms from acute exposure to these decomposition products in confined spaces [aircraft cabin] may include headache, nausea, eye, nose, and throat irritation."

(Mobil Jet Oil II)

EXXONMOBIL

Material Safety Data Sheet (MSDS)
FIRST AID MEASURES, INHALATION
Remove from further exposure [in a fume event?]... Use adequate respiratory protection [not available for passengers!]. If respiratory irritation, dizziness, nausea, or unconsciousness occurs, seek immediate medical assistance. If breathing has stopped, assist ventilation with a mechanical device or use mouth-to-mouth resuscitation.

(Exxon 2016a)
Jet Engine Oil - On Its Way

How Do We Know about Oil in the Cabin?

Oil has left traces on its way from the engine to the cabin interior:

1. Oil traces in bleed duct
2. Oil traces in air conditioning ducts
3. Oil traces in recirculation filters
4. Oil traces on cabin surfaces (wall panels, seats, ...)

Evidence collected in: Scholz 2017
Air Conditioning Technology

Air Conditioning Basics

Temperature Control, Pressure Control, Ventilation

1) compress the air
2) cool the air

=> Temperature Control

3) release the air

=> Pressure Control:
out > in: pressure goes down
in > out: pressure goes up

Adapted from (NRC 2002)
Air Conditioning Technology

Air Conditioning with Recirculation

- HEPA Filter
- HEPA-Carbon Filter
- Recirculation
- Add Filter Here!
- From the engine (unfiltered)

Adapted from (NRC 2002)
Air Conditioning Technology

Complete Air Conditioning System
Jet Engine Technology

Engine Overview

Engine Alliance GP7000

(bearings example)

(Assuntos Militares 2013)
Jet Engine Technology

Labyrinth Seals / Brush Seals – All Seals Leak by Design

Acceleration of the flow through the annular gap (isentropic expansion)

Dissipation of flow kinetic energy

High pressure

Stator

Rotor

Low pressure

labyrinth seal

brush seal

Childs 2017

Flitney 2014

DGLR 2014
Jet Engine Technology

Engine Air and Oil System

Normal operation of engine seals:
1. The "drain" discharges oil.
2. The "dry cavity" contains oil.
3. Air and oil leak from bearings into the bleed air.

=> Engines leak small amounts of oil by design!

Dieter Scholz: Contaminated Aircraft Cabin Air

10 Years German Wings: 19.12.2010
Press Meeting, Online, HAW Hamburg

18.12.2020, Slide 12
Aircraft Design and Systems Group (AERO)

based on (Exxon 2016b)
“Compressor bleed from turbine engines is attractive because of the mechanical simplicity of the system.” However, “oil contamination ... can occur in using compressor bleed air from the main engines.” “Popular opinion regarding the risk of obtaining contaminated air from the engine may preclude its use for transport aircraft, regardless of other reasons.”
Where Are the Legal Problems?

1.) **Missing sensors for air quality on board**

EASA CS-25.1309 (c) Information concerning unsafe system operating conditions must be provided to the crew to enable them to take appropriate corrective action.

EASA AMC-25.1309 c. Compliance with CS 25.1309(c).

(5) Even if operation or performance is unaffected or insignificantly affected at the time of failure, information to the crew is required if it is considered necessary for the crew to take any action or observe any precautions.

2.) **Fail-Safe Design Concept violated with bleed air used for the cabin**

EASA AMC-25.1309 b. Fail-Safe Design Concept.

(2) The fail-safe design concept uses the following design principles:

(xi) Error-Tolerance that considers adverse effects of foreseeable errors during the aeroplane's design, test, manufacture, operation, and maintenance.

Known deficiencies (here: oil contamination of bleed air) are not allowed. The system has to be error-tolerant to yet UNKNOWN design errors that have to be envisaged because it is a known fact in life that errors do occur. The system's error-tolerance is compromised, if it has to cope with already known design errors that are not rectified out of negligence relying on the systems error-tolerance. This means: The fail-safe design concept is not applied here.
Where Are the Legal Problems?

3.) **Cabin air must be free from contamination**

EASA 2017: CS 25.831 Ventilation

(a) Each passenger and crew compartment must be ventilated ... to enable crewmembers to perform their duties without undue discomfort or fatigue.

(b) Crew and passenger compartment air must be free from harmful or hazardous concentrations of gases or vapours.

CO, CO₂, ozone concentration limits are given, but not for other substances. This does not mean that other substances are allowed in any concentration (BFU 2014) "The BFU is of the opinion that a product [aircraft] which has received a type certificate by EASA should be designed in a way that neither crew nor passengers are harmed or become chronically ill." (BFU 2014)

4.) **Bleed air is not tested to be fit for use in the cabin as stated:**

EASA 2018: CS-E 690 (b)

(b) Contamination Tests of Bleed Air for Cabin Pressurisation or Ventilation. The specifications of this paragraph (b) are applicable where it is desired to declare that compressor bleed air is suitable for direct use in an aircraft cabin pressurisation or ventilation system.

(1) Tests to determine the purity of the air supply must be made.

(2) An analysis of defects which could affect the purity of the bleed air must be prepared and where necessary the defects must be simulated and tests, as agreed by the Agency, must be made to establish the degree of contamination which is likely to occur.
Solution Boeing 787

The "Pack" of the B787's Environmental Control System (ECS) is powered by electric motors (M) to compress ambient air up to cabin pressure and to push the air through the heat exchangers (HX) for cooling. The power for the electric motors is produced by generators (SG) connected to the aircraft's engine and APU. After compression and cooling the air is delivered to the cabin.
Solution: Compress Outside Air – Bleed Free Design

Airbus – A Solution Exists, but Is Not Applied!
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Summary

• Frequent Cabin Air Contamination Events (CACEs) show: There is a real problem:
 o engines leak oil by design,
 o oil can be traced on its way from the engine into the cabin, ...

• There is a legal problem / Democracy corrupted?

• Technical solution: **Bleed-free architecture** with direct air intake and dedicated compressor

• Short term partial technical solution: **Carbon filter**:
 a) in the **duct to the cabin** and
 b) attached to the **recirculation** filter
 suitable for **retrofit**
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

Contact

info@ProfScholz.de

http://www.ProfScholz.de

http://CabinAir.ProfScholz.de
Contaminated Aircraft Cabin Air – An Aeronautical Engineering Perspective

References

Assuntos Militares 2013

Boeing 2007

Cannon 2016

Childs 2017

EASA CS-25
References

EASA CS-E

ECA 2017

Exxon 2016a

Exxon 2016b

Flitney 2014

Liebherr 2016
References

Lufthansa 2015

Michaelis 2012

NRC 2002

SAE AIR 1168-7

Scholz 2017

Quote this document: